
z/OS

Cryptographic

Services

Integrated

Cryptographic

Service

Facility

Application

Programmer’s

Guide

SA22-7522-05

���

z/OS

Cryptographic

Services

Integrated

Cryptographic

Service

Facility

Application

Programmer’s

Guide

SA22-7522-05

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

in

the

“Notices”

on

page

535.

Sixth

Edition

(May

2004)

This

is

a

major

revision

of

SA22-7522-04.

This

edition

applies

to

Version

1

Release

5

of

z/OS

(5694-A01)

and

Version

1

Release

5

of

z/OS.e

(5655-G52),

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

A

form

for

readers’

comments

may

be

provided

at

the

back

of

this

document,

or

you

may

address

your

comments

to

the

following

address:

International

Business

Machines

Corporation

Department

55JA,

Mail

Station

P384

2455

South

Road

Poughkeepsie,

NY

12601-5400

United

States

of

America

FAX

(United

States

&

Canada):

1+845+432-9405

FAX

(Other

Countries):

Your

International

Access

Code

+1+845+432-9405

IBMLink™

(United

States

customers

only):

IBMUSM10(MHVRCFS)

Internet

e-mail:

mhvrcfs@us.ibm.com

World

Wide

Web:

www.ibm.com/servers/eserver/zseries/zos/webqs.html

If

you

would

like

a

reply,

be

sure

to

include

your

name,

address,

telephone

number,

or

FAX

number.

Make

sure

to

include

the

following

in

your

comment

or

note:

v

Title

and

order

number

of

this

document

v

Page

number

or

topic

related

to

your

comment

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

About

This

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxiii

Who

Should

Use

This

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxiii

How

To

Use

This

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxiii

Where

To

Find

More

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxv

Related

Publications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxv

Using

LookAt

to

look

up

message

explanations

.

.

.

.

.

.

.

.

.

.

. xxvi

Accessing

z/OS

licensed

documents

on

the

Internet

.

.

.

.

.

.

.

.

. xxvii

Do

You

Have

Problems,

Comments,

or

Suggestions?

.

.

.

.

.

.

.

.

.

. xxviii

Summary

of

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxix

Part

1.

IBM

CCA

Programming

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introducing

Programming

for

the

IBM

CCA

.

.

.

.

.

.

.

.

. 3

Callable

Service

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Callable

Services

with

ALET

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Rules

for

Defining

Parameters

and

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Parameter

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Invocation

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Security

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Performance

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Special

Secure

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Using

the

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

When

the

Call

Succeeds

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

When

the

Call

Does

Not

Succeed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Linking

a

Program

with

the

ICSF

Callable

Services

.

.

.

.

.

.

.

.

.

.

. 12

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Functions

of

the

DES

Cryptographic

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Key

Separation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Master

Key

Variant

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Transport

Key

Variant

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Key

Forms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Control

Vector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Types

of

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Generating

and

Managing

DES

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Key

Generator

Utility

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Common

Cryptographic

Architecture

DES

Key

Management

Services

.

.

.

. 22

Callable

Services

for

Dynamic

CKDS

Update

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Callable

Services

that

Support

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

. 26

System

Encryption

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

ANSI

X9.17

Key

Management

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Enciphering

and

Deciphering

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Encoding

and

Decoding

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Translating

Ciphertext

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Managing

Data

Integrity

and

Message

Authentication

.

.

.

.

.

.

.

.

.

.

. 30

Message

Authentication

Code

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

©

Copyright

IBM

Corp.

1997,

2004

iii

Hashing

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Managing

Personal

Authentication

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Verifying

Credit

Card

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Clear

PIN

Encrypt

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Clear

PIN

Generate

Alternate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

. 34

Clear

PIN

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Encrypted

PIN

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Encrypted

PIN

Translate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Encrypted

PIN

Verify

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

PIN

Change/Unblock

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Transaction

Validation

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Secure

Messaging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Trusted

Key

Entry

(TKE)

Support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Character/Nibble

Conversion

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

. 36

Code

Conversion

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

X9.9

Data

Editing

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

ICSF

Query

Facility

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Typical

Sequences

of

ICSF

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Key

Forms

and

Types

Used

in

the

Key

Generate

Callable

Service

.

.

.

.

.

. 37

Generating

an

Operational

Key

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Generating

an

Importable

Key

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Generating

an

Exportable

Key

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Examples

of

Single-Length

Keys

in

One

Form

Only

.

.

.

.

.

.

.

.

.

. 38

Examples

of

OPIM

Single-Length,

Double-Length,

and

Triple-Length

Keys

in

Two

Forms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Examples

of

OPEX

Single-Length,

Double-Length,

and

Triple-Length

Keys

in

Two

Forms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Examples

of

IMEX

Single-Length

and

Double-Length

Keys

in

Two

Forms

40

Examples

of

EXEX

Single-Length

and

Double-Length

Keys

in

Two

Forms

40

Generating

AKEKs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Using

the

Ciphertext

Translate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Summary

of

the

DES

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

PKA

Key

Algorithms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

The

RSA

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Digital

Signature

Standard

(DSS)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

PKA

Master

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

PCI

Cryptographic

Coprocessor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

PCI

X

Cryptographic

Coprocessor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Operational

private

keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

PKA

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Callable

Services

Supporting

Digital

Signatures

.

.

.

.

.

.

.

.

.

.

.

. 51

Callable

Services

for

PKA

Key

Management

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Callable

Services

to

Update

The

Public

Key

Data

Set

(PKDS)

.

.

.

.

.

. 53

Callable

Services

for

Working

with

Retained

Private

Keys

.

.

.

.

.

.

.

. 53

Callable

Services

for

SET

Secure

Electronic

Transaction

.

.

.

.

.

.

.

. 54

PKA

Key

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

PKA

Key

Management

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Security

and

Integrity

of

the

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Key

Identifier

for

PKA

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Key

Label

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

The

Transaction

Security

System

and

ICSF

Portability

.

.

.

.

.

.

.

.

.

. 59

iv

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
||

||

||
||
||

Summary

of

the

PKA

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Part

2.

CCA

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Chapter

4.

Managing

DES

Cryptographic

Keys

.

.

.

.

.

.

.

.

.

.

.

. 63

Clear

Key

Import

(CSNBCKI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Control

Vector

Generate

(CSNBCVG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Control

Vector

Translate

(CSNBCVT)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Cryptographic

Variable

Encipher

(CSNBCVE)

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Data

Key

Export

(CSNBDKX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Data

Key

Import

(CSNBDKM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Diversified

Key

Generate

(CSNBDKG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Key

Export

(CSNBKEX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Key

Generate

(CSNBKGN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Key

Import

(CSNBKIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

Key

Part

Import

(CSNBKPI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Contents

v

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Key

Record

Create

(CSNBKRC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Key

Record

Delete

(CSNBKRD)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Key

Record

Read

(CSNBKRR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Key

Record

Write

(CSNBKRW)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)

.

.

.

.

.

.

. 113

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Key

Token

Build

(CSNBKTB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Key

Translate

(CSNBKTR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Multiple

Clear

Key

Import

(CSNBCKM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Multiple

Secure

Key

Import

(CSNBSKM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

PKA

Decrypt

(CSNDPKD)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

PKA

Encrypt

(CSNDPKE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

vi

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Prohibit

Export

(CSNBPEX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Prohibit

Export

Extended

(CSNBPEXX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Random

Number

Generate

(CSNBRNG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Secure

Key

Import

(CSNBSKI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

Symmetric

Key

Export

(CSNDSYX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Symmetric

Key

Generate

(CSNDSYG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Symmetric

Key

Import

(CSNDSYI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

Transform

CDMF

Key

(CSNBTCK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

User

Derived

Key

(CSFUDK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Chapter

5.

Protecting

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Modes

of

Operation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Cipher

Block

Chaining

(CBC)

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Electronic

Code

Book

(ECB)

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Triple

DES

Encryption

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Processing

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Ciphertext

Translate

(CSNBCTT

and

CSNBCTT1)

.

.

.

.

.

.

.

.

.

.

. 171

Choosing

Between

CSNBCTT

and

CSNBCTT1

.

.

.

.

.

.

.

.

.

.

. 171

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Decipher

(CSNBDEC

and

CSNBDEC1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Choosing

Between

CSNBDEC

and

CSNBDEC1

.

.

.

.

.

.

.

.

.

.

. 175

Contents

vii

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Decode

(CSNBDCO)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Encipher

(CSNBENC

and

CSNBENC1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Choosing

between

CSNBENC

and

CSNBENC1

.

.

.

.

.

.

.

.

.

.

. 184

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Encode

(CSNBECO)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

.

.

.

.

.

.

.

.

. 192

Choosing

Between

CSNBSYD

and

CSNBSYD1

.

.

.

.

.

.

.

.

.

.

. 193

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

.

.

.

.

.

.

.

.

.

. 199

Choosing

between

CSNBSYE

and

CSNBSYE1

.

.

.

.

.

.

.

.

.

.

. 200

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

.

.

.

. 207

How

MACs

are

Used

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

How

Hashing

Functions

Are

Used

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

How

MDCs

Are

Used

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Choosing

Between

CSNBMGN

and

CSNBMGN1

.

.

.

.

.

.

.

.

.

.

. 209

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Choosing

Between

CSNBMVR

and

CSNBMVR1

.

.

.

.

.

.

.

.

.

.

. 215

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Choosing

Between

CSNBMDG

and

CSNBMDG1

.

.

.

.

.

.

.

.

.

.

. 220

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

viii

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

.

.

.

.

.

.

.

.

. 224

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

Chapter

7.

Financial

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

How

Personal

Identification

Numbers

(PINs)

are

Used

.

.

.

.

.

.

.

.

.

. 229

How

VISA

Card

Verification

Values

Are

Used

.

.

.

.

.

.

.

.

.

.

.

.

. 229

Translating

Data

and

PINs

in

Networks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

PIN

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Generating

a

PIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Encrypting

a

PIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Generating

a

PIN

Validation

Value

from

an

Encrypted

PIN

Block

.

.

.

.

. 230

Verifying

a

PIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Translating

a

PIN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Algorithms

for

Generating

and

Verifying

a

PIN

.

.

.

.

.

.

.

.

.

.

.

. 231

Using

PINs

on

Different

Systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

PIN-Encrypting

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

The

PIN

Profile

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

PIN

Block

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

Format

Control

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

Pad

Digit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

Current

Key

Serial

Number

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

Clear

PIN

Encrypt

(CSNBCPE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Clear

PIN

Generate

(CSNBPGN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Clear

PIN

Generate

Alternate

(CSNBCPA)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Encrypted

PIN

Generate

(CSNBEPG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

Encrypted

PIN

Translate

(CSNBPTR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

Encrypted

PIN

Verify

(CSNBPVR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

Contents

ix

Related

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

PIN

Change/Unblock

(CSNBPCU)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

Secure

Messaging

for

Keys

(CSNBSKY)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Secure

Messaging

for

PINs

(CSNBSPN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

SET

Block

Compose

(CSNDSBC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

SET

Block

Decompose

(CSNDSBD)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

Transaction

Validation

(CSNBTRV)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

VISA

CVV

Service

Generate

(CSNBCSG)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

VISA

CVV

Service

Verify

(CSNBCSV)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Chapter

8.

Using

Digital

Signatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Digital

Signature

Generate

(CSNDDSG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Digital

Signature

Verify

(CSNDDSV)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

Chapter

9.

Managing

PKA

Cryptographic

Keys

.

.

.

.

.

.

.

.

.

.

. 315

PKA

Key

Generate

(CSNDPKG)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

x

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
||
||
||

||
||
||
||

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

PKA

Key

Import

(CSNDPKI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

PKA

Key

Token

Build

(CSNDPKB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

PKA

Key

Token

Change

(CSNDKTC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

PKA

Public

Key

Extract

(CSNDPKX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

PKDS

Record

Create

(CSNDKRC)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

PKDS

Record

Delete

(CSNDKRD)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

PKDS

Record

Read

(CSNDKRR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

PKDS

Record

Write

(CSNDKRW)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Retained

Key

Delete

(CSNDRKD)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

Retained

Key

List

(CSNDRKL)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Chapter

10.

Utilities

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Character/Nibble

Conversion

(CSNBXBC

and

CSNBXCB)

.

.

.

.

.

.

.

. 351

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

Contents

xi

Code

Conversion

(CSNBXEA

and

CSNBXAE)

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 354

ICSF

Query

Facility

(CSFIQF)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

X9.9

Data

Editing

(CSNB9ED)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Chapter

11.

Trusted

Key

Entry

Workstation

Interfaces

.

.

.

.

.

.

.

.

. 369

PCI

Interface

Callable

Service

(CSFPCI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

Usage

Note

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

PKSC

Interface

Callable

Service

(CSFPKSC)

.

.

.

.

.

.

.

.

.

.

.

.

. 373

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

.

.

. 377

ANSI

X9.17

EDC

Generate

(CSNAEGN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

ANSI

X9.17

Key

Export

(CSNAKEX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 380

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 380

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

ANSI

X9.17

Key

Import

(CSNAKIM)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

ANSI

X9.17

Key

Translate

(CSNAKTR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

ANSI

X9.17

Transport

Key

Partial

Notarize

(CSNATKN)

.

.

.

.

.

.

.

.

. 394

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

Usage

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

.

.

.

.

.

.

.

. 397

Return

Codes

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

Reason

Codes

for

Return

Code

0

(0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

Reason

Codes

for

Return

Code

4

(4)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

Reason

Codes

for

Return

Code

8

(8)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 401

Reason

Codes

for

Return

Code

C

(12)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

Reason

Codes

for

Return

Code

10

(16)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

Appendix

B.

Key

Token

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

xii

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
||
||
||

Format

of

the

DES

Internal

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Token

Validation

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

DES

External

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 432

DES

Null

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

Format

of

the

RSA

Public

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

Format

of

the

DSS

Public

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

Format

of

RSA

Private

External

Key

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

External

Form

.

.

.

. 436

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Form

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 437

Format

of

the

DSS

Private

External

Key

Token

.

.

.

.

.

.

.

.

.

.

.

. 439

Format

of

the

RSA

Private

Internal

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

. 440

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

Internal

Form

for

Cryptographic

Coprocessor

Feature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

Internal

Form

for

PCI

Cryptographic

Coprocessor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 442

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

Internal

Form

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

Format

of

the

DSS

Private

Internal

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

. 445

PKA

Null

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Control

Vector

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

Specifying

a

Control-Vector-Base

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

Changing

Control

Vectors

with

the

Control

Vector

Translate

Callable

Service

459

Providing

the

Control

Information

for

Testing

the

Control

Vectors

.

.

.

.

. 459

Mask

Array

Preparation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

Selecting

the

Key-Half

Processing

Mode

.

.

.

.

.

.

.

.

.

.

.

.

.

. 461

When

the

Target

Key-Token

CV

Is

Null

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

Control

Vector

Translate

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 463

Appendix

D.

Coding

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 467

Assembler

H

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

PL/1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 471

Appendix

E.

Using

ICSF

with

BSAFE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Some

BSAFE

Basics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Computing

Message

Digests

and

Hashes

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Generating

Random

Numbers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Encrypting

and

Decrypting

with

DES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 478

Generating

and

Verifying

RSA

Digital

Signatures

.

.

.

.

.

.

.

.

.

.

. 478

Encrypting

and

Decrypting

with

RSA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 479

Using

the

New

Function

Calls

in

Your

BSAFE

Application

.

.

.

.

.

.

.

.

. 479

Using

the

BSAFE

KI_TOKEN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

ICSF

Triple

DES

via

BSAFE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 481

Retrieving

ICSF

Error

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

Appendix

F.

Cryptographic

Algorithms

and

Processes

.

.

.

.

.

.

.

. 485

PIN

Formats

and

Algorithms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

PIN

Notation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

PIN

Block

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

PIN

Extraction

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 487

IBM

PIN

Algorithms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 488

Contents

xiii

VISA

PIN

Algorithms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

Cipher

Processing

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

CBC

and

ANSI

X3.106

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

ANSI

X9.23

and

IBM

4700

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

CUSP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

The

Information

Protection

System

(IPS)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 498

Multiple

Decipherment

and

Encipherment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 499

Multiple

Encipherment

of

Single-length

Keys

.

.

.

.

.

.

.

.

.

.

.

. 500

Multiple

Decipherment

of

Single-length

Keys

.

.

.

.

.

.

.

.

.

.

.

. 500

Multiple

Encipherment

of

Double-length

Keys

.

.

.

.

.

.

.

.

.

.

.

. 501

Multiple

Decipherment

of

Double-length

Keys

.

.

.

.

.

.

.

.

.

.

.

. 502

Multiple

Encipherment

of

Triple-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

. 503

Multiple

Decipherment

of

Triple-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

. 504

PKA92

Key

Format

and

Encryption

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

ANSI

X9.17

Partial

Notarization

Method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

Partial

Notarization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

Transform

CDMF

Key

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

Formatting

Hashes

and

Keys

in

Public-Key

Cryptography

.

.

.

.

.

.

.

.

. 509

ANSI

X9.31

Hash

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

PKCS

#1

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 510

Appendix

G.

EBCDIC

and

ASCII

Default

Conversion

Tables

.

.

.

.

.

. 513

Appendix

H.

Access

Control

Points

and

Callable

Services

.

.

.

.

.

.

. 515

TKE

Version

4.0

and

higher

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

TKE

Version

3.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 516

Appendix

I.

z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor

521

Operating

System

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Applications

and

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

Callable

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

CKDS

and

PKDS

(PCI

X

Cryptographic

Coprocessor)

.

.

.

.

.

.

.

.

.

. 525

ICSF

Setup

and

Initialization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 525

Migration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

Functions

Not

Supported

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

Setup

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 526

Programming

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

TKE

workstation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

Access

Control

Points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

TKE

Enablement

from

the

Support

Element

.

.

.

.

.

.

.

.

.

.

.

.

. 528

TSO

panels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 528

Appendix

J.

z990

and

z890

without

a

PCI

X

Cryptographic

Coprocessor

529

Applications

and

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

Callable

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

ICSF

Setup

and

Initialization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 530

Secure

Sockets

Layer

(SSL)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 530

TKE

workstation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 531

Appendix

K.

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

Using

assistive

technologies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

Keyboard

navigation

of

the

user

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

z/OS

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 535

Programming

Interface

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 536

xiv

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
||
||

||

||

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 536

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 539

Contents

xv

xvi

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Figures

1.

The

z/OS

ICSF

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxvi

2.

PKA

Key

Management

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

3.

Control

Vector

Base

Bit

Map

(Common

Bits

and

Key-Encrypting

Keys)

.

.

.

.

.

.

.

.

.

. 451

4.

Control

Vector

Base

Bit

Map

(Data

Operation

Keys)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

5.

Control

Vector

Base

Bit

Map

(PIN

Processing

Keys

and

Cryptographic

Variable-Encrypting

Keys)

453

6.

Control

Vector

Base

Bit

Map

(Key

Generating

Keys)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

7.

Control

Vector

Translate

Callable

Service

Mask_Array

Processing

.

.

.

.

.

.

.

.

.

.

.

. 461

8.

Control

Vector

Translate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

9.

3624

PIN

Generation

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 489

10.

GBP

PIN

Generation

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 490

11.

PIN-Offset

Generation

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 491

12.

PIN

Verification

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 493

13.

GBP

PIN

Verification

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 494

14.

PVV

Generation

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 495

15.

Multiple

Encipherment

of

Single-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 500

16.

Multiple

Decipherment

of

Single-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 501

17.

Multiple

Encipherment

of

Double-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 502

18.

Multiple

Decipherment

of

Double-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 503

19.

Multiple

Encipherment

of

Triple-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 504

20.

Multiple

Decipherment

of

Triple-length

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

21.

The

CDMF

Key

Transformation

Algorithm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 509

©

Copyright

IBM

Corp.

1997,

2004

xvii

xviii

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Tables

1.

Standard

Return

Code

Values

From

ICSF

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

2.

Descriptions

of

Key

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

3.

Summary

of

Data

Encryption

Standard

Bits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

4.

Combinations

of

the

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

5.

Summary

of

ICSF

DES

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

6.

Summary

of

PKA

Key

Token

Sections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

7.

Internal

and

External

Private

RSA

Key

Token

Section

Identifiers

.

.

.

.

.

.

.

.

.

.

.

.

. 58

8.

Summary

of

PKA

Callable

Services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

9.

Clear

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

10.

Control

vector

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

11.

Keywords

for

Control

Vector

Translate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

12.

Control

vector

translate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

13.

Cryptographic

variable

encipher

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

14.

Data

key

export

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

15.

Data

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

16.

Rule

Array

Keywords

for

Diversified

Key

Generate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

17.

Diversified

key

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

18.

Key

export

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

19.

Key

Form

Values

for

the

Key

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

20.

Key

Generate

Valid

Key

Types

and

Key

Forms

for

a

Single

Key

.

.

.

.

.

.

.

.

.

.

.

.

. 94

21.

Key

Generate

Valid

Key

Types

and

Key

Forms

for

a

Key

Pair

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

22.

Key

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

23.

Key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

24.

Keywords

for

Key

Part

Import

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

25.

Key

part

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

26.

CKDS

record

create

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

27.

CKDS

record

delete

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

28.

CKDS

record

read

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

29.

CKDS

record

write

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

30.

Keywords

for

Key

Test

and

Key

Test

Extended

Control

Information

.

.

.

.

.

.

.

.

.

.

.

. 115

31.

Key

test

and

key

test

extended

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

32.

Keywords

for

Key

Token

Build

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

33.

Control

Vector

Generate

and

Key

Token

Build

Control

Vector

Keyword

Combinations

.

.

.

.

. 123

34.

Key

token

build

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

35.

Key

translate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

36.

Keywords

for

Multiple

Clear

Key

Import

Rule

Array

Control

Information

.

.

.

.

.

.

.

.

.

. 129

37.

Multiple

clear

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

38.

Keywords

for

Multiple

Secure

Key

Import

Rule

Array

Control

Information

.

.

.

.

.

.

.

.

.

. 131

39.

Multiple

secure

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

40.

Keywords

for

PKA

Decrypt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

41.

PKA

decrypt

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

42.

Keywords

for

PKA

Encrypt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

43.

PKA

encrypt

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

44.

Prohibit

export

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

45.

Prohibit

export

extended

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

46.

Keywords

for

the

Form

Parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

47.

Random

number

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

48.

Secure

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

49.

Keywords

for

Symmetric

Key

Export

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

50.

Symmetric

key

export

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

51.

Keywords

for

Symmetric

Key

Generate

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

52.

Symmetric

key

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

53.

Keywords

for

Symmetric

Key

Import

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

©

Copyright

IBM

Corp.

1997,

2004

xix

54.

Symmetric

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

55.

Transform

CDMF

key

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

56.

Keywords

for

User

Derived

Key

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

57.

User

derived

key

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

58.

Ciphertext

translate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

59.

Keywords

for

the

Decipher

Rule

Array

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

60.

Decipher

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

61.

Decode

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

62.

Keywords

for

the

Encipher

Rule

Array

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

63.

Encipher

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

64.

Encode

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

65.

Symmetric

Key

Decipher

Rule

Array

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

66.

Symmetric

Key

Decipher

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

67.

Symmetric

Key

Encipher

Rule

Array

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

68.

Symmetric

Key

Encipher

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

69.

Keywords

for

MAC

generate

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

70.

MAC

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

71.

Keywords

for

MAC

verify

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

72.

MAC

verify

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

73.

Keywords

for

MDC

Generate

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

74.

MDC

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

75.

Keywords

for

One-Way

Hash

Generate

Rule

Array

Control

Information

.

.

.

.

.

.

.

.

.

. 225

76.

One-way

hash

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

77.

Format

of

a

PIN

Profile

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

78.

Format

Values

of

PIN

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

79.

PIN

Block

Format

and

PIN

Extraction

Method

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

80.

Format

of

a

Pad

Digit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

81.

Pad

Digits

for

PIN

Block

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

82.

Format

of

the

Current

Key

Serial

Number

Field

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

83.

Process

Rules

for

the

Clear

PIN

Encryption

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

84.

Clear

PIN

encrypt

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

85.

Process

Rules

for

the

Clear

PIN

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

86.

Array

Elements

for

the

Clear

PIN

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

87.

Array

Elements

Required

by

the

Process

Rule

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

88.

Clear

PIN

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

89.

Rule

Array

Elements

for

the

Clear

PIN

Generate

Alternate

Service

.

.

.

.

.

.

.

.

.

.

.

. 245

90.

Rule

Array

Keywords

(First

Element)

for

the

Clear

PIN

Generate

Alternate

Service

.

.

.

.

.

. 245

91.

Data

Array

Elements

for

the

Clear

PIN

Generate

Alternate

Service

(IBM-PINO)

.

.

.

.

.

.

. 246

92.

Data

Array

Elements

for

the

Clear

PIN

Generate

Alternate

Service

(VISA-PVV)

.

.

.

.

.

.

. 247

93.

PIN

Block

Variant

Constants

(PBVCs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

94.

Clear

pin

generate

alternate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 248

95.

Process

Rules

for

the

Encrypted

PIN

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

. 250

96.

Array

Elements

for

the

Encrypted

PIN

Generate

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

. 251

97.

Array

Elements

Required

by

the

Process

Rule

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

98.

Encrypted

pin

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

99.

Keywords

for

Encrypted

PIN

Translate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

100.

Additional

Names

for

PIN

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

101.

PIN

Block

Variant

Constants

(PBVCs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

102.

Encrypted

pin

translate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

103.

Keywords

for

Encrypted

PIN

Verify

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

104.

Array

Elements

for

the

Encrypted

PIN

Verify

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

105.

Array

Elements

Required

by

the

Process

Rule

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

106.

PIN

Block

Variant

Constants

(PBVCs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

107.

Encrypted

pin

verify

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

108.

Rule

Array

Keywords

for

PIN

Change/Unblock

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

109.

PIN

Change/Unblock

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

xx

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
||

110.

Rule

Array

Keywords

for

Secure

Messaging

for

Keys

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

111.

Secure

messaging

for

keys

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

112.

Rule

Array

Keywords

for

Secure

Messaging

for

PINs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

113.

Secure

messaging

for

PINs

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

114.

Keywords

for

SET

Block

Compose

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 282

115.

SET

block

compose

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

116.

Keywords

for

SET

Block

Compose

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

117.

SET

block

decompose

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

118.

Rule

Array

Keywords

for

Transaction

Validation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

119.

Output

description

for

validation

values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

120.

Transaction

validation

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

121.

CVV

Generate

Rule

Array

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 296

122.

VISA

CVV

service

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

123.

CVV

Verify

Rule

Array

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

124.

VISA

CVV

service

verify

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

125.

Keywords

for

Digital

Signature

Generate

Control

Information

-

Valid

only

for

RSA

key

types.

305

126.

Digital

signature

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

127.

Keywords

for

Digital

Signature

Verify

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

128.

Digital

signature

verify

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

129.

Keywords

for

PKA

Key

Generate

Rule

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

130.

PKA

key

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 319

131.

PKA

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

132.

Keywords

for

PKA

Key

Token

Build

Control

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

133.

Key

Value

Structure

Length

Maximum

Values

for

Key

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

134.

Key

Value

Structure

Elements

for

PKA

Key

Token

Build

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

135.

PKA

key

token

build

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

136.

Rule

Array

Keywords

for

PKA

Key

Token

Change

(Required)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

137.

PKA

key

token

change

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

138.

PKA

public

key

extract

build

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

139.

PKDS

record

create

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

140.

Keywords

for

PKDS

Record

Delete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

141.

PKDS

record

delete

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

142.

PKDS

record

read

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 343

143.

Keywords

for

PKDS

Record

Write

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

144.

PKDS

record

write

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

145.

Retained

key

delete

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

146.

Retained

key

list

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

147.

Character/Nibble

conversion

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

148.

Code

conversion

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

149.

Keywords

for

ICSF

Query

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

150.

Output

for

option

STATCCA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

151.

Output

for

option

STATCCAE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

152.

Output

for

option

STATCARD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

153.

Output

for

option

STATDIAG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

154.

Output

for

option

STATEID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

155.

Output

for

option

STATEXPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

156.

Output

for

option

ICSFSTAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

157.

ICSF

Query

Service

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

158.

X9.9

data

editing

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

159.

Keywords

for

PCI

Interface

Callable

Service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

160.

PCI

Interface

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

161.

PKSC

Interface

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

162.

ANSI

X9.17

EDC

generate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

163.

Keywords

for

ANSI

X9.17

Key

Export

Rule

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

164.

ANSI

X9.17

key

export

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

165.

Keywords

for

ANSI

X9.17

Key

Import

Rule

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Tables

xxi

||
||
||

||
||
||
||
||
||
||
||
||

166.

ANSI

X9.17

key

import

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

167.

Keywords

for

ANSI

X9.17

Key

Translate

Rule

Array

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 391

168.

ANSI

X9.17

key

translate

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 394

169.

ANSI

X9.17

transport

key

partial

notarize

required

hardware

.

.

.

.

.

.

.

.

.

.

.

.

.

. 396

170.

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 397

171.

Reason

Codes

for

Return

Code

0

(0)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 398

172.

Reason

Codes

for

Return

Code

4

(4)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 399

173.

Reason

Codes

for

Return

Code

8

(8)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

174.

Reason

Codes

for

Return

Code

C

(12)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

175.

Reason

Codes

for

Return

Code

10

(16)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

176.

Internal

Key

Token

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

177.

Format

of

External

Key

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

178.

Format

of

Null

Key

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

179.

RSA

Public

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

180.

DSS

Public

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 435

181.

RSA

Private

External

Key

Token

Basic

Record

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

182.

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

External

Format

.

.

.

.

.

.

.

.

.

.

. 436

183.

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Format

.

.

.

.

.

.

. 437

184.

DSS

Private

External

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

185.

RSA

Private

Internal

Key

Token

Basic

Record

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 440

186.

RSA

Private

Internal

Key

Token,

1024-bit

ME

Form

for

Cryptographic

Coprocessor

Feature

442

187.

RSA

Private

Internal

Key

Token,

1024-bit

ME

Form

for

PCI

Cryptographic

Coprocessor

.

.

.

. 442

188.

RSA

Private

Internal

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Format

444

189.

DSS

Private

Internal

Key

Token

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

190.

Format

of

PKA

Null

Key

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

191.

Default

Control

Vector

Values

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

192.

PKA96

Clear

DES

Key

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 505

193.

EBCDIC

to

ASCII

Default

Conversion

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 513

194.

ASCII

to

EBCDIC

Default

Conversion

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 514

195.

Callable

service

access

control

points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

196.

Summary

of

new

and

changed

ICSF

callable

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 522

xxii

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

About

This

document

This

document

supports

z/OS

(5694-A01)

and

z/OS.e

(5655-G52).

It

describes

how

to

use

the

callable

services

provided

by

the

Integrated

Cryptographic

Service

Facility

(ICSF).

The

z/OS

Cryptographic

Services

includes

these

components:

v

z/OS

Integrated

Cryptographic

Service

Facility

(ICSF)

v

z/OS

Open

Cryptographic

Services

Facility

(OCSF)

v

z/OS

System

Secure

Socket

Level

Programming

(SSL)

v

z/OS

Public

Key

Infrastructure

Services

(PKI)

ICSF

is

a

software

element

of

z/OS

that

works

with

the

hardware

cryptographic

feature

and

the

Security

Server

(RACF)

to

provide

secure,

high-speed

cryptographic

services.

ICSF

provides

the

application

programming

interfaces

by

which

applications

request

the

cryptographic

services.

Who

Should

Use

This

document

This

document

is

intended

for

application

programmers

who:

v

Are

responsible

for

writing

application

programs

that

use

the

security

application

programming

interface

(API)

to

access

cryptographic

functions.

v

Want

to

use

ICSF

callable

services

in

high-level

languages

such

as

C,

COBOL,

FORTRAN,

and

PL/I,

as

well

as

in

assembler.

How

To

Use

This

document

ICSF

includes

both

Data

Encryption

Standard

(DES)

and

public

key

cryptography.

These

are

two

very

different

cryptographic

systems.

Part

1

focuses

on

IBM

CCA

programming.

It

includes

the

following

chapters:

v

Chapter

1,

“Introducing

Programming

for

the

IBM

CCA”

describes

the

programming

considerations

for

using

the

ICSF

DES

callable

services.

It

also

explains

the

syntax

and

parameter

definitions

used

in

callable

services.

v

Chapter

2,

“Introducing

DES

Cryptography

and

Using

DES

Callable

Services”

gives

an

overview

of

DES

cryptography

and

provides

general

guidance

information

on

how

the

DES

callable

services

use

different

key

types

and

key

forms.

It

also

discusses

how

to

write

your

own

callable

services

called

installation-defined

callable

services

and

provides

suggestions

on

what

to

do

if

there

is

a

problem.

v

Chapter

3,

“Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services”

introduces

Public

Key

Algorithm

(PKA)

support

and

describes

programming

considerations

for

using

the

ICSF

PKA

callable

services,

such

as

the

PKA

key

token

structure

and

key

management.

Part

2

focuses

on

CCA

callable

services

and

includes

the

following

chapters:

v

Chapter

4,

“Managing

DES

Cryptographic

Keys”

describes

the

callable

services

for

generating

and

maintaining

cryptographic

keys,

the

random

number

generate

callable

service

(which

generates

8-byte

random

numbers)

and

the

Secure

Sockets

Layer

(SSL)

security

protocol.

It

also

presents

utilities

to

build

DES

tokens

and

generate

and

translate

control

vectors

and

describes

the

PKA

callable

services

that

support

DES

key

distribution.

©

Copyright

IBM

Corp.

1997,

2004

xxiii

v

Chapter

5,

“Protecting

Data”

describes

the

callable

services

for

deciphering

ciphertext

from

one

key

and

enciphering

it

under

another

key.

It

also

describes

enciphering

and

deciphering

data

with

encrypted

keys

and

encoding

and

decoding

data

with

clear

keys.

v

Chapter

6,

“Verifying

Data

Integrity

and

Authenticating

Messages”

describes

the

callable

services

for

generating

and

verifying

message

authentication

codes

(MACs),

generating

modification

detection

codes

(MDCs),

generating

hashes

(SHA-1,

MD5,

RIPEMD-160),

and

generating

and

verifying

VISA

card

verification

values.

v

Chapter

7,

“Financial

Services”

describes

the

callable

services

for

generating,

verifying,

and

translating

personal

identification

numbers

(PINs).

It

also

describes

the

callable

services

that

support

the

Secure

Electronic

Transaction

(SET)

protocol.

v

Chapter

8,

“Using

Digital

Signatures”

describes

the

PKA

callable

services

that

support

using

digital

signatures

to

authenticate

messages.

v

Chapter

9,

“Managing

PKA

Cryptographic

Keys”

describes

the

PKA

callable

services

that

generate

and

manage

PKA

keys.

v

Chapter

10,

“Utilities”

describes

callable

services

that

convert

data

between

EBCDIC

and

ASCII

format,

convert

between

binary

strings

and

character

strings,

and

edit

text

strings

according

to

ANSI

X9.9-4

editing

rules.

v

Chapter

11,

“Trusted

Key

Entry

Workstation

Interfaces”

describes

the

PCI

interface

(PCI)

and

the

Public

Key

Secure

Cable

(PKSC)

interface

that

supports

Trusted

Key

Entry

(TKE),

an

optional

feature

available

with

ICSF.

v

Chapter

12,

“Managing

Keys

According

to

the

ANSI

X9.17

Standard”

describes

the

callable

services

that

support

the

ANSI

X9.17

key

management

standard

1,

which

defines

a

process

for

protecting

and

exchanging

DES

keys.

The

appendixes

include

the

following

information:

v

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

explains

the

return

and

reason

codes

returned

by

the

callable

services.

v

Appendix

B,

“Key

Token

Formats”

describes

the

formats

for

DES

internal,

external,

and

null

key

tokens

and

for

PKA

public,

private

external,

and

private

internal

key

tokens

containing

either

Rivest-Shamir-Adleman

(RSA)

or

Digital

Signature

Standard

(DSS)

information.

This

appendix

also

describes

the

PKA

null

key

token.

v

Appendix

C,

“Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service,”

on

page

449

contains

a

table

of

the

default

control

vector

values

that

are

associated

with

each

key

type

and

describes

the

control

information

for

testing

control

vectors,

mask

array

preparation,

selecting

the

key-half

processing

mode,

and

an

example

of

Control

Vector

Translate.

v

Appendix

D,

“Coding

Examples”

provides

examples

for

COBOL,

assembler,

and

PL/1.

v

Appendix

E,

“Using

ICSF

with

BSAFE”

explains

how

to

access

ICSF

services

from

applications

written

using

RSA’s

BSAFE

cryptographic

toolkit.

v

Appendix

F,

“Cryptographic

Algorithms

and

Processes,”

on

page

485

describes

the

PIN

formats

and

algorithms,

cipher

processing

and

segmenting

rules,

multiple

encipherment

and

decipherment

and

their

equations,

the

PKA92

encryption

process,

partial

notarization

of

an

ANSI

key-encrypting

key

(AKEK),

and

the

algorithm

for

transforming

a

Commercial

Data

Masking

Facility

(CDMF)

key.

1. ANSI

X9.17-1985:

Financial

Institution

Key

Management

(Wholesale)

xxiv

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

v

Appendix

G,

“EBCDIC

and

ASCII

Default

Conversion

Tables”

presents

EBCDIC

to

ASCII

and

ASCII

to

EBCDIC

conversion

tables.

v

Appendix

H,

“Access

Control

Points

and

Callable

Services”

lists

which

access

control

points

correspond

to

which

callable

services.

v

Appendix

I,

“z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor,”

on

page

521

describes

processing

and

functionality

support

for

this

environment.

v

Appendix

J,

“z990

and

z890

without

a

PCI

X

Cryptographic

Coprocessor,”

on

page

529

describes

processing

and

functionality

support

for

this

environment.

v

Appendix

K,

“Accessibility,”

on

page

533

contains

information

on

accessibility

features

in

z/OS.

v

Notices

contains

notices,

programming

interface

information,

and

trademarks.

Where

To

Find

More

Information

For

information

about

the

referenced

ICSF

documents,

see

Figure

1

on

page

xxvi.

Other

documents

referenced

in

this

document

are:

v

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface

Reference,

SC40-1675

v

z/OS

MVS

Programming:

Callable

Services

for

HLL,

SA22-7613

v

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

LLA-SDU,

SA22-7611

v

BSAFE

User’s

Manual

v

BSAFE

Library

Reference

Manual

Related

Publications

v

z/OS

Cryptographic

Services

ICSF

TKE

Workstation

User’s

Guide,

SA22-7524

v

IBM

Transaction

Security

System:

General

Information

Manual

and

Planning

Guide,

GA34-2137

v

IBM

Transaction

Security

System:

Concepts

and

Programming

Guide:

Volume

I,

Access

Controls

and

DES

Cryptography,

GC31-3937

v

IBM

Transaction

Security

System:

Concepts

and

Programming

Guide:

Volume

II,

Public-Key

Cryptography,

GC31-2889

v

IBM

Transaction

Security

System:

Basic

CCA

Cryptographic

Services,

SA34-2362

v

IBM

Distributed

Key

Management

System,

Installation

and

Customization

Guide,

GG24-4406

About

This

document

xxv

Using

LookAt

to

look

up

message

explanations

LookAt

is

an

online

facility

that

lets

you

look

up

explanations

for

most

of

the

IBM®

messages

you

encounter,

as

well

as

for

some

system

abends

and

codes.

Using

LookAt

to

find

information

is

faster

than

a

conventional

search

because

in

most

cases

LookAt

goes

directly

to

the

message

explanation.

You

can

use

LookAt

from

the

following

locations

to

find

IBM

message

explanations

for

z/OS®

elements

and

features,

z/VM®,

and

VSE:

Figure

1.

The

z/OS

ICSF

Library

xxvi

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

v

The

Internet.

You

can

access

IBM

message

explanations

directly

from

the

LookAt

Web

site

at

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v

Your

z/OS

TSO/E

host

system.

You

can

install

code

on

your

z/OS

or

z/OS.e®

systems

to

access

IBM

message

explanations,

using

LookAt

from

a

TSO/E

command

line

(for

example,

TSO/E

prompt,

ISPF,

or

z/OS

UNIX®

System

Services

running

OMVS).

v

Your

Microsoft

Windows®

workstation.

You

can

install

code

to

access

IBM

message

explanations

on

the

z/OS

Collection

(SK3T-4269),

using

LookAt

from

a

Microsoft

Windows

DOS

command

line.

v

Your

wireless

handheld

device.

You

can

use

the

LookAt

Mobile

Edition

with

a

handheld

device

that

has

wireless

access

and

an

Internet

browser

(for

example,

Internet

Explorer

for

Pocket

PCs,

Blazer,

or

Eudora

for

Palm

OS,

or

Opera

for

Linux

handheld

devices).

Link

to

the

LookAt

Mobile

Edition

from

the

LookAt

Web

site.

You

can

obtain

code

to

install

LookAt

on

your

host

system

or

Microsoft

Windows

workstation

from

a

disk

on

your

z/OS

Collection

(SK3T-4269),

or

from

the

LookAt

Web

site

(click

Download,

and

select

the

platform,

release,

collection,

and

location

that

suit

your

needs).

More

information

is

available

in

the

LOOKAT.ME

files

available

during

the

download

process.

Accessing

z/OS

licensed

documents

on

the

Internet

z/OS

licensed

documentation

is

available

on

the

Internet

in

PDF

format

at

the

IBM

Resource

Link™

Web

site

at:

http://www.ibm.com/servers/resourcelink

Licensed

documents

are

available

only

to

customers

with

a

z/OS

license.

Access

to

these

documents

requires

an

IBM

Resource

Link

user

ID

and

password,

and

a

key

code.

With

your

z/OS

order

you

received

a

Memo

to

Licensees,

(GI10-0671),

that

includes

this

key

code.

2

To

obtain

your

IBM

Resource

Link

user

ID

and

password,

log

on

to:

http://www.ibm.com/servers/resourcelink

To

register

for

access

to

the

z/OS

licensed

documents:

1.

Sign

in

to

Resource

Link

using

your

Resource

Link

user

ID

and

password.

2.

Select

User

Profiles

located

on

the

left-hand

navigation

bar.

Note:

You

cannot

access

the

z/OS

licensed

documents

unless

you

have

registered

for

access

to

them

and

received

an

e-mail

confirmation

informing

you

that

your

request

has

been

processed.

Printed

licensed

documents

are

not

available

from

IBM.

You

can

use

the

PDF

format

on

either

z/OS

Licensed

Product

Library

CD-ROM

or

IBM

Resource

Link

to

print

licensed

documents.

2.

z/OS.e

customers

received

a

Memo

to

Licensees,

(GI10-0684)

that

includes

this

key

code.

About

This

document

xxvii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Do

You

Have

Problems,

Comments,

or

Suggestions?

Your

suggestions

and

ideas

can

contribute

to

the

quality

and

the

usability

of

this

document.

If

you

have

problems

using

this

document,

or

if

you

have

suggestions

for

improving

it,

complete

and

mail

the

Reader’s

Comment

Form

found

at

the

back

of

the

document.

xxviii

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Summary

of

changes

Summary

of

changes

for

SA22-7522-05

z/OS

Version

1

Release

5

This

document

contains

information

previously

presented

in

z/OS

ICSF

Application

Programmer’s

Guide,

SA22-7522-04,

which

supports

z/OS

Version

1

Release

4.

New

information

v

Support

for

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

has

been

added

v

Support

for

IBM

Eserver

zSeries

890

has

been

added

v

Callable

services

-

the

following

new

callable

services

have

been

added:

–

CSNBPCU

-

PIN

change/unblock

-

supports

the

PIN

change

algorithms

specified

in

the

VISA

Integrated

Circuit

Card

Specification;

only

available

with

a

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

–

CSNBTRV

-

transaction

validation

-

supports

the

generation

and

validation

of

American

Express

card

security

codes;

only

available

with

a

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

–

CSFIQF

-

ICSF

query

facility

-

provides

PCICC

and

PCIXCC

information,

as

well

as

ICSF

status

information

v

ICSF

will

collect

PCICA

utilization

data

for

WLM

Usage

and

Delay

reports

v

Access

Control

Points

—

for

the

PCIXCC

only

–

Diversified

Key

Generate

-

TDES-XOR

–

Diversified

Key

Generate

-

TDESEMV2/TDESEMV4

–

PIN

Change/Unblock

-

change

EMV

PIN

with

OPINENC

–

PIN

Change/Unblock

-

change

EMV

PIN

with

IPINENC

–

Transaction

Validation

-

Generate

–

Transaction

Validation

-

Verify

CSC-3

–

Transaction

Validation

-

Verify

CSC-4

–

Transaction

Validation

-

Verify

CSC-5

–

Key

Part

Import

-

RETRKPR

v

TKE

enablement

from

the

support

element

is

now

required

if

running

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

Changed

information

v

Callable

services

-

the

following

callable

services

have

been

changed:

–

CSNBDKG

-

diversified

key

generate

-

enhanced

to

support

the

EMV2000

key

generation

algorithm;

only

available

with

a

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

–

CSNBPTR

-

PIN

translate

-

enhanced

to

support

DUKPT

for

double

length

keys;

only

available

with

a

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

©

Copyright

IBM

Corp.

1997,

2004

xxix

–

CSNBPVR

-

PIN

verify

-

enhanced

to

support

DUKPT

for

double

length

keys;

only

available

with

a

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

–

CSNDPKE

-

PKA

encrypt

-

enhanced

to

support

the

MRP

keyword

to

enable

the

mod

raised

to

power

functions

for

even

and

odd

exponents;

enables

customers

to

write

applications

implementing

the

Diffie-Hellman

key

agreement

protocol;

only

available

with

a

PCI

Cryptographic

Accelerator

or

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

–

CSNDPKD

-

PKA

decrypt

-

enhanced

to

support

the

ZERO-PAD

keyword

for

clear

RSA

keys

only;

available

only

with

a

PCI

Cryptographic

Accelerator

or

PCI

X

Cryptographic

Coprocessor

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

v

The

Key

Generation

Utility

Program

(KGUP)

will

support

double

length

MAC

and

MACVER

keys

-

available

only

with

a

PCIXCC

and

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

v

The

Key

Generation

Utility

Program

(KGUP)

has

been

enhanced

to

provide

DES

operational

key

entry

support

for

PCIXCCs

(TKE

Version

4.1

is

required)

v

SMF

subtype

7

record

has

been

updated

to

reflect

loading

of

operational

keys

from

the

key

part

register

to

the

CKDS.

v

ICSF

panel

enhancements

for:

–

DES

operational

key

load

for

PCIXCCs

using

TKE

V4.1

–

key

parts

generated

on

the

Utilities

panel

will

be

propagated

for

use

on

the

Clear

Master

Key

Entry

panel

v

Additional

services

have

been

added

to

the

default

CICS

wait

lists

(CSFWTL00

and

CSFWTL01)

This

document

contains

terminology,

maintenance,

and

editorial

changes.

Technical

changes

or

additions

to

the

text

and

illustrations

are

indicated

by

a

vertical

line

to

the

left

of

the

change.

You

may

notice

changes

in

the

style

and

structure

of

some

content

in

this

document—for

example,

headings

that

use

uppercase

for

the

first

letter

of

initial

words

only,

and

procedures

that

have

a

different

look

and

format.

The

changes

are

ongoing

improvements

to

the

consistency

and

retrievability

of

information

in

our

documents.

Summary

of

changes

for

SA22-7522-04

z/OS

Version

1

Release

4

This

document

contains

information

previously

presented

in

z/OS

ICSF

Application

Programmer’s

Guide,

SA22-7522-03,

which

supports

z/OS

Version

1

Release

4.

New

information

v

Support

for

the

IBM

Eserver

zSeries

990

server

has

been

added.

The

new

support

includes:

–

changes

to

many

callable

services

–

new

and

changed

TSO

panels

–

additional

services

added

to

the

default

CICS

wait

list

–

reason

code

changes

-

errors

formerly

detected

by

ICSF

are

now

being

detected

in

the

PCIXCC

xxx

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

–

refer

to

Appendix

I,

“z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor,”

on

page

521

for

complete

information

v

Installation

Options

Data

Set

–

CKTAUTH,

an

installation

option,

decides

if

authentication

will

be

performed

for

every

CKDS

record

read

from

DASD.

Changed

information

v

Pass

Phrase

Initialization

has

been

enhanced

to

initialize

a

PKDS

and

support

the

PCI

X

Cryptographic

Coprocessor

v

CDMF

keyword

is

no

longer

supported

on

KGUP

control

statements

and

panels

v

LPAR

panel

setup

allows

the

same

domain

to

be

assigned

to

different

LPARs

if

the

cards

are

different

v

DSS

keys

are

not

supported

on

the

PCI

X

Cryptographic

Coprocessor

This

document

contains

terminology,

maintenance,

and

editorial

changes.

Technical

changes

or

additions

to

the

text

and

illustrations

are

indicated

by

a

vertical

line

to

the

left

of

the

change.

You

may

notice

changes

in

the

style

and

structure

of

some

content

in

this

document—for

example,

headings

that

use

uppercase

for

the

first

letter

of

initial

words

only,

and

procedures

that

have

a

different

look

and

format.

The

changes

are

ongoing

improvements

to

the

consistency

and

retrievability

of

information

in

our

documents.

Summary

of

changes

for

SA22-7522-03

z/OS

Version

1

Release

4

This

document

contains

information

previously

presented

in

z/OS

ICSF

Application

Programmer’s

Guide,

SA22-7522-02,

which

supports

z/OS

Version

1

Release

3.

New

information

v

Information

is

added

to

indicate

this

document

supports

z/OS.e

and

the

IBM

Eserver

zSeries

800.

v

Support

for

the

IBM

Eserver

zSeries

990

server

has

been

added.

If

you

are

running

ICSF

in

this

environment,

refer

to

Appendix

J,

“z990

and

z890

without

a

PCI

X

Cryptographic

Coprocessor,”

on

page

529.

v

Callable

services

–

Symmetric

Key

Decipher

(CSNBSYD1)

-

ALET

support

–

Symmetric

Key

Encipher

(CSNBSYE1)

-

ALET

support

Changed

information

v

Callable

services

–

Callable

services

(Usage

notes

section)

have

been

enhanced

to

include

a

table

which

lists

the

required

hardware

(by

server)

and

restrictions

for

the

callable

service.

–

Encrypted

PIN

Verify

(CSNBPVR)

-

rule_array

enhanced

to

support

the

VISAPVV4

keyword.

–

MAC

Generate

(CSNBMGN)

and

MAC

Verify

(CSNBMVR)

has

been

enhanced

to

support

longer

text

on

a

PCI

Cryptographic

Coprocessor.

Summary

of

changes

xxxi

–

Symmetric

Key

Decipher

(CSNBSYD)

has

been

enhanced

to

support

the

DES

and

TDES

algorithms.

Rule_array

key

processing

rules

CUSP,

IPS,

and

X9.23

have

been

added.

–

Symmetric

Key

Encipher

(CSNBSYE)

has

been

enhanced

to

support

the

DES

and

TDES

algorithms.

Rule_array

key

processing

rules

CUSP,

IPS,

and

X9.23

has

been

added.

v

Additional

bit

definitions

(Crypto

assist

instructions

and

DES

and

TDES

enablement)

have

been

added

to

the

Cryptographic

Communication

Vector

Table

(CCVT).

Deleted

information

References

to

DATAC

have

been

removed.

The

services

affected

are

CV

Generate,

Key

Export,

Key

Import,

Key

Generate,

and

Key

Token

Build.

Double-length

DATA

keys

should

be

used

instead

of

DATAC.

References

to

Cryptographic

Unit

Support

Product

(CUSP)

have

been

removed

as

the

product

is

no

longer

supported.

This

document

contains

terminology,

maintenance,

and

editorial

changes.

Technical

changes

or

additions

to

the

text

and

illustrations

are

indicated

by

a

vertical

line

to

the

left

of

the

change.

You

may

notice

changes

in

the

style

and

structure

of

some

content

in

this

document—for

example,

headings

that

use

uppercase

for

the

first

letter

of

initial

words

only,

and

procedures

that

have

a

different

look

and

format.

The

changes

are

ongoing

improvements

to

the

consistency

and

retrievability

of

information

in

our

documents.

Summary

of

changes

for

SA22-7522-02

z/OS

Version

1

Release

3

This

document

contains

information

previously

presented

in

z/OS

ICSF

Application

Programmer’s

Guide,

SA22-7522-01,

which

supports

z/OS

Version

1

Release

2.

New

information

v

Access

Control

Points

–

UKPT

-

PIN

Verify,

PIN

Translate

v

Callable

services

-

The

following

new

callable

services

perform

encryption

using

the

AES

algorithm.

AES

encryption

is

only

allowed

if

the

CCC

is

enabled

for

triple

DES.

Only

clear

key

support

is

provided.

–

Symmetric

Key

Decipher

(CSNBSYD)

-

Deciphers

data

in

an

address

space

using

the

cipher

block

chaining

or

electronic

code

book

modes.

–

Symmetric

Key

Encipher

(CSNBSYE)

-

Enciphers

data

in

an

address

space

using

the

cipher

block

chaining

or

electronic

code

book

modes.

v

ICSF

Setup

–

ICSF

setup

for

E-Delivery

delivery

has

been

added.

A

sample

ICSF

options

dataset,

CSFPRM01,

has

been

added

to

SYS1.SAMPLIB

for

the

purpose

of

setting

master

keys

by

means

of

batch

processing.

–

A

sample

CKDS

allocation

job

(member

CSFCKDS)

has

been

added

to

SYS1.SAMPLIB.

xxxii

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

–

A

sample

PKDS

allocation

job

(member

CSFPKDS)

has

been

added

to

SYS1.SAMPLIB.

–

Samples

for

CSFSTART

(ICSF

Startup

Procedures)

has

been

added.

–

Sample

JCL

(CSFSETMK)

for

E-Delivery

default

passphrase

has

been

added.

v

Support

to

enable

RMF

to

provide

performance

measurements

on

selected

ICSF

services

and

functions

that

use

Direct

Access

Crypto

(DAC)

CCF

instructions

has

been

added.

v

An

appendix

with

z/OS

product

accessibility

information

has

been

added.

Changed

information

v

Callable

services

–

Control

Vector

Generate

(CSNBCVG)

-

rule_array

enhanced

to

support

the

UKPT

keyword.

–

Key

Token

Build

(CSNBKTB)

-

rule_array

enhanced

to

support

the

UKPT

keyword.

–

Encrypted

PIN

Translate

(CSNBPTR)

-

rule_array

enhanced

to

support

UKPT

keywords

UKPTIPIN,

UKPTOPIN,

and

UKPTBOTH.

–

Encrypted

PIN

Verify

(CSNBPVR)

-

rule_array

enhanced

to

support

UKPT

keyword

UKPTIPIN.

–

Symmetric

Key

Export

(CSNDSYX)

-

a

new

rule_array

keyword,

PKCSOAEP,

has

been

added.

This

keyword

specifies

the

method

found

in

RSA

PKCS

#1V2

OAEP.

–

Symmetric

Key

Generate

(CSNDSYG)

-

a

new

rule_array

keyword,

PKCSOAEP,

has

been

added.

This

keyword

specifies

the

method

found

in

RSA

PKCS

#1V2

OAEP.

–

Symmetric

Key

Import

(CSNDSYI)

-

a

new

rule_array

keyword,

PKCSOAEP,

has

been

added.

This

keyword

specifies

the

method

found

in

RSA

PKCS

#1V2

OAEP.

v

The

ICSF

TSO

panels

have

been

updated

to

enhance

usability:

–

Coprocessor

management

functions

have

been

combined

onto

one

panel

–

Master

key

management/CKDS

functions

combined

onto

one

panel

–

TKE

TSO

utilities

combined

onto

one

panel

–

Primary

panel

simplified

–

New

utility

added

to

generate

master

key

values

from

a

pass

phrase

This

document

contains

terminology,

maintenance,

and

editorial

changes,

including

changes

to

improve

consistency

and

retrievability.

Summary

of

changes

for

SA22-7522-01

z/OS

Version

1

Release

2

This

document

contains

information

previously

presented

in

z/OS

ICSF

Application

Programmer’s

Guide,

SA22-7522-00,

which

supports

z/OS

Version

1

Release

1.

New

information

v

Callable

services

–

PKA

Key

Token

Change

(CSNDKTC)

callable

service

-

This

service

changes

PKA

internal

key

tokens

(RSA

and

DSS)

from

encipherment

with

the

old

PCI

Cryptographic

Coprocessor

asymmetric-keys

master

key

to

encipherment

with

the

current

PCI

Cryptographic

Coprocessor

asymmetric-keys

master

key.

Summary

of

changes

xxxiii

–

Secure

Messaging

for

Keys

(CSNBSKY)

callable

service

-

This

service

encrypts

a

text

block,

including

a

clear

key

value

decrypted

from

an

internal

or

external

DES

token.

–

Secure

Messaging

for

PINs

(CSNBSPN)

callable

service

-

This

service

encrypts

a

text

block,

including

a

clear

PIN

block

recovered

from

an

encrypted

PIN

block.

v

Installation

Options

Data

Set

–

PKDSCACHE,

an

installation

option,

defines

the

size

of

the

PKDS

Cache

in

records.

The

PKDS

cache

improves

performance

as

it

facilitates

access

to

frequently

used

records.

Specify

n

as

a

decimal

value

from

0

to

256.

If

n

is

zero,

no

cache

will

be

implemented.

If

PKDSCACHE

is

not

specified,

the

default

value

is

64.

PKDSCACHE

can

be

implemented

on

OS/390

V2

R10

and

z/OS

V1

R1

by

installing

APAR

OW48568.

–

When

specifying

parameter

values

within

parentheses,

leading

and

trailing

blanks

are

ignored.

Embedded

blanks

may

cause

unpredictable

results.

v

PCI

Cryptographic

Accelerator

(PCICA)

support

has

been

added.

If

a

PCI

Cryptographic

Accelerator

is

available,

clear

RSA

key

processing

in

the

CSNDPKD

service

will

be

routed

to

the

PCI

Cryptographic

Accelerator.

If

you

have

a

PCI

Cryptographic

Accelerator

online,

toleration

APAR

OW49402

is

required

on

lower

levels

of

ICSF

(OS/390

V2

R9,

OS/390

V2

R10

and

z/OS

V1

R1).

v

Support

to

REENCIPHER

PKDS

and

ACTIVATE

PKDS

has

been

added

to

the

Master

Key

Management

Panels.

The

new

utility,

CSFPUTIL,

can

also

be

used

to

reencipher

the

PKDS

from

the

old

asymmetric-keys

master

key

to

the

current

master

key

and

to

activate

the

reenciphered

PKDS.

Toleration

APAR

OW49386

is

required

on

the

following

systems

in

order

to

activate

the

re-enciphered

PKDS:

–

HCRP210

(standalone),

HCRP220(OS/390

V2

R6,

OS/390

V2

R7,

OS/390

V2

R8),

HCRP230

(OS/390

V2

R9),

and

HCR7703

(OS/390

V2

R10

and

z/OS

V1

R1)

v

UDX

support

-

Support

for

writing

your

own

UDX

has

been

added.

Changed

information

v

Beginning

in

z/OS

V1

R2,

the

DOMAIN

parameter

is

an

optional

parameter

in

the

installation

options

data

set.

It

is,

however,

required

if

more

than

one

domain

is

specified

as

the

usage

domain

on

the

PR/SM

panels

or

if

running

in

native

mode.

If

specified

in

the

options

data

set,

it

will

be

used

and

it

must

be

one

of

the

usage

domains

for

the

LPAR.

If

DOMAIN

is

not

specified

in

the

options

data

set,

ICSF

determines

which

domains

are

available

in

this

LPAR.

If

only

one

domain

is

defined

for

the

LPAR,

ICSF

will

use

it.

If

more

than

one

is

available,

ICSF

will

issue

error

message

″CSFM409E

MULTIPLE

DOMAINS

AVAILABLE.

SELECT

ONE

IN

THE

OPTIONS

DATA

SET.″

v

Callable

services

–

MAXLEN

parameter

checking

has

been

eliminated

for

the

following

services:

-

Encipher

(CSNBENC

and

CSNBENC1)

-

Decipher

(CSNBDEC

and

CSNBDEC1)

-

MAC

generate

(CSNBMGN

and

CSNBMGN1)

-

MAC

verify

(CSNBMVR

and

CSNBMVR1)

-

Ciphertext

translate

(CSNBCTT

and

CSNBCTT1)

-

MDC

generate

(CSNBMDG

and

CSNBMDG1)

The

MAXLEN

parameter

is

also

no

longer

enforced

in

the

CUSP

compatibility

CIPHER

service.

The

MAXLEN

parameter

may

still

be

specified

in

the

options

xxxiv

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

data

set,

but

only

the

maximum

value

limit

will

be

enforced

(2147483647).

If

a

value

greater

than

this

is

specified,

an

error

will

result

and

ICSF

will

not

start.

v

Pass

Phrase

Initialization

now

allows

uninitialized

PCI

Cryptographic

Coprocessors

to

be

initialized

without

processing

all

Cryptographic

Coprocessors.

A

new

panel

option

(Initialize

new

PCICC

Only)

has

been

added

to

the

Pass

Phrase

Initialization

panel

to

allow

the

initialization

of

the

new

PCI

Cryptographic

Coprocessors.

Deleted

information

v

Message

IEC161I

has

been

eliminated

during

the

first

time

startup

of

ICSF.

v

The

following

reason

codes

for

ICSF/MVS

X'18F'

are

being

eliminated

and

will

be

replaced

with

operator

messages.

–

Reason

Code

X'3C'

-

replaced

by

message

CSFM105E

–

Reason

Code

X'48'

-

replaced

by

message

CSFM120E

–

Reason

Code

X'1B'

-

replaced

by

message

CSFM410E

–

Reason

Code

X'4B'

-

replaced

by

message

CSFM107E

–

Reason

Code

X'106'

-

If

the

CCC

is

all

zeroes,

abend

X'18F'

reason

code

4A

will

occur.

If

the

CCC

does

not

exist,

message

CSFM113E

will

be

displayed.

This

document

contains

terminology,

maintenance,

and

editorial

changes,

including

changes

to

improve

consistency

and

retrievability.

Summary

of

changes

xxxv

xxxvi

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Part

1.

IBM

CCA

Programming

This

part

of

the

document

introduces

programming

for

the

IBM

CCA,

DES

cryptography

and

PKA

cryptography.

It

explains

how

to

use

DES

and

PKA

callable

services.

©

Copyright

IBM

Corp.

1997,

2004

1

2

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

1.

Introducing

Programming

for

the

IBM

CCA

ICSF

provides

access

to

cryptographic

functions

through

callable

services,

which

are

also

known

as

verbs.

A

callable

service

is

a

routine

that

receives

control

using

a

CALL

statement

in

an

application

language.

Before

invoking

callable

services

in

an

application

program,

you

must

link

them

into

the

application

program.

See

“Linking

a

Program

with

the

ICSF

Callable

Services”

on

page

12.

To

invoke

the

callable

service,

the

application

program

must

include

a

procedure

call

statement

that

has

the

entry

point

name

and

parameters

for

the

callable

service.

The

parameters

that

are

associated

with

a

callable

service

provide

the

only

communication

between

the

application

program

and

ICSF.

Callable

Service

Syntax

This

document

uses

a

general

call

format

to

show

the

name

of

the

ICSF

callable

service

and

its

parameters.

An

example

of

that

format

is

shown

below:

CALL

CSNBxxxx(return_code,

reason_code,

exit_data_length,

exit_data,

parameter_5,

parameter_6,

.

.

.

parameter_N)

where

CSNBxxxx

is

the

name

of

the

callable

service.

CSFXXX

corresponds

to

CSNBxxx.

(The

ANSI

services

start

with

CSNAxxx

and

have

corresponding

CSFAxxx

names.

For

the

PKA

services,

which

start

with

CSNDxxx

and

have

corresponding

CSFxxx

names,

see

“Summary

of

the

PKA

Callable

Services”

on

page

59.)

The

return

code,

reason

code,

exit

data

length,

exit

data,

parameter

5

through

parameter

N

represent

the

parameter

list.

The

call

generates

a

fixed

length

parameter

list.

You

must

supply

the

parameters

in

the

order

shown

in

the

syntax

diagrams.

“Parameter

Definitions”

on

page

6

describes

the

parameters

in

more

detail.

ICSF

callable

services

can

be

called

from

application

programs

written

in

a

number

of

high-level

languages

as

well

as

assembler.

The

high-level

languages

are:

v

C

v

COBOL

v

FORTRAN

v

PL/I

The

ICSF

callable

services

comply

with

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

The

services

can

be

invoked

using

the

generic

format,

CSNBxxxx.

Use

the

generic

format

if

you

want

your

application

to

work

with

more

than

one

cryptographic

product.

Otherwise,

use

the

CSFxxxx

format.

Specific

formats

for

the

languages

that

can

invoke

ICSF

callable

services

are

as

follows:

C

©

Copyright

IBM

Corp.

1997,

2004

3

CSNBxxxx

(return_code,reason_code,exit_data_length,exit_data,

parameter_5,...parameter_N)

COBOL

CALL

‘CSNBxxxx’

USING

return_code,reason_code,exit_data_length,

exit_data,parameter_5,...parameter_N

FORTRAN

CALL

CSNBxxxx

(return_code,reason_code,exit_data_length,exit_data,

parameter_5,...parameter_N)

PL/I

DCL

CSNBxxxx

ENTRY

OPTIONS(ASM);

CALL

CSNBxxxx

return_code,reason_code,exit_data_length,exit_data,

parameter_5,...parameter_N;

Assembler

language

programs

must

use

standard

linkage

conventions

when

invoking

ICSF

callable

services.

An

example

of

how

an

assembler

language

program

can

invoke

a

callable

service

is

shown

as

follows:

CALL

CSNBxxxx,(return_code,reason_code,exit_data_length,exit_data,

parameter_5,...parameter_N)

Coding

examples

using

the

high-level

languages

are

shown

in

Appendix

D,

“Coding

Examples.”

Callable

Services

with

ALET

Parameters

Some

callable

services

have

an

alternate

entry

point

(with

ALET

parameters—for

data

that

resides

in

data

spaces).

They

are

in

the

format

of

CSNBxxx1:

Verb

Callable

Service

without

ALET

Callable

Service

with

ALET

Ciphertext

translate

CSNBCTT

CSNBCTT1

Decipher

CSNBDEC

CSNBDEC1

Encipher

CSNBENC

CSNBENC1

MAC

generate

CSNBMGN

CSNBMGN1

MAC

verify

CSNBMVR

CSNBMVR1

MDC

generate

CSNBMDG

CSNBMDG1

One

way

hash

generate

CSNBOWH

CSNBOWH1

Symmetric

key

decipher

CSNBSYD

CSNBSYD1

Symmetric

key

encipher

CSNBSYE

CSNBSYE1

When

choosing

which

service

to

use,

consider

the

following:

v

Callable

services

that

do

not

have

an

ALET

parameter

require

data

to

reside

in

the

caller’s

primary

address

space.

A

program

using

these

services

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

Callable

services

that

have

an

ALET

parameter

allow

data

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

encipher

more

data

with

one

call.

However,

a

program

using

these

services

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

4

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Rules

for

Defining

Parameters

and

Attributes

The

following

rules

apply

to

the

callable

services:

v

Parameters

are

required

and

positional.

v

Each

parameter

list

has

a

fixed

number

of

parameters.

v

Each

parameter

is

defined

as

an

integer

or

a

character

string.

Null

pointers

are

not

acceptable

for

any

parameter.

v

Keywords

passed

to

the

callable

services,

such

as

TOKEN,

CUSP,

and

FIRST

can

be

in

lower,

upper,

or

mixed

case.

The

callable

services

fold

them

to

uppercase

before

using

them.

Each

callable

service

defines

its

own

list

of

parameters.

The

entire

list

must

be

supplied

on

every

call.

If

you

do

not

use

a

specific

parameter,

you

must

supply

that

parameter

with

hexadecimal

zeros

or

binary

zeros.

Parameters

are

passed

to

the

callable

service.

All

information

that

is

exchanged

between

the

application

program

and

the

callable

service

is

through

parameters

passed

on

the

call.

Each

parameter

definition

begins

with

the

direction

that

the

data

flows

and

the

attributes

that

the

parameter

must

possess

(called

“type”).

The

following

describes

the

direction.

Direction

Meaning

Input

The

application

sends

(supplies)

the

parameter

to

the

callable

service.

The

callable

service

does

not

change

the

value

of

the

parameter.

Output

The

callable

service

returns

the

parameter

to

the

application

program.

The

callable

service

may

have

changed

the

value

of

the

parameter

on

return.

Input/Output

The

application

sends

(supplies)

the

parameter

to

the

callable

service.

The

callable

service

may

have

changed

the

value

of

the

parameter

on

return.

The

following

describes

the

attributes

or

type.

Type

Meaning

Integer

(I)

A

4-byte

(32-bit),

twos

complement,

binary

number

that

has

sign

significance.

String

A

series

of

bytes

where

the

sequence

of

the

bytes

must

be

maintained.

Each

byte

can

take

on

any

bit

configuration.

The

string

consists

only

of

data

bytes.

No

string

terminators,

field-length

values,

or

type-casting

parameters

are

included.

The

maximum

size

of

a

string

is

X'7FFFFFFF'

or

2

gigabytes.

In

some

of

the

callable

services,

the

length

of

some

string

data

has

an

upper

bound

defined

by

the

installation.

Alphanumeric

character

string

A

string

of

bytes

in

which

each

byte

represents

characters

from

the

following

set:

EBCDIC

EBCDIC

EBCDIC

Character

Value

Character

Value

Character

Value

A-Z

(

X'4D'

/

X'61'

a-z

)

X'5D'

,

X'6B'

Chapter

1.

Introducing

Programming

for

the

IBM

CCA

5

|
|

0-9

+

X'4E'

%

X'6C'

Blank

X'40'

&

X'50'

?

X'6F'

*

X'5C'

.

X'4B'

:

X'7A'

<

X'4C'

;

X'5E'

=

X'7E'

>

X'6E'

-

X'60'

’

X'7D'

Parameter

Definitions

This

section

describes

the

following

parameters,

which

are

used

by

most

of

the

callable

services:

v

Return_code

v

Reason_code

v

Exit_data_length

v

Exit_data

v

Key_identifier

Note:

The

return_code

parameter,

the

reason_code

parameter,

the

exit_data_length

parameter,

and

the

exit_data

parameter

are

required

with

every

callable

service.

Return

and

Reason

Codes

Return_code

and

reason_code

parameters

return

integer

values

upon

completion

of

the

call.

Return_code

The

return

code

parameter

contains

the

general

results

of

processing

as

an

integer.

Table

1

shows

the

standard

return

code

values

that

the

callable

services

return.

A

complete

list

of

return

codes

is

shown

in

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes.”

Table

1.

Standard

Return

Code

Values

From

ICSF

Callable

Services

Value

Hex

(Decimal)

Meaning

00

(00)

Successful.

Normal

return.

04

(04)

A

warning.

Execution

was

completed

with

a

minor,

unusual

event

encountered.

08

(08)

An

application

error

occurred.

The

callable

service

was

stopped

due

to

an

error

in

the

parameters.

Or,

another

condition

was

encountered

that

needs

to

be

investigated.

0C

(12)

Error.

ICSF

is

not

active

or

an

environment

error

was

detected.

10

(16)

System

error.

The

callable

service

was

stopped

due

to

a

processing

error

within

the

software

or

hardware.

Generally,

PCF

macros

will

receive

identical

error

return

codes

if

they

execute

on

PCF

or

on

ICSF.

A

single

exception

has

been

noted:

if

a

key

is

installed

on

the

ICSF

CKDS

with

the

correct

label

but

with

the

wrong

key

type,

PCF

issues

a

return

code

of

8,

indicating

that

the

key

type

was

incorrect.

ICSF

issues

a

return

code

of

12,

indicating

that

the

key

could

not

be

found.

Reason_code

The

reason

code

parameter

contains

the

results

of

processing

as

an

integer.

You

can

specify

which

set

of

reason

codes

(ICSF

or

TSS)

are

returned

from

callable

services.

The

default

value

is

ICSF.

For

more

information

about

the

6

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

REASONCODES

installation

option,

see

z/OS

Cryptographic

Services

ICSF

System

Programmer’s

Guide.

Different

results

are

assigned

to

unique

reason

code

values

under

a

return

code.

A

list

of

reason

codes

is

shown

in

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes.”

Exit

Data

Length

and

Exit

Data

The

following

describes

the

exit_data_length

and

exit_data

parameters.

The

parameters

are

input

to

all

callable

services.

(Although

all

services

require

these

parameters,

several

services

ignore

them.

Installation

exits

are

not

enabled

for

the

following

callable

services:

code

conversion,

character/nibble

conversion,

X9.9

data

editing,

and

some

PKA

callable

services.

ICSF

provides

two

installation

exits

for

each

callable

service.

The

preprocessing

exit

is

invoked

when

an

application

program

calls

a

callable

service,

but

before

the

callable

service

starts

processing.

For

example,

this

exit

is

used

to

check

or

change

parameters

passed

on

the

call

or

to

stop

the

call.

It

can

also

be

used

to

perform

additional

security

checks.

The

post-processing

exit

is

invoked

when

the

callable

service

has

completed

processing,

but

before

the

callable

service

returns

control

to

the

application

program.

For

example,

this

exit

can

be

used

to

check

and

change

return

codes

from

the

callable

service

or

perform

clean-up

processing.

For

more

information

about

the

exits,

see

z/OS

Cryptographic

Services

ICSF

System

Programmer’s

Guide.

Exit_data_length

The

integer

that

has

the

string

length

of

the

data

passed

to

the

exit.

The

data

is

identified

in

the

following

exit_data

parameter.

Exit_data

The

installation

exit

data

string

that

is

passed

to

the

callable

service’s

preprocessing

exit.

The

installation

exit

can

use

the

data

for

its

own

processing.

Key

Identifier

for

Key

Token

A

key

identifier

for

a

key

token

is

an

area

that

contains

one

of

the

following:

v

Key

label

identifies

keys

that

are

in

the

CKDS

or

PKDS.

Ask

your

ICSF

administrator

for

the

key

labels

that

you

can

use.

v

Key

token

can

be

either

an

internal

key

token,

an

external

key

token,

or

a

null

key

token.

Key

tokens

are

generated

by

an

application

(for

example,

using

the

key

generate

callable

service),

or

received

from

another

system

that

can

produce

external

key

tokens.

An

internal

key

token

can

be

used

only

on

ICSF

because

the

master

key

encrypts

the

key

value.

Internal

key

tokens

contain

keys

in

operational

form

only.

An

external

key

token

can

be

exchanged

with

other

systems

because

a

transport

key

that

is

shared

with

the

other

system

encrypts

the

key

value.

External

key

tokens

contain

keys

in

either

exportable

or

importable

form.

A

null

key

token

can

be

used

to

import

a

key

from

a

system

that

cannot

produce

external

key

tokens.

A

null

key

token

contains

a

key

encrypted

under

an

importer

key-encrypting

key

but

does

not

contain

the

other

information

present

in

an

external

key

token.

The

term

key

identifier

is

used

when

a

parameter

could

be

one

of

the

above

items

and

to

indicate

that

different

inputs

are

possible.

For

example,

you

may

want

to

Chapter

1.

Introducing

Programming

for

the

IBM

CCA

7

specify

a

specific

parameter

as

either

an

internal

key

token

or

a

key

label.

The

key

label

is,

in

effect,

an

indirect

reference

to

a

stored

internal

key

token.

Key

Label:

If

the

first

byte

of

the

key

identifier

is

greater

than

X'40',

the

field

is

considered

to

be

holding

a

key

label.

The

contents

of

a

key

label

are

interpreted

as

a

pointer

to

a

CKDS

or

PKDS

key

entry.

The

key

label

is

an

indirect

reference

to

an

internal

key

token.

A

key

label

is

specified

on

callable

services

with

the

key_identifier

parameter

as

a

64-byte

character

string,

left-justified,

and

padded

on

the

right

with

blanks.

In

most

cases,

the

callable

service

does

not

check

the

syntax

of

the

key

label

beyond

the

first

byte.

One

exception

is

the

key

record

create

callable

service

which

enforces

the

KGUP

rules

for

key

labels

unless

syntax

checking

is

bypassed

by

a

preprocessing

exit.

A

key

label

has

the

following

form:

Offset

Length

Data

00-63

64

Key

label

name

There

are

some

general

rules

for

creating

labels

for

CKDS

key

records.

v

Each

label

can

consist

of

up

to

64

characters.

The

first

character

must

be

alphabetic

or

a

national

character

(#,

$,

@).

The

remaining

characters

can

be

alphanumeric,

a

national

character

(#,

$,

@),

or

a

period

(.).

v

Labels

must

be

unique

for

DATA,

DATAXLAT,

MAC,

MACVER,

DATAM,

and

DATAMV

keys.

v

For

compatibility

with

Version

1

Release

1

function,

transport

and

PIN

keys

can

have

duplicate

labels

for

different

key

types.

Keys

that

use

the

dynamic

CKDS

update

services

to

create

or

update,

however,

must

have

unique

key

labels.

v

Labels

must

be

unique

for

any

key

record,

including

transport

and

PIN

keys,

created

or

updated

using

the

dynamic

CKDS

update

services.

Invocation

Requirements

Applications

that

use

ICSF

callable

services

must

meet

the

following

invocation

requirements:

v

Data

can

be

located

above

or

below

16Mb

but

must

be

31-bit

addressable

v

Problem

or

supervisor

state

v

Any

PSW

key

v

Task

mode

or

Service

Request

Block

(SRB)

mode

v

No

mode

restrictions

v

Enabled

for

interrupts

Notes:

1.

For

services

that

can

dynamically

update

the

CKDS

or

PKDS,

the

caller

must

be

in

task

mode

and

not

in

SRB

mode:

v

Key

Part

Import

(CSNBKPI)

v

Key

Record

Create

(CSNBKRC)

v

Key

Record

Delete

(CSNBKRD)

v

Key

Record

Write

(CSNBKRW)

v

PKDS

Record

Create

(CSNDKRC)

v

PKDS

Record

Delete

(CSNDKRD)

v

PKDS

Record

Write

(CSNDKRW)

8

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|
|
|

|
|

|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

v

PKA

Key

Generate

(CSNDPKG)

v

Retained

Key

Delete

(CSNDRKD)

2.

For

services

that

can

specify

a

label

for

a

PKA

key

identifier,

the

caller

must

be

in

task

mode

and

not

in

SRB

mode:

v

Digital

Signature

Generate

(CSNDDSG)

v

Digital

Signature

Verify

(CSNDDSV)

v

PKA

Decrypt

(CSNDPKD)

v

PKA

Encrypt

(CSNDPKE)

v

PKA

Key

Import

(CSNDPKI)

v

Retained

Key

Delete

(CSNDRKD)

v

SET

Block

Compose

(CSNDSBC)

v

SET

Block

Decompose

(CSNDSBD)

v

Symmetric

key

export

(CSNDSYX)

v

Symmetric

key

import

(CSNDSYI)

v

Symmetric

key

generate

(CSNDSYG)

Security

Considerations

Your

installation

can

use

the

Security

Server

(RACF)

or

an

equivalent

product

to

control

who

can

use

ICSF

callable

services

or

key

labels.

Before

using

an

ICSF

callable

service

or

a

key

label,

ask

your

security

administrator

to

ensure

that

you

have

the

necessary

authorization.

RACF

does

not

control

all

services.

The

usage

notes

section

in

the

callable

service

description

will

highlight

those

services

which

are

not

controlled.

Performance

Considerations

In

most

cases,

the

z/OS

operating

system

dispatcher

provides

optimum

performance.

However,

if

your

application

makes

extensive

use

of

ICSF

functions,

you

should

consider

using

one

or

both

of

the

following:

v

CCF

Systems

Only:

If

your

application

runs

in

SRB

mode,

use

the

SCHEDULE

macro

or

IEAAFFN

callable

service.

You

should

consider

scheduling

an

SRB

to

run

on

a

processor

with

the

cryptographic

feature

installed

(using

the

FEATURE=CRYPTO

keyword

on

the

SCHEDULE

macro).

For

more

information

on

the

SCHEDULE

macro,

refer

to

z/OS

MVS

Programming:

Authorized

Assembler

Services

Reference

LLA-SDU.

Restriction:

The

FEATURE=CRYPTO

keyword

should

not

be

specified

when

running

on

an

IBM

Eserver

zSeries

990.

v

Use

the

IEAAFFN

callable

service

(processor

affinity)

to

avoid

system

overhead

in

selecting

which

processor

your

program

(specifically,

a

particular

TCB

in

the

application)

runs

in.

Note

that

you

do

not

have

to

use

the

IEAAFFN

service

to

ensure

that

the

system

runs

a

program

on

a

processor

with

a

cryptographic

feature;

the

system

ensures

that

automatically.

However,

you

can

avoid

some

of

the

system

overhead

involved

in

the

selection

process

by

using

the

IEAAFFN

service,

thus

improving

the

program’s

performance.

For

more

information

on

using

the

IEAAFFN

callable

service,

refer

to

z/OS

MVS

Programming:

Callable

Services

for

HLL.

IBM

recommends

that

you

run

applications

first

without

using

these

options.

Consider

these

options

when

you

are

tuning

your

application

for

performance.

Use

these

options

only

if

they

improve

the

performance

of

your

application.

Chapter

1.

Introducing

Programming

for

the

IBM

CCA

9

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

Special

Secure

Mode

Special

secure

mode

is

a

special

processing

mode

in

which:

v

The

Secure

Key

Import

and

Multiple

Secure

Key

Import

callable

services,

which

works

with

clear

keys,

can

be

used.

v

The

Clear

PIN

Generate

callable

service,

which

works

with

clear

PINs,

can

be

used.

v

The

Symmetric

Key

Generate

callable

service

with

the

″IM″

keyword

(the

DES

enciphered

key

is

enciphered

by

an

IMPORTER

key)

can

be

used

(CCF

Systems

Only).

v

The

key

generator

utility

program

(KGUP)

can

be

used

to

enter

clear

keys

into

the

CKDS.

To

use

special

secure

mode,

several

conditions

must

be

met.

v

The

installation

options

data

set

must

specify

YES

for

the

SSM

installation

option.

For

information

about

specifying

installation

options,

see

z/OS

Cryptographic

Services

ICSF

System

Programmer’s

Guide.

This

is

required

for

all

systems.

v

The

environmental

control

mask

(ECM)

must

be

configured

to

permit

special

secure

mode.

The

ECM

is

a

32-bit

mask

defined

for

each

cryptographic

domain

during

hardware

installation.

The

second

bit

in

this

mask

must

have

been

turned

on

to

enable

special

secure

mode.

The

default

is

to

have

this

bit

turned

on

in

the

ECM.

The

bit

can

only

be

turned

off/on

through

the

optional

TKE

Workstation.

This

is

required

for

systems

with

the

Cryptographic

Coprocessor

Feature.

v

If

you

are

running

in

LPAR

mode,

special

secure

mode

must

be

enabled.

On

S/390

Enterprise

Servers,

the

S/390

Multiprise,

the

IBM

Eserver

zSeries

800,

and

the

IBM

Eserver

zSeries

900,

you

enable

special

secure

mode

during

activation

using

the

Crypto

page

of

the

Customize

Activation

Profiles

task.

After

activation,

you

can

enable

or

disable

special

secure

mode

on

the

Change

LPAR

Crypto

task.

Both

of

these

tasks

can

be

accessed

from

the

Hardware

Management

Console.

This

is

required

for

systems

with

the

Cryptographic

Coprocessor

Feature.

For

S/390

Enterprise

Servers,

the

S/390

Multiprise,

the

IBM

Eserver

zSeries

800,

and

the

IBM

Eserver

zSeries

900

with

TKE,

TKE

can

disable/enable

special

secure

mode.

Using

the

Callable

Services

This

section

discusses

how

ICSF

callable

services

use

the

different

key

types

and

key

forms.

It

also

provides

suggestions

on

what

to

do

if

there

is

a

problem.

ICSF

provides

callable

services

that

perform

cryptographic

functions.

You

call

and

pass

parameters

to

a

callable

service

from

an

application

program.

Besides

the

callable

services

ICSF

provides,

you

can

write

your

own

callable

services

called

installation-defined

callable

services.

Note

that

only

an

experienced

system

programmer

should

attempt

to

write

an

installation-defined

callable

service.

To

write

an

installation-defined

callable

service,

you

must

first

write

the

callable

service

and

link-edit

it

into

a

load

module.

Then

define

the

service

in

the

installation

options

data

set.

10

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

You

must

also

write

a

service

stub.

To

execute

an

installation-defined

callable

service,

you

call

a

service

stub

from

your

application

program.

In

the

service

stub,

you

specify

the

service

number

that

identifies

the

callable

service.

For

more

information

about

installation-defined

callable

services,

see

z/OS

Cryptographic

Services

ICSF

System

Programmer’s

Guide.

When

the

Call

Succeeds

If

the

return

code

is

0,

ICSF

has

successfully

completed

the

call.

If

a

reason

code

other

than

0

is

included,

refer

to

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397,

for

additional

information.

For

instance,

reason

code

10000

indicates

the

key

in

the

key

identifier

(or

more

than

one

key

identifier,

for

services

that

use

two

internal

key

identifiers)

has

been

reenciphered

from

encipherment

under

the

old

master

key

to

encipherment

under

the

current

master

key.

Keys

in

external

tokens

are

not

affected

by

this

processing

because

they

contain

keys

enciphered

under

keys

other

than

the

host

master

key.

If

you

manage

your

key

identifiers

on

disk,

then

reason

code

10000

should

be

a

“trigger”

to

store

these

updated

key

identifiers

back

on

disk.

Your

program

can

now

continue

providing

its

function,

but

you

may

want

to

communicate

the

key

that

you

used

to

another

enterprise.

This

process

is

exporting

a

key.

If

you

want

to

communicate

the

key

that

you

are

using

to

a

cryptographic

partner,

there

are

several

methods

to

use:

v

For

DATA

keys

only,

call

the

data

key

export

callable

service.

You

now

have

a

DATA

key

type

in

exportable

form.

v

Call

the

key

export

callable

service.

You

now

have

the

key

type

in

exportable

form.

v

When

you

use

the

key

generate

callable

service

to

create

your

operational

or

importable

key

form,

you

can

create

an

exportable

form,

at

the

same

time,

and

you

now

have

the

key

type,

in

exportable

form,

at

the

same

time

as

you

get

the

operational

or

importable

form.

When

the

Call

Does

Not

Succeed

Now

you

have

planned

your

use

of

the

ICSF

callable

services,

made

the

call,

but

the

service

has

completed

with

a

return

and

reason

codes

other

than

zero.

If

the

return

code

is

4,

there

was

a

minor

problem.

For

example,

reason

code

8004

indicates

the

trial

MAC

that

was

supplied

does

not

match

the

message

text

provided.

If

the

return

code

is

8,

there

was

a

problem

with

one

of

your

parameters.

Check

the

meaning

of

the

reason

code

value,

correct

the

parameter,

and

call

the

service

again.

You

may

go

through

this

process

several

times

before

you

succeed.

If

the

return

code

is

12,

ICSF

is

not

active,

or

has

no

access

to

cryptographic

units,

or

has

an

environmental

problem.

Check

with

your

ICSF

administrator.

If

the

return

code

is

16,

the

service

has

a

serious

problem

that

needs

the

help

of

your

system

programmer.

There

are

several

reason

codes

that

can

occur

after

you

have

fully

debugged

and

tested

your

program.

For

example:

Chapter

1.

Introducing

Programming

for

the

IBM

CCA

11

v

Reason

code

10004

indicates

that

you

provided

a

key

identifier

that

holds

a

key

enciphered

under

a

host

master

key.

The

host

master

key

is

not

installed

in

the

cryptographic

unit.

If

this

happens,

you

have

to

go

back

and

import

your

importable

key

form

again

and

call

the

service

again.

You

need

to

build

this

flow

into

your

program

logic.

v

Reason

code

10012

indicates

a

key

corresponding

to

the

label

that

you

specified

is

not

in

the

CKDS

or

PKDS.

Check

with

your

ICSF

administrator

to

see

if

the

label

is

correct.

Return

and

reason

codes

are

described

in

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397.

Linking

a

Program

with

the

ICSF

Callable

Services

To

link

the

ICSF

callable

services

into

an

application

program,

you

can

use

the

following

sample

JCL

statements.

In

the

SYSLIB

concatenation,

include

the

CSF.SCSFMOD0

module

in

the

link

edit

step.

//LKEDENC

JOB

//*---*

//*

*

//*

The

JCL

links

the

ICSF

encipher

callable

service,

CSNBENC,

*

//*

into

an

application

called

ENCIPHER.

*

//*

*

//*---*

//LINK

EXEC

PGM=IEWL,

//

PARM=’XREF,LIST,LET’

//SYSUT1

DD

UNIT=SYSDA,SPACE=(CYL,(10,10))

//SYSPRINT

DD

SYSOUT=*

//SYSLIB

DD

DSN=CSF.SCSFMOD0,DISP=SHR

*

SERVICES

ARE

IN

HERE

//SYSLMOD

DD

DSN=MYAPPL.LOAD,DISP=SHR

*

MY

APPLICATION

LIBRARY

//SYSLIN

DD

DSN=MYAPPL.ENCIPHER.OBJ,DISP=SHR

*

MY

ENCIPHER

PROGRAM

//

DD

*

ENTRY

ENCIPHER

NAME

ENCIPHER(R)

/*

12

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

The

Integrated

Cryptographic

Service

Facility

protects

data

from

unauthorized

disclosure

or

modification.

ICSF

protects

data

stored

within

a

system,

stored

in

a

file

off

a

system

on

magnetic

tape,

and

sent

between

systems.

ICSF

also

authenticates

the

identity

of

customers

in

the

financial

industry

and

authenticates

messages

from

originator

to

receiver.

It

uses

cryptography

to

accomplish

these

functions.

ICSF

provides

access

to

cryptographic

functions

through

callable

services.

A

callable

service

is

a

routine

that

receives

control

using

a

CALL

statement

in

an

application

language.

Each

callable

service

performs

one

or

more

cryptographic

functions,

including:

v

Generating

and

managing

cryptographic

keys

v

Enciphering

and

deciphering

data

with

encrypted

keys

using

either

the

U.S.

National

Institute

of

Standards

and

Technology

(NIST)

Data

Encryption

Standard

(DES),

or

the

Commercial

Data

Masking

Facility

(CDMF)

v

Transforming

a

CDMF

DATA

key

to

a

transformed

shortened

DES

key

v

Reenciphering

text

from

encryption

under

one

key

to

encryption

under

another

key

v

Encoding

and

decoding

data

with

clear

keys

v

Generating

random

numbers

v

Ensuring

data

integrity

and

verifying

message

authentication

v

Generating,

verifying,

and

translating

personal

identification

numbers

(PINs)

that

identify

a

customer

on

a

financial

system

This

chapter

provides

an

overview

of

the

DES

cryptographic

functions

provided

in

ICSF,

explains

the

functions

of

the

cryptographic

keys,

and

introduces

the

topic

of

building

key

tokens.

Many

services

have

hardware

requirements.

See

each

service

for

details.

Functions

of

the

DES

Cryptographic

Keys

ICSF

provides

functions

to

create,

import,

and

export

DES

keys.

This

section

gives

an

overview

of

these

cryptographic

keys.

Detailed

information

about

how

ICSF

organizes

and

protects

keys

is

in

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide.

Key

Separation

The

cryptographic

feature

controls

the

use

of

keys

by

separating

them

into

unique

types,

allowing

you

to

use

a

specific

type

of

key

only

for

its

intended

purpose.

For

example,

a

key

used

to

protect

data

cannot

be

used

to

protect

a

key.

An

ICSF

system

has

only

one

DES

master

key.

However,

to

provide

for

key

separation,

the

cryptographic

feature

automatically

encrypts

each

type

of

key

under

a

unique

variation

of

the

master

key.

Each

variation

of

the

master

key

encrypts

a

different

type

of

key.

Although

you

enter

only

one

master

key,

you

have

a

unique

master

key

to

encrypt

all

other

keys

of

a

certain

type.

Note:

In

PCF,

key

separation

applies

only

to

keys

enciphered

under

the

master

key

(keys

in

operational

form).

In

ICSF,

key

separation

also

applies

to

keys

©

Copyright

IBM

Corp.

1997,

2004

13

enciphered

under

transport

keys

(keys

in

importable

or

exportable

form).

This

allows

the

creator

of

a

key

to

transmit

the

key

to

another

system

and

to

enforce

its

use

at

the

other

system.

Master

Key

Variant

Whenever

the

master

key

is

used

to

encipher

a

key,

the

cryptographic

coprocessor

produces

a

variation

of

the

master

key

according

to

the

type

of

key

the

master

key

will

encipher.

These

variations

are

called

master

key

variants.

The

cryptographic

coprocessor

creates

a

master

key

variant

by

exclusive

ORing

a

fixed

pattern,

called

a

control

vector,

onto

the

master

key.

A

unique

control

vector

is

associated

with

each

type

of

key.

For

example,

all

the

different

types

of

data-encrypting,

PIN,

MAC,

and

transport

keys

are

each

exclusive

ORed

with

a

unique

control

vector.

The

different

key

types

are

described

in

“Types

of

Keys”

on

page

17.

Each

master

key

variant

protects

a

different

type

of

key.

It

is

similar

to

having

a

unique

master

key

protect

all

the

keys

of

a

certain

type.

The

master

key,

in

the

form

of

master

key

variants,

protects

keys

operating

on

the

system.

A

key

can

be

used

in

a

cryptographic

function

only

when

it

is

enciphered

under

a

master

key.

When

systems

want

to

share

keys,

transport

keys

are

used

to

protect

keys

sent

outside

of

systems.

When

a

key

is

enciphered

under

a

transport

key,

the

key

cannot

be

used

in

a

cryptographic

function.

It

must

first

be

brought

on

to

a

system

and

enciphered

under

the

system’s

master

key,

or

exported

to

another

system

where

it

will

then

be

enciphered

under

that

system’s

master

key.

Transport

Key

Variant

Like

the

master

key,

ICSF

creates

variations

of

a

transport

key

to

encrypt

a

key

according

to

its

type.

This

allows

for

key

separation

when

a

key

is

transported

off

the

system.

A

transport

key

variant,

also

called

key-encrypting

key

variant,

is

created

the

same

way

a

master

key

variant

is

created.

The

transport

key’s

clear

value

is

exclusive

ORed

with

a

control

vector

associated

with

the

key

type

of

the

key

it

protects.

Note:

To

exchange

keys

with

systems

that

do

not

recognize

transport

key

variants,

ICSF

allows

you

to

encrypt

selected

keys

under

a

transport

key

itself,

not

under

the

transport

key

variant.

For

more

information,

see

18.

Key

Forms

A

key

that

is

protected

under

the

master

key

is

in

operational

form,

which

means

ICSF

can

use

it

in

cryptographic

functions

on

the

system.

When

you

store

a

key

with

a

file

or

send

it

to

another

system,

the

key

is

enciphered

under

a

transport

key

rather

than

the

master

key

because,

for

security

reasons,

the

key

should

no

longer

be

active

on

the

system.

When

ICSF

enciphers

a

key

under

a

transport

key,

the

key

is

not

in

operational

form

and

cannot

be

used

to

perform

cryptographic

functions.

When

a

key

is

enciphered

under

a

transport

key,

the

sending

system

considers

the

key

in

exportable

form.

The

receiving

system

considers

the

key

in

importable

form.

When

a

key

is

reenciphered

from

under

a

transport

key

to

under

a

system’s

master

key,

it

is

in

operational

form

again.

Enciphered

keys

appear

in

three

forms.

The

form

you

need

depends

on

how

and

when

you

use

a

key.

14

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

v

Operational

key

form

is

used

at

the

local

system.

Many

callable

services

can

use

an

operational

key

form.

The

key

token

build,

key

generate,

key

import,

data

key

import,

clear

key

import,

multiple

clear

key

import,

secure

key

import,

and

multiple

secure

key

import

callable

services

can

create

an

operational

key

form.

v

Exportable

key

form

is

transported

to

another

cryptographic

system.

It

can

only

be

passed

to

another

system.

The

ICSF

callable

services

cannot

use

it

for

cryptographic

functions.

The

key

generate,

data

key

export,

and

key

export

callable

services

produce

the

exportable

key

form.

v

Importable

key

form

can

be

transformed

into

operational

form

on

the

local

system.

The

key

import

callable

service

(CSNBKIM)

and

the

Data

key

import

callable

service

(CSNBDKM)

can

use

an

importable

key

form.

Only

the

key

generate

callable

service

(CSNBKGN)

can

create

an

importable

key

form.

The

secure

key

import

(CSNBSKI)

and

multiple

secure

key

import

(CSNBSKM)

callable

services

can

convert

a

clear

key

into

an

importable

key

form.

For

more

information

about

the

key

types,

see

either

“Functions

of

the

DES

Cryptographic

Keys”

on

page

13

or

the

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide.

See

“Key

Forms

and

Types

Used

in

the

Key

Generate

Callable

Service”

on

page

37

for

more

information

about

key

form.

DES

Key

Flow

The

conversion

from

one

key

to

another

key

is

considered

to

be

a

one-way

flow.

An

operational

key

form

cannot

be

turned

back

into

an

importable

key

form.

An

exportable

key

form

cannot

be

turned

back

into

an

operational

or

importable

key

form.

The

flow

of

ICSF

key

forms

can

only

be

in

one

direction:

IMPORTABLE

—to→

OPERATIONAL

—to→

EXPORTABLE

Key

Token

A

key

token

is

a

64-byte

field

composed

of

a

key

value

and

control

information.

The

control

information

is

assigned

to

the

key

when

ICSF

creates

the

key.

The

key

token

can

be

either

an

internal

key

token,

an

external

key

token,

or

a

null

key

token.

Through

the

use

of

key

tokens,

ICSF

can

do

the

following:

v

Support

continuous

operation

across

a

master

key

change

v

Control

use

of

keys

in

cryptographic

services

If

the

first

byte

of

the

key

identifier

is

X'01',

the

key

identifier

is

interpreted

as

an

internal

key

token.

An

internal

key

token

is

a

token

that

can

be

used

only

on

the

ICSF

system

that

created

it

(or

another

ICSF

system

with

the

same

host

master

key).

It

contains

a

key

that

is

encrypted

under

the

master

key.

An

application

obtains

an

internal

key

token

by

using

one

of

the

callable

services

such

as

those

listed

below.

The

callable

services

are

described

in

detail

in

Chapter

4,

“Managing

DES

Cryptographic

Keys.”

v

Key

generate

v

Key

import

v

Secure

key

import

v

Multiple

secure

key

import

v

Clear

key

import

v

Multiple

clear

key

import

v

Key

record

read

v

Key

token

build

v

Data

Key

Import

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

15

The

master

key

may

be

dynamically

changed

between

the

time

that

you

invoke

a

service,

such

as

the

key

import

callable

service

to

obtain

a

key

token,

and

the

time

that

you

pass

the

key

token

to

the

encipher

callable

service.

When

a

change

to

the

master

key

occurs,

ICSF

reenciphers

the

caller’s

key

from

under

the

old

master

key

to

under

the

new

master

key.

A

Return

Code

of

0

with

a

reason

code

of

10000

notifies

you

that

ICSF

reenciphered

the

key.

For

information

on

reenciphering

the

CKDS

or

the

PKDS,

see

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide.

Attention:

If

an

internal

key

token

held

in

user

storage

is

not

used

while

the

master

key

is

changed

twice,

the

internal

key

token

is

no

longer

usable.

(See

“Other

Considerations”

on

page

19

for

additional

information.)

For

debugging

information,

see

Appendix

B,

“Key

Token

Formats”

for

the

format

of

an

internal

key

token.

If

the

first

byte

of

the

key

identifier

is

X'02',

the

key

identifier

is

interpreted

as

an

external

key

token.

By

using

the

external

key

token,

you

can

exchange

keys

between

systems.

It

contains

a

key

that

is

encrypted

under

a

key-encrypting

key.

An

external

key

token

contains

an

encrypted

key

and

control

information

to

allow

compatible

cryptographic

systems

to:

v

Have

a

standard

method

of

exchanging

keys

v

Control

the

use

of

keys

through

the

control

vector

v

Merge

the

key

with

other

information

needed

to

use

the

key

An

application

obtains

the

external

key

token

by

using

one

of

the

callable

services

such

as

those

listed

below.

They

are

described

in

detail

in

Chapter

4,

“Managing

DES

Cryptographic

Keys.”

v

Key

generate

v

Key

export

v

Data

key

export

For

debugging

information,

see

Appendix

B,

“Key

Token

Formats”

for

the

format

of

an

external

key

token.

If

the

first

byte

of

the

key

identifier

is

X'00',

the

key

identifier

is

interpreted

as

a

null

key

token.

Use

the

null

key

token

to

import

a

key

from

a

system

that

cannot

produce

external

key

tokens.

That

is,

if

you

have

an

8-

to

16-byte

key

that

has

been

encrypted

under

an

importer

key,

but

is

not

imbedded

within

a

token,

place

the

encrypted

key

in

a

null

key

token

and

then

invoke

the

key

import

callable

service

to

get

the

key

in

operational

form.

For

debugging

information,

see

Appendix

B,

“Key

Token

Formats”

for

the

format

of

a

null

key

token.

Control

Vector

A

unique

control

vector

exists

for

each

type

of

key

the

master

key

enciphers.

The

cryptographic

feature

exclusive

ORs

the

master

key

with

the

control

vector

associated

with

the

type

of

key

the

master

key

will

encipher.

The

control

vector

ensures

that

an

operational

key

is

only

used

in

cryptographic

functions

for

which

it

is

intended.

For

example,

the

control

vector

for

an

input

PIN-encrypting

key

ensures

that

such

a

key

can

be

used

only

in

the

Encrypted

PIN

translate

and

Encrypted

PIN

verify

functions.

16

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Types

of

Keys

The

cryptographic

keys

are

grouped

into

the

following

categories

based

on

the

functions

they

perform.

v

DES

master

key.

The

DES

master

key

is

a

double-length

(128

bits)

key

used

only

to

encrypt

other

keys.

The

ICSF

administrator

installs

and

changes

the

DES

master

key

(see

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide

for

details).

On

S/390

Enterprise

Servers

and

S/390

Multiprise

and

the

IBM

Eserver

zSeries,

the

administrator

does

this

by

using

the

Clear

Master

Key

Entry

panels

or

the

optional

Trusted

Key

Entry

(TKE)

workstation.

The

master

key

always

remains

in

a

secure

area

in

the

cryptographic

facility.

It

is

used

only

to

encipher

and

decipher

keys.

Other

keys

also

encipher

and

decipher

keys

and

are

mostly

used

to

protect

cryptographic

keys

you

transmit

on

external

links.

These

keys,

while

on

the

system,

are

also

encrypted

under

the

master

key.

v

Symmetric

keys

master

key

(SYM-MK).

The

SYM-MK

master

key

is

a

double-length

(128-bit)

key

that

is

used

only

to

encrypt

other

DES

keys

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

The

ICSF

administrator

installs

and

changes

the

SYM-MK

master

key

using

either

the

ICSF

panels

or

the

optional

Trusted

Key

Entry

(TKE)

workstation.

The

master

key

always

remains

within

the

secure

boundary

of

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

As

with

the

DES

master

key,

the

SYM-MK

master

key

is

used

only

to

encipher

and

decipher

keys

that

are

in

operational

form.

v

Data-encrypting

keys.

The

data-encrypting

keys

are

single-length

(64-bit),

double-length

(128-bit),

or

triple-length

(192-bit)

keys

that

protect

data

privacy.

Single-length

data-encrypting

keys

can

also

be

used

to

encode

and

decode

data

and

authenticate

data

sent

in

messages.

If

you

intend

to

use

a

data-encrypting

key

for

an

extended

period,

you

can

store

it

in

the

CKDS

so

that

it

will

be

reenciphered

if

the

master

key

is

changed.

You

can

use

single-length

data-encrypting

keys

in

the

encipher,

decipher,

encode,

and

decode

callable

services

to

manage

data

and

also

in

the

MAC

generation

and

MAC

verification

callable

services.

Double-length

and

triple-length

data-encrypting

keys

can

be

used

in

the

encipher

and

decipher

callable

services

for

more

secure

data

privacy.

DATAC

is

also

a

double-length

data

encrypting

key.

Single-length

data-encrypting

keys

can

be

exported

and

imported

using

the

ANSI

X9.17

key

management

callable

services.

v

Data-translation

keys.

The

data-translation

keys

are

single-length

(64

bits)

keys

used

for

the

ciphertext

translate

callable

service

as

either

the

input

or

the

output

data-transport

key.

Restriction:

Data-translation

keys

are

not

supported

on

the

IBM

Eserver

zSeries

990.

v

CIPHER

keys.

These

consist

of

CIPHER,

ENCIPHER

and

DECIPHER

keys.

They

are

single

and

double

length

keys

for

enciphering

and

deciphering

data.

Note:

Double

length

CIPHER,

ENCIPHER

and

DECIPHER

keys

are

only

supported

on

the

IBM

Eserver

zSeries

990.

v

MAC

keys.

The

MAC

keys

are

single-length

(64

bits

-

MAC

and

MACVER)

and

double-length

(128

bits

-

DATAM

and

DATAMV)

keys

used

for

the

callable

services

that

generate

and

verify

MACs.

With

a

PCI

X

Cryptographic

Coprocessor,

MAC

and

MACVER

can

be

single

or

double

length

keys.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

17

v

PIN

keys.

The

personal

identification

number

(PIN)

is

a

basis

for

verifying

the

identity

of

a

customer

across

financial

industry

networks.

PIN

keys

are

used

in

cryptographic

functions

to

generate,

translate,

and

verify

PINs,

and

protect

PIN

blocks.

They

are

all

double-length

(128

bits)

keys.

PIN

keys

are

used

in

the

Clear

PIN

generate,

Encrypted

PIN

verify,

and

Encrypted

PIN

translate

callable

services.

For

installations

that

do

not

support

double-length

128-bit

keys,

effective

single-length

keys

are

provided.

For

a

single-length

key,

the

left

key

half

of

the

key

equals

the

right

key

half.

“Managing

Personal

Authentication”

on

page

33

gives

an

overview

of

the

PIN

algorithms

you

need

to

know

to

write

your

own

application

programs.

v

Transport

keys

(or

key-encrypting

keys).

Transport

keys

are

also

known

as

key-encrypting

keys.

They

are

double-length

(128

bits)

keys

used

to

protect

keys

when

you

distribute

them

from

one

system

to

another.

There

are

several

types

of

transport

keys:

–

Exporter

or

OKEYXLAT

key-encrypting

key

protects

keys

of

any

type

that

are

sent

from

your

system

to

another

system.

The

exporter

key

at

the

originator

is

the

same

key

as

the

importer

key

of

the

receiver.

–

Importer

or

IKEYXLAT

key-encrypting

key

protects

keys

of

any

type

that

are

sent

from

another

system

to

your

system.

It

also

protects

keys

that

you

store

externally

in

a

file

that

you

can

import

to

your

system

later.

The

importer

key

at

the

receiver

is

the

same

key

as

the

exporter

key

at

the

originator.

–

NOCV

Importers

and

Exporters

are

key-encrypting

keys

used

to

transport

keys

with

systems

that

do

not

recognize

key-encrypting

key

variants.

There

are

some

requirements

and

restrictions

for

the

use

of

NOCV

key-encrypting

keys:

-

On

CCF

systems,

installation

of

NOCV

enablement

keys

on

the

CKDS

is

required.

-

On

PCIXCC

systems,

use

of

NOCV

IMPORTERs

and

EXPORTERs

is

controlled

by

access

control

points.

-

Only

programs

in

system

or

supervisor

state

can

use

the

NOCV

key-encrypting

key

in

the

form

of

tokens

in

callable

services.

Any

problem

program

may

use

NOCV

key-encrypting

key

with

labelnames

from

the

CKDS.

-

NOCV

key-encrypting

key

on

the

CKDS

should

be

protected

by

RACF.

-

NOCV

key-encrypting

key

can

be

used

to

encrypt

single

or

double

length

keys

with

standard

CVs

for

key

types

DATA,

DATAC,

DATAM

,DATAMV,

DATAXLAT,

EXPORTER,

IKEYXLAT,

IMPORTER,

IPINENC,

single-length

MAC,

single-length

MACVER,

OKEYXLAT,

OPINENC,

PINGEN

and

PINVER

.

-

Starting

with

HCR770B

and

PCIXCCs,

NOCV

key-encrypting

keys

can

be

used

with

triple

length

DATA

keys.

Since

DATA

keys

have

0

CVs,

processing

will

be

the

same

as

if

the

key-encrypting

keys

are

standard

key-encrypting

keys

(not

the

NOCV

key-encrypting

key).

Note:

Transport

keys

replace

local,

remote,

and

cross

keys

used

by

PCF.

You

use

key-encrypting

keys

to

protect

keys

that

are

transported

using

any

of

the

following

services:

data

key

export,

key

export,

key

import,

clear

key

import,

multiple

clear

key

import,

secure

key

import,

multiple

secure

key

import,

key

generate,

and

key

translate.

18

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

For

installations

that

do

not

support

double-length

key-encrypting

keys,

effective

single-length

keys

are

provided.

For

an

effective

single-length

key,

the

clear

key

value

of

the

left

key

half

equals

the

clear

key

value

of

the

right

key

half.

v

ANSI

X9.17

key-encrypting

keys.

These

bidirectional

key-encrypting

keys

are

used

exclusively

in

ANSI

X9.17

key

management.

They

are

either

single-length

(64

bits)

or

double-length

(128

bits)

keys

used

to

protect

keys

when

you

distribute

them

from

one

system

to

another

according

to

the

ANSI

X9.17

protocol.

Note:

ANSI

X9.17

keys

are

not

supported

on

an

IBM

Eserver

zSeries

990.

v

Key-Generating

Keys.

Key-generating

keys

are

double-length

keys

used

to

derive

unique-key-per-transaction

keys.

Other

Considerations

The

following

are

considerations

for

keys

held

in

the

cryptographic

key

data

set

(CKDS)

or

by

applications.

v

ICSF

ensures

that

keys

held

in

the

CKDS

are

reenciphered

during

the

master

key

change.

Keys

with

a

long

life

span

(more

than

one

master

key

change)

should

be

stored

in

the

CKDS.

v

Keys

enciphered

under

the

host

DES

master

key

and

held

by

applications

are

automatically

reenciphered

under

a

new

master

key

as

they

are

used.

Keys

with

a

short

life

span

(for

example,

VTAM

SLE

data

keys)

do

not

need

to

be

stored

in

the

CKDS.

However,

if

you

have

keys

with

a

long

life

span

and

you

do

not

store

them

in

the

CKDS,

they

should

be

enciphered

under

the

importer

key-encrypting

key.

The

importer

key-encrypting

key

itself

should

be

stored

in

the

CKDS.

Table

2

describes

the

key

types.

You

can

build,

generate,

import,

or

export

key

types

DECIPHER,

ENCIPHER,

CIPHER,

CVARDEC,

and

CVARPINE

on

a

CCF

system,

but

they

are

not

usable

on

CCF

systems.They

will

be

usable

by

ICSF

if

running

on

a

z990

or

z890

with

a

PCIXCC.

Table

2.

Descriptions

of

Key

Types

Key

Type

Meaning

AKEK

Single-length

or

double-length,

bidirectional

key-encrypting

key

used

for

the

ANSI

X9.17

key

management

callable

services.

AKEK

keys

are

not

supported

on

a

z990

or

z890.

CIPHER

Used

only

to

encrypt

or

decrypt

data.

CIPHER

keys

cannot

be

used

in

the

Encipher

(CSNBENC)

or

Decipher

(CSNBDEC)

callable

services.

This

is

a

single-length

key.

PCIXCC:

This

is

a

single

or

double

length

key

and

can

be

used

in

the

Encipher

or

Decipher

callable

services.

CVARDEC

The

TSS

Cryptographic

variable

decipher

verb

uses

a

CVARDEC

key

to

decrypt

plaintext

by

using

the

Cipher

Block

Chaining

(CBC)

method.

This

is

a

single-length

key.

CVARENC

Cryptographic

variable

encipher

service

uses

a

CVARENC

key

to

encrypt

plaintext

by

using

the

Cipher

Block

Chaining

(CBC)

method.

This

is

a

single-length

key.

CVARPINE

Used

to

encrypt

a

PIN

value

for

decryption

in

a

PIN-printing

application.

This

is

a

single-length

key.

CVARXCVL

Used

to

encrypt

special

control

values

in

DES

key

management.

This

is

a

single-length

key.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

19

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|

Table

2.

Descriptions

of

Key

Types

(continued)

Key

Type

Meaning

CVARXCVR

Used

to

encrypt

special

control

values

in

DES

key

management.

This

is

a

single-length

key.

DATA

Data

encrypting

key.

Use

this

single-length,

double-length,

or

triple-length

key

to

encipher

and

decipher

data.

DATAC

Used

to

specify

a

DATA-class

key

that

will

perform

in

the

Encipher

and

Decipher

callable

services,

but

not

in

the

MAC

Generate

or

MAC

Verify

callable

services.

This

is

a

double-length

key.

Only

available

with

a

PCI

X

Cryptographic

Coprocessor.

DATAM

Double-length

MAC

generation

key.

Used

to

generate

a

message

authentication

code.

DATAMV

Double-length

MAC

verification

key.

Used

to

verify

a

message

authentication

code.

DATAXLAT

Data

translation

key.

Use

this

single-length

key

to

reencipher

text

from

one

DATA

key

to

another.

DATAXLAT

keys

are

not

supported

on

a

z990

or

z890.

DECIPHER

Used

only

to

decrypt

data.

DECIPHER

keys

cannot

be

used

in

the

Encipher

(CSNBENC)

callable

service.

This

is

a

single-length

key.

PCIXCC:

This

is

a

single

or

double

length

key

and

can

be

used

in

the

Decipher

callable

service.

DKYGENKY

Used

to

generate

a

diversified

key

based

on

the

key-generating

key.

This

is

a

double-length

key.

ENCIPHER

Used

only

to

encrypt

data.

ENCIPHER

keys

cannot

be

used

in

the

Decipher

(CSNBDEC)

callable

service.

This

is

a

single-length

key.

PCIXCC:

This

is

a

single

or

double

length

key

and

can

be

used

in

the

Encipher

callable

service.

EXPORTER

Exporter

key-encrypting

key.

Use

this

double-length

key

to

convert

a

key

from

the

operational

form

into

exportable

form.

IKEYXLAT

Used

to

decrypt

an

input

key

in

the

Key

Translate

callable

service.

This

is

a

double-length

key.

IMPORTER

Importer

key-encrypting

key.

Use

this

double-length

key

to

convert

a

key

from

importable

form

into

operational

form.

IMP-PKA

Double-length

limited-authority

importer

key

used

to

encrypt

PKA

private

key

values

in

PKA

external

tokens.

IPINENC

Double-length

input

PIN-encrypting

key.

PIN

blocks

received

from

other

nodes

or

automatic

teller

machine

(ATM)

terminals

are

encrypted

under

this

type

of

key.

These

encrypted

PIN

blocks

are

the

input

to

the

Encrypted

PIN

translate,

Encrypted

PIN

verify,

and

Clear

PIN

Generate

Alternate

services.

If

an

encrypted

PIN

block

is

contained

in

the

output

of

the

SET

Block

Decompose

service,

it

may

be

encrypted

by

an

IPINENC

key.

KEYGENKY

Used

to

generate

a

key

based

on

the

key-generating

key.

This

is

a

double-length

key.

20

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

Table

2.

Descriptions

of

Key

Types

(continued)

Key

Type

Meaning

MAC

MAC

generation

key.

Use

this

single-length

key

to

generate

a

message

authentication

code.

This

is

a

single

or

double

length

key

on

a

PCI

X

Cryptographic

Coprocessor.

MACVER

MAC

verification

key.

Use

this

single-length

key

to

verify

a

message

authentication

code.

This

is

a

single

or

double

length

key

on

a

PCI

X

Cryptographic

Coprocessor.

OKEYXLAT

Used

to

encrypt

an

output

key

in

the

Key

Translate

callable

service.

This

is

a

double-length

key.

OPINENC

Output

PIN-encrypting

key.

Use

this

double-length

output

key

to

translate

PINs.

The

output

PIN

blocks

from

the

Encrypted

PIN

translate,

Encrypted

PIN

generate,

and

Clear

PIN

generate

alternate

callable

services

are

encrypted

under

this

type

of

key.

If

an

encrypted

PIN

block

is

contained

in

the

output

of

the

SET

Block

Decompose

service,

it

may

be

encrypted

by

an

OPINENC

key.

PINGEN

PIN

generation

key.

Use

this

double-length

key

to

generate

PINs.

PINVER

PIN

verification

key.

Use

this

double-length

key

to

verify

PINs.

SECMSG

Used

to

encrypt

PINs

or

keys

in

a

secure

message.

This

is

a

double-length

key.

Clear

Keys

A

clear

key

is

the

base

value

of

a

key,

and

is

not

encrypted

under

another

key.

Encrypted

keys

are

keys

whose

base

value

has

been

encrypted

under

another

key.

There

are

four

callable

services

you

can

use

to

convert

a

clear

key

to

an

encrypted

key:

v

To

convert

a

clear

key

to

an

encrypted

data

key

in

operational

form,

use

either

the

Clear

Key

Import

callable

service

or

the

Multiple

Clear

Key

Import

callable

service.

v

To

convert

a

clear

key

to

an

encrypted

key

of

any

type,

in

operational

or

importable

form,

use

either

the

Secure

Key

Import

callable

service

or

the

Multiple

Secure

Key

Import

callable

service.

Note:

The

Secure

Key

Import

and

Multiple

Secure

Key

Import

callable

services

can

only

execute

in

special

secure

mode.

Generating

and

Managing

DES

Keys

Using

ICSF,

you

can

generate

keys

using

either

the

key

generator

utility

program

or

the

key

generate

callable

service.

The

dynamic

CKDS

update

callable

services

allow

applications

to

directly

manipulate

the

CKDS.

ICSF

provides

callable

services

that

support

DES

key

management

as

defined

by

the

IBM

Common

Cryptographic

Architecture

(CCA)

and

by

the

ANSI

X9.17

standard.

CDMF

also

supports

such

DES

key

management.

The

next

few

sections

describe

the

key

generating

and

management

options

ICSF

provides.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

21

Key

Generator

Utility

Program

The

key

generator

utility

program

generates

data,

data-translation,

MAC,

PIN,

and

key-encrypting

keys,

and

enciphers

each

type

of

key

under

a

specific

master

key

variant.

After

the

KGUP

generates

a

key,

it

stores

it

in

the

cryptographic

key

data

set

(CKDS).

Note:

If

you

specify

CLEAR,

KGUP

uses

the

random

number

generate

and

secure

key

import

callable

services

rather

than

the

key

generate

service.

You

can

access

KGUP

using

ICSF

panels.

The

KGUP

path

of

these

panels

helps

you

create

the

JCL

control

statements

to

control

the

key

generator

utility

program.

When

you

want

to

generate

a

key,

you

can

enter

the

ADD

control

statement

and

information,

such

as

the

key

type

on

the

panels.

For

a

detailed

description

of

the

key

generator

utility

program

and

how

to

use

it

to

generate

keys,

see

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide.

Common

Cryptographic

Architecture

DES

Key

Management

Services

ICSF

provides

callable

services

that

support

CCA

key

management

for

DES

keys.

Clear

Key

Import

Callable

Service

This

service

imports

a

clear

DATA

key

that

is

used

to

encipher

or

decipher

data.

It

accepts

a

clear

key

and

enciphers

the

key

under

the

host

master

key,

returning

an

encrypted

DATA

key

in

operational

form

in

an

internal

key

token.

Control

Vector

Generate

Callable

Service

The

control

vector

generate

callable

service

builds

a

control

vector

from

keywords

specified

by

the

key_type

and

rule_array

parameters.

Control

Vector

Translate

Callable

Service

The

control

vector

translate

callable

service

changes

the

control

vector

used

to

encipher

an

external

key.

Use

of

this

service

requires

the

optional

PCI

Cryptographic

Coprocessor.

Cryptographic

Variable

Encipher

Callable

Service

The

cryptographic

variable

encipher

callable

service

uses

a

CVARENC

key

to

encrypt

plaintext

by

using

the

Cipher

Block

Chaining

(CBC)

method.

You

can

use

this

service

to

prepare

a

mask

array

for

the

control

vector

translate

service.

The

plaintext

must

be

a

multiple

of

eight

bytes

in

length.

Data

Key

Export

Callable

Service

This

service

reenciphers

a

DATA

key

from

encryption

under

the

master

key

to

encryption

under

an

exporter

key-encrypting

key,

making

it

suitable

for

export

to

another

system.

Data

Key

Import

Callable

Service

This

service

imports

an

encrypted

source

DES

single-length

or

double-length

DATA

key

and

creates

or

updates

a

target

internal

key

token

with

the

master

key

enciphered

source

key.

Diversified

Key

Generate

Callable

Service

The

diversified

key

generate

service

generates

a

key

based

on

the

key-generating

key,

the

processing

method,

and

the

parameter

supplied.

The

control

vector

of

the

key-generating

key

also

determines

the

type

of

target

key

that

can

be

generated.

22

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Key

Export

Callable

Service

This

service

reenciphers

any

type

of

key

(except

an

AKEK

or

IMP-PKA

key)

from

encryption

under

a

master

key

variant

to

encryption

under

the

same

variant

of

an

exporter

key-encrypting

key,

making

it

suitable

for

export

to

another

system.

Key

Generate

Callable

Service

The

key

generate

callable

service

generates

data,

data-translation,

MAC,

PIN,

and

key-encrypting

keys.

It

generates

a

single

key

or

a

pair

of

keys.

Unlike

the

key

generator

utility

program,

the

key

generate

service

does

not

store

the

keys

in

the

CKDS

where

they

can

be

saved

and

maintained.

The

key

generate

callable

service

returns

the

key

to

the

application

program

that

called

it.

The

application

program

can

then

use

a

dynamic

CKDS

update

service

to

store

the

key

in

the

CKDS.

When

you

call

the

key

generate

callable

service,

include

parameters

specifying

information

about

the

key

you

want

generated.

Because

the

form

of

the

key

restricts

its

use,

you

need

to

choose

the

form

you

want

the

generated

key

to

have.

You

can

use

the

key_form

parameter

to

specify

the

form.

The

possible

forms

are:

v

Operational,

if

the

key

is

used

for

cryptographic

operations

on

the

local

system.

Operational

keys

are

protected

by

master

key

variants

and

can

be

stored

in

the

CKDS

or

held

by

applications

in

internal

key

tokens.

v

Importable,

if

the

key

is

stored

with

a

file

or

sent

to

another

system.

Importable

keys

are

protected

by

importer

key-encrypting

keys.

v

Exportable,

if

the

key

is

transported

or

exported

to

another

system

and

imported

there

for

use.

Exportable

keys

are

protected

by

exporter

key-encrypting

keys

and

cannot

be

used

by

ICSF

callable

service.

Importable

and

exportable

keys

are

contained

in

external

key

tokens.

For

more

information

on

key

tokens,

refer

to

“Key

Token”

on

page

15.

Key

Import

Callable

Service

This

service

reenciphers

a

key

(except

an

AKEK)

from

encryption

under

an

importer

key-encrypting

key

to

encryption

under

the

master

key.

The

reenciphered

key

is

in

the

operational

form.

Key

Part

Import

Callable

Service

This

service

combines

clear

key

parts

of

any

key

type

and

returns

the

combined

key

value

either

in

an

internal

token

or

as

an

update

to

the

CKDS.

Key

Test

Callable

Service

This

service

generates

or

verifies

a

secure

cryptographic

verification

pattern

for

keys.

A

parameter

indicates

the

action

you

want

to

perform.

The

key

to

test

can

be

in

the

clear

or

encrypted

under

a

master

key.

The

key

test

extended

callable

service

works

on

keys

encrypted

under

a

KEK.

For

generating

a

verification

pattern,

the

service

creates

and

returns

a

random

number

with

the

verification

pattern.

For

verifying

a

pattern,

you

supply

the

random

number

from

the

call

to

the

service

that

generated

the

pattern.

Key

Token

Build

Callable

Service

The

key

token

build

callable

service

is

a

utility

you

can

use

to

create

skeleton

key

tokens

for

AKEKs

as

input

to

the

key

generate

or

key

part

import

callable

service.

You

can

also

use

this

service

to

build

CCA

key

tokens

for

all

key

types

ICSF

supports

or

to

update

the

data

encryption

standard

bits

in

a

supplied

DATA,

IMPORTER,

or

EXPORTER

token.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

23

Key

Translate

Callable

Service

This

service

uses

one

key-encrypting

key

to

decipher

an

input

key

and

then

enciphers

this

key

using

another

key-encrypting

key

within

the

secure

environment.

Multiple

Clear

Key

Import

Callable

Service

This

service

imports

a

single-length,

double-length,

or

triple-length

clear

DATA

key

that

is

used

to

encipher

or

decipher

data.

It

accepts

a

clear

key

and

enciphers

the

key

under

the

host

master

key,

returning

an

encrypted

DATA

key

in

operational

form

in

an

internal

key

token.

Multiple

Secure

Key

Import

Callable

Service

This

service

enciphers

a

single-length,

double-length,

or

triple-length

clear

key

under

the

host

master

key

or

under

an

importer

key-encrypting

key.

The

clear

key

can

then

be

imported

as

any

of

the

possible

key

types.

Triple-length

keys

can

only

be

imported

as

DATA

keys.

This

service

can

be

used

only

when

ICSF

is

in

special

secure

mode

and

does

not

allow

the

import

of

an

AKEK.

Prohibit

Export

Callable

Service

This

service

modifies

an

operational

key

so

that

it

cannot

be

exported.

This

callable

service

does

not

support

NOCV

key-encrypting

keys,

DATA,

MAC,

or

MACVER

keys

with

standard

control

vectors

(for

example,

control

vectors

supported

by

the

Cryptographic

Coprocessor

Feature).

Prohibit

Export

Extended

Callable

Service

This

service

updates

the

control

vector

in

the

external

token

of

a

key

in

exportable

form

so

that

the

receiver

node

can

import

the

key

but

not

export

it.

When

the

key

import

callable

service

imports

such

a

token,

it

marks

the

token

as

non-exportable.

The

key

export

callable

service

does

not

allow

export

of

this

token.

Random

Number

Generate

Callable

Service

The

random

number

generate

callable

service

creates

a

random

number

value

to

use

in

generating

a

key.

The

callable

service

uses

cryptographic

hardware

to

generate

a

random

number

for

use

in

encryption.

Secure

Key

Import

Callable

Service

This

service

enciphers

a

clear

key

under

the

host

master

key

or

under

an

importer

key-encrypting

key.

The

clear

key

can

then

be

imported

as

any

of

the

possible

key

types.

This

service

can

be

used

only

when

ICSF

is

in

special

secure

mode

and

does

not

allow

the

import

of

an

AKEK.

Note:

The

PKA

encrypt,

PKA

decrypt,

symmetric

key

generate,

symmetric

key

import,

and

symmetric

key

export

callable

services

provide

a

way

of

distributing

DES

DATA

keys

protected

under

a

PKA

key.

See

Chapter

3,

“Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services,”

on

page

49

for

additional

information.

Symmetric

Key

Export

Callable

Service

This

service

transfers

an

application-supplied

symmetric

key

(a

DATA

key)

from

encryption

under

the

DES

host

master

key

to

encryption

under

an

application-supplied

RSA

public

key.

(There

are

two

types

of

PKA

public

key

tokens:

RSA

and

DSS.

This

callable

service

can

use

only

the

RSA

type.)

The

application-supplied

DATA

key

must

be

an

ICSF

DES

internal

key

token

or

the

label

of

such

a

token

in

the

CKDS.

The

symmetric

key

import

callable

service

can

import

the

PKA-encrypted

form

at

the

receiving

node.

24

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Symmetric

Key

Generate

Callable

Service

This

service

generates

a

symmetric

key

(that

is,

a

DATA

key)

and

returns

it

encrypted

using

DES

and

encrypted

under

an

RSA

public

key

token.

(There

are

two

types

of

PKA

public

key

tokens:

RSA

and

DSS.

This

callable

service

can

use

only

the

RSA

type.)

The

DES-encrypted

key

can

be

an

internal

token

encrypted

under

a

host

DES

master

key,

or

an

external

form

encrypted

under

a

KEK.

(You

can

use

the

symmetric

key

import

callable

service

to

import

the

PKA-encrypted

form.)

Symmetric

Key

Import

Callable

Service

This

service

imports

a

symmetric

(DES)

DATA

key

enciphered

under

an

RSA

public

key.

(There

are

two

types

of

PKA

private

key

tokens:

RSA

and

DSS.

This

callable

service

can

use

only

the

RSA

type.)

This

service

returns

the

key

in

operational

form,

enciphered

under

the

DES

master

key.

Transform

CDMF

Key

Callable

Service

Restriction:

This

service

is

not

available

on

a

z990

or

z890.

It

changes

a

CDMF

DATA

key

in

an

internal

or

external

token

to

a

transformed

shortened

DES

key.

It

ignores

the

input

internal

DES

token

markings

and

marks

the

output

internal

token

for

use

in

the

DES.

You

need

to

use

this

service

only

if

you

have

a

CDMF

or

DES-CDMF

system

that

needs

to

send

CDMF-encrypted

data

to

a

DES-only

system.

The

CDMF

or

DES-CDMF

system

must

generate

the

key,

shorten

it,

and

pass

it

to

the

DES-only

system.

If

the

input

DATA

key

is

in

an

external

token,

the

operational

KEK

must

be

marked

as

DES

or

SYS-ENC.

The

service

fails

for

an

external

DATA

key

encrypted

under

a

KEK

that

is

marked

as

CDMF.

User

Derived

Key

Callable

Service

Restriction:

This

service

is

not

available

on

a

z990

or

z890.

This

service

generates

a

single-length

or

double-length

MAC

key,

or

updates

an

existing

user-derived

key.

A

single-length

MAC

key

can

be

used

to

compute

a

Message

Authentication

Code

(MAC)

following

the

ANSI

X9.9,

ANSI

X9.19,

or

the

Europay,

MasterCard,

Visa

(EMV)

Specification

MAC

processing

rules.

A

double-length

MAC

key

can

be

used

to

compute

a

MAC

following

the

ANSI

X9.19

optional

double

MAC

processing

rule

or

the

EMV

rules.

Callable

Services

for

Dynamic

CKDS

Update

ICSF

provides

the

dynamic

CKDS

update

services

that

allow

applications

to

directly

manipulate

both

the

DASD

copy

and

in-storage

copy

of

the

current

CKDS.

Note:

Applications

using

the

dynamic

CKDS

update

callable

services

can

run

concurrently

with

other

operations

that

affect

the

CKDS,

such

as

KGUP,

CKDS

conversion,

REFRESH,

and

dynamic

master

key

change.

An

operation

can

fail

if

it

needs

exclusive

or

shared

access

to

the

same

DASD

copy

of

the

CKDS

that

is

held

shared

or

exclusive

by

another

operation.

ICSF

provides

serialization

to

prevent

data

loss

from

attempts

at

concurrent

access,

but

your

installation

is

responsible

for

the

effective

management

of

concurrent

use

of

competing

operations.

Consult

your

system

administrator

or

system

programmer

for

your

installation

guidelines.

The

syntax

of

the

key

record

create,

key

record

read,

and

key

record

write

services

is

identical

with

the

same

services

provided

by

the

Transaction

Security

System

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

25

|

|

security

application

programming

interface.

Key

management

applications

that

use

these

common

interface

verbs

can

run

on

both

systems

without

change.

Key

Record

Create

Callable

Service

This

service

accepts

a

key

label

and

creates

a

null

key

record

in

both

the

DASD

copy

and

in-storage

copy

of

the

CKDS.

The

record

contains

a

key

token

set

to

binary

zeros

and

is

identified

by

the

key

label

passed

in

the

call

statement.

The

key

label

must

be

unique.

Callers

must

be

in

task

mode

and

cannot

be

in

cross

memory

mode.

Before

you

can

update

a

key

record

using

either

the

dynamic

CKDS

update

services

or

KGUP,

that

record

must

already

exist

in

the

CKDS.

You

can

use

either

the

key

record

create

service,

KGUP,

or

your

key

entry

hardware

to

create

the

initial

record

in

the

CKDS.

Key

Record

Delete

Callable

Service

This

service

accepts

a

unique

key

label

and

deletes

the

associated

key

record

from

both

the

in-storage

and

DASD

copies

of

the

CKDS.

This

service

deletes

the

entire

record,

including

the

key

label

from

the

CKDS.

Callers

must

be

in

task

mode

and

cannot

be

in

cross

memory

mode

to

execute

this

service.

Key

Record

Read

Callable

Service

This

service

copies

an

internal

key

token

from

the

in-storage

CKDS

to

the

application

storage,

where

it

may

be

used

directly

in

other

cryptographic

services.

Key

labels

specified

with

this

service

must

be

unique.

Key

Record

Write

Callable

Service

This

service

accepts

an

internal

key

token

and

a

label

and

writes

the

key

token

to

the

CKDS

record

identified

by

the

key

label.

The

key

label

must

be

unique.

Application

calls

to

this

service

write

the

key

token

to

both

the

DASD

copy

and

in-storage

copy

of

the

CKDS,

so

the

record

must

already

exist

in

both

copies

of

the

CKDS.

Callers

must

be

in

task

mode

and

cannot

be

in

cross

memory

mode.

Callable

Services

that

Support

Secure

Sockets

Layer

(SSL)

The

Secure

Sockets

Layer

(SSL)

protocol,

developed

by

Netscape

Development

Corporation,

provides

communications

privacy

over

the

Internet.

Client/server

applications

can

use

the

SSL

protocol

to

provide

secure

communications

and

prevent

eavesdropping,

tampering,

or

message

forgery.

ICSF

provides

callable

services

that

support

the

RSA-encryption

and

RSA-decryption

of

PKCS

1.2-formatted

symmetric

key

data

to

produce

symmetric

session

keys.

These

session

keys

can

then

be

used

to

establish

an

SSL

session

between

the

sender

and

receiver.

PKA

Decrypt

Callable

Service

The

PKA

decrypt

callable

service

uses

the

corresponding

private

RSA

key

to

unwrap

the

RSA-encrypted

key

and

deformat

the

key

value.

This

service

then

returns

the

clear

key

value

to

the

application.

PKA

Encrypt

Callable

Service

The

PKA

encrypt

callable

service

encrypts

a

supplied

clear

key

value

under

an

RSA

public

key.

Currently,

the

supplied

key

can

be

formatted

using

the

PKCS

1.2

or

ZERO-PAD

methods

prior

to

encryption.

26

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

System

Encryption

Algorithm

Note:

This

section

only

applies

to

systems

with

the

Cryptographic

Coprocessor

Feature.

ICSF

uses

either

the

DES

algorithm

or

the

Commercial

Data

Masking

Facility

(CDMF)

to

encipher

and

decipher

data.

The

CDMF

defines

a

scrambling

technique

for

data

confidentiality.

It

is

intended

to

be

a

substitute

for

DES

for

those

customers

who

have

been

previously

prohibited

from

receiving

IBM

products

that

support

DES

data

confidentiality

services.

The

CDMF

data

confidentiality

algorithm

is

composed

of

two

processes:

a

key

shortening

process

and

a

standard

DES

process

to

encipher

and

decipher

data.

Your

system

can

be

one

of

the

following:

v

DES

v

CDMF

v

DES-CDMF

A

DES

system

protects

data

using

a

single-length,

double-length,

or

triple-length

DES

data-encrypting

key

and

the

DES

algorithm.

A

CDMF

system

protects

data

using

a

single-length

DES

data-encrypting

key

and

the

CDMF.

You

input

a

standard

single-length

data-encrypting

key

to

the

encipher

(CSNBENC)

and

decipher

(CSNBDEC)

callable

services.

The

single-length

data-encrypting

key

that

is

intended

to

be

passed

to

the

CDMF

is

called

a

CDMF

key.

Cryptographically,

it

is

indistinguishable

from

a

DES

data-encrypting

key.

Before

the

key

is

used

to

encipher

or

decipher

data,

however,

the

Cryptographic

Coprocessor

Feature

hardware

cryptographically

shortens

the

key

as

part

of

the

CDMF

process.

This

transformed,

shortened

data-encrypting

key

can

be

used

only

in

the

DES.

(It

must

never

be

used

in

the

CDMF;

this

would

result

in

a

double

shortening

of

the

key.)

When

used

with

the

DES,

a

transformed,

shortened

data-encrypting

key

produces

results

identical

to

those

that

the

CDMF

would

produce

using

the

original

single-length

key.

A

DES-CDMF

system

protects

data

using

either

the

DES

or

the

CDMF.

The

default

is

DES.

ICSF

provides

functions

to

mark

internal

IMPORTER,

EXPORTER,

and

DATA

key

tokens

with

data

encryption

algorithm

bits.

IMPORTER

and

EXPORTER

KEKs

are

marked

when

they

are

installed

in

operational

form

in

ICSF.

Your

cryptographic

key

administrator

does

this.

(See

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide

for

details.)

Whenever

a

DATA

key

is

imported

or

generated

in

concert

with

a

marked

KEK,

this

marking

is

transferred

to

the

DATA

key

token,

unless

the

token

copying

function

of

the

callable

service

is

used

to

override

the

KEK

marking

with

the

marking

of

the

key

token

passed.

These

data

encryption

algorithm

bits

internally

drive

the

DES

or

CDMF

for

the

ICSF

encryption

services.

External

key

tokens

are

not

marked

with

these

data

encryption

algorithm

bits.

IMPORTER

and

EXPORTER

KEKs

can

have

data

encryption

algorithm

bit

markings

of

CDMF

(X'80'),

DES

(X'40'),

or

SYS-ENC

(X'00').

DATA

keys

generated

or

imported

with

marked

KEKs

will

also

be

marked.

A

CDMF-marked

KEK

will

transfer

a

data

encryption

algorithm

bit

marking

of

CDMF

(X'80')

to

the

DATA

key

token.

A

DES-marked

KEK

will

transfer

a

data

encryption

algorithm

bit

marking

of

DES

(X'00')

to

the

DATA

key

token.

A

SYS-ENC-marked

KEK

will

transfer

a

CDMF

(X'80')

marking

to

the

DATA

key

token

on

a

CDMF

system,

and

a

DES

(X'00')

marking

to

the

DATA

key

token

on

DES-CDMF

and

DES

systems.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

27

To

accomplish

token

copying

of

data

encryption

algorithm

marks,

a

valid

internal

token

of

the

same

key

type

must

be

provided

in

the

target

key

identifier

field

of

the

service.

The

token

must

have

the

proper

token

mark

to

be

copied.

Notes:

1.

For

the

multiple

secure

key

import

callable

service

the

token

markings

on

the

KEK

are

ignored.

In

this

case,

the

algorithm

choice

specified

in

the

rule

array

determines

the

markings

on

the

DATA

key.

2.

Propagation

of

data

encryption

algorithm

bits

and

token

copying

are

only

performed

when

the

ICSF

callable

service

is

performed

on

the

Cryptographic

Coprocessor

Feature.

The

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

do

not

perform

these

functions.

Table

3

summarizes

the

data

encryption

algorithm

bits

by

key

type,

and

the

algorithm

they

drive

in

the

ICSF

encryption

services.

Table

3.

Summary

of

Data

Encryption

Standard

Bits

Algorithm

Key

Type

Bits

CDMF

DATA

X'80'

KEK

X'80'

DES

DATA

X'00'

KEK

X'40'

System

Default

Algorithm

KEK

X'00'

For

PCF

users,

your

system

programmer

specifies

a

default

encryption

mode

of

DES

or

CDMF

when

installing

ICSF.

(See

z/OS

Cryptographic

Services

ICSF

System

Programmer’s

Guide

for

details.)

ANSI

X9.17

Key

Management

Services

Restriction:

ANSI

X9.17

keys

and

ANSI

key

management

services

are

not

supported

on

an

IBM

Eserver

zSeries

990.

The

ANSI

X9.17

key

management

standard

defines

a

process

for

protecting

and

exchanging

DES

keys.

The

ANSI

X9.17

standard

defines

methods

for

generating,

exchanging,

using,

storing,

and

destroying

these

keys.

ANSI

X9.17

keys

are

protected

by

the

processes

of

notarization

and

offsetting,

instead

of

control

vectors.

In

addition

to

providing

services

to

support

these

processes,

ICSF

also

defines

and

uses

an

optional

process

of

partial

notarization.

Offsetting

involves

exclusive-ORing

a

key-encrypting

key

with

a

counter.

The

counter,

a

56-bit

binary

number

that

is

associated

with

a

key-encrypting

key

and

contained

in

certain

ANSI

X9.17

messages,

prevents

either

a

replay

or

an

out-of-sequence

transmission

of

a

message.

When

the

associated

AKEK

is

first

used,

the

application

initializes

the

counter.

With

each

additional

use,

the

application

increments

the

counter.

Notarization

associates

the

identities

of

a

pair

of

communicating

parties

with

a

cryptographic

key.

The

notarization

process

cryptographically

combines

a

key

with

two

16-byte

quantities,

the

origin

identifier

and

the

destination

identifier,

to

produce

a

notarized

key.

The

notarization

process

is

completed

by

offsetting

the

AKEK

with

a

counter.

28

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

ICSF

makes

it

possible

to

divide

the

AKEK

notarization

process

into

two

steps.

In

the

first

step,

partial

notarization,

the

AKEK

is

cryptographically

combined

with

the

origin

and

destination

identifiers

and

returned

in

a

form

that

can

be

stored

in

the

CKDS

or

application

storage.

In

the

second

step,

the

partially

notarized

AKEK

is

exclusive

OR-ed

with

a

binary

counter

to

complete

the

notarization

process.

Partial

notarization

improves

performance

when

you

use

an

AKEK

for

many

cryptographic

service

messages,

each

with

a

different

counter.

For

details

of

the

partial

notarization

calculations,

refer

to

“ANSI

X9.17

Partial

Notarization

Method”

on

page

507.

ICSF

provides

the

following

callable

services

to

support

the

ANSI

X9.17

key

management

standard.

Except

where

noted,

these

callable

services

have

the

identical

syntax

as

the

Transaction

Security

System

verbs

of

the

same

name.

With

few

exceptions,

key

management

applications

that

use

these

common

callable

services,

or

verbs,

can

be

executed

on

either

system

without

change.

Internal

tokens

cannot

be

interchanged;

external

tokens

can

be.

Key

Generate

Callable

Service

Used

to

Generate

an

AKEK

The

key

generate

callable

service,

described

in

“Key

Generate

Callable

Service”

on

page

23,

can

also

be

used

to

generate

an

AKEK

in

the

operational

form.

It

generates

either

an

8-byte

or

16-byte

AKEK

and

places

it

in

a

skeleton

key

token

created

by

the

key

token

build

callable

service.

The

length

of

the

AKEK

is

determined

by

the

key

length

keyword

specified

when

building

the

key

token.

ANSI

X9.17

EDC

Generate

Callable

Service

This

service

generates

an

ANSI

X9.17

error

detection

code

on

an

arbitrary

length

string.

ANSI

X9.17

Key

Export

Callable

Service

This

service

uses

the

ANSI

X9.17

protocol

to

export

a

DATA

key

or

a

pair

of

DATA

keys,

with

or

without

an

AKEK.

It

also

provides

the

ability

to

convert

a

single

supplied

DATA

key

or

combine

two

supplied

DATA

keys

into

a

MAC

key.

ANSI

X9.17

Key

Import

Callable

Service

This

service

uses

the

ANSI

X9.17

protocol

to

import

a

DATA

key

or

a

pair

of

DATA

keys,

with

or

without

an

AKEK.

It

also

provides

the

ability

to

convert

a

single

supplied

DATA

key

or

combine

two

supplied

DATA

keys

into

a

MAC

key.

The

syntax

is

identical

to

the

Transaction

Security

System

verb,

with

the

following

exceptions:

v

Keys

cannot

be

imported

directly

into

the

CKDS.

ANSI

X9.17

Key

Translate

Callable

Service

This

service

translates

one

or

two

DATA

keys

or

an

AKEK

from

encryption

under

one

AKEK

to

encryption

under

another

AKEK,

using

the

ANSI

X9.17

protocol.

ANSI

X9.17

Transport

Key

Partial

Notarize

Callable

Service

This

service

preprocesses

or

partially

notarizes

an

AKEK

with

origin

and

destination

identifiers.

The

partially

notarized

key

is

supplied

to

the

ANSI

X9.17

key

export,

ANSI

X9.17

key

import,

or

ANSI

X9.17

key

translate

callable

service

to

complete

the

notarization

process.

The

syntax

is

identical

to

the

Transaction

Security

System

verb

except

that:

v

The

callable

service

does

not

update

the

CKDS.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

29

Enciphering

and

Deciphering

Data

The

encipher

and

decipher

callable

services

protect

data

off

the

host.

ICSF

protects

sensitive

data

from

disclosure

to

people

who

do

not

have

authority

to

access

it.

Using

algorithms

that

make

it

difficult

and

expensive

for

an

unauthorized

user

to

derive

the

original

clear

data

within

a

practical

time

period

assures

privacy.

To

protect

data,

ICSF

can

use

the

Data

Encryption

Standard

(DES)

algorithm

to

encipher

or

decipher

data

or

keys.

The

algorithm

is

documented

in

the

Federal

Information

Processing

Standard

#46.

You

can

use

the

encipher

and

decipher

callable

services

to

encipher

and

decipher

data

with

encrypted

keys.

On

CCF

systems,

ICSF

also

supports

the

CDMF

encryption

mode.

See

“System

Encryption

Algorithm”

on

page

27

for

more

information.

The

Symmetric

Key

Encipher

and

Symmetric

Key

Decipher

callable

services

are

used

to

encipher

and

decipher

data

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

and

electronic

code

book

modes.

The

Advanced

Encryption

Standard

(AES)

and

DES

(Data

Encryption

Standard)

are

supported.

AES

encryption

uses

a

128-,

192-

or

256-bit

key.

Only

clear

keys

will

be

supported.

The

AES

encryption

is

subject

to

the

same

availability

restrictions

as

triple-DES

encryption.

Encoding

and

Decoding

Data

The

encode

and

decode

callable

services

perform

functions

with

clear

keys.

Encode

enciphers

8

bytes

of

data

using

the

electronic

code

book

(ECB)

mode

of

the

DES

and

a

clear

key.

Decode

does

the

inverse

of

the

encode

service.

These

services

are

available

only

on

a

DES-capable

system.

(See

“System

Encryption

Algorithm”

on

page

27

for

more

information.)

Translating

Ciphertext

Restriction:

These

services

are

not

available

on

a

z990

or

z890.

ICSF

also

provides

a

ciphertext

translate

callable

service.

It

deciphers

encrypted

data

(ciphertext)

under

one

encryption

key

and

reenciphers

it

under

another

key

without

having

the

data

appear

in

the

clear

outside

the

cryptographic

feature.

Such

a

function

is

useful

in

a

multiple

node

network,

where

sensitive

data

is

passed

through

multiple

nodes

before

it

reaches

its

final

destination.

Different

nodes

use

different

keys

in

the

process.

For

more

information

about

different

nodes,

see

“Using

the

Ciphertext

Translate

Callable

Service”

on

page

41.

The

keys

cannot

be

used

for

the

encipher

and

decipher

callable

services.

(See

“System

Encryption

Algorithm”

on

page

27

for

more

information.)

Managing

Data

Integrity

and

Message

Authentication

To

ensure

the

integrity

of

transmitted

messages

and

stored

data,

ICSF

provides:

v

Message

authentication

code

(MAC)

v

Several

hashing

functions,

including

modification

detection

code

(MDC),

SHA-1,

RIPEMD-160

and

MD5

(See

Chapter

8,

“Using

Digital

Signatures,”

on

page

303

for

an

alternate

method

of

message

authentication

using

digital

signatures.)

30

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

The

choice

of

callable

service

depends

on

the

security

requirements

of

the

environment

in

which

you

are

operating.

If

you

need

to

ensure

the

authenticity

of

the

sender

and

also

the

integrity

of

the

data,

consider

message

authentication

code

processing.

If

you

need

to

ensure

the

integrity

of

transmitted

data

in

an

environment

where

it

is

not

possible

for

the

sender

and

the

receiver

to

share

a

secret

cryptographic

key,

consider

hashing

functions,

such

as

the

modification

detection

code

process.

Message

Authentication

Code

Processing

The

process

of

verifying

the

integrity

and

authenticity

of

transmitted

messages

is

called

message

authentication.

Message

authentication

code

(MAC)

processing

allows

you

to

verify

that

a

message

was

not

altered

or

a

message

was

not

fraudulently

introduced

onto

the

system.

You

can

check

that

a

message

you

have

received

is

the

same

one

sent

by

the

message

originator.

The

message

itself

may

be

in

clear

or

encrypted

form.

The

comparison

is

performed

within

the

cryptographic

feature.

Since

both

the

sender

and

receiver

share

a

secret

cryptographic

key

used

in

the

MAC

calculation,

the

MAC

comparison

also

ensures

the

authenticity

of

the

message.

In

a

similar

manner,

MACs

can

be

used

to

ensure

the

integrity

of

data

stored

on

the

system

or

on

removable

media,

such

as

tape.

ICSF

provides

support

for

both

single-length

and

double-length

MAC

generation

and

MAC

verification

keys.

With

the

ANSI

X9.9-1

single

key

algorithm,

use

the

single-length

MAC

and

MACVER

keys.

ICSF

provides

support

for

the

use

of

data-encrypting

keys

in

the

MAC

generation

and

verification

callable

services,

and

also

the

use

of

a

MAC

generation

key

in

the

MAC

verification

callable

service.

This

support

permits

ICSF

MAC

services

to

interface

more

smoothly

with

non-CCA

key

distribution

system,

including

those

implementing

the

ANSI

X9.17

protocol.

MAC

Generation

Callable

Service

When

a

message

is

sent,

an

application

program

can

generate

an

authentication

code

for

it

using

the

MAC

generation

callable

service.

The

callable

service

computes

the

message

authentication

code

using

one

of

the

following

methods:

v

Using

the

ANSI

X9.9-1

single

key

algorithm,

a

single-length

MAC

generation

key

or

data-encrypting

key,

and

the

message

text.

v

Using

the

ANSI

X9.19

optional

double

key

algorithm,

a

double-length

MAC

generation

key

and

the

message

text.

v

Using

the

Europay,

MasterCard

and

Visa

(EMV)

padding

rules.

ICSF

allows

a

MAC

to

be

the

leftmost

32

or

48

bits

of

the

last

block

of

the

ciphertext

or

the

entire

last

block

(64

bits)

of

the

ciphertext.

The

originator

of

the

message

sends

the

message

authentication

code

with

the

message

text.

MAC

Verification

Callable

Service

When

the

receiver

gets

the

message,

an

application

program

calls

the

MAC

verification

callable

service.

The

callable

service

verifies

a

MAC

by

generating

another

MAC

and

comparing

it

with

the

MAC

received

with

the

message.

If

the

two

codes

are

the

same,

the

message

sent

was

the

same

one

received.

A

return

code

indicates

whether

the

MACs

are

the

same.

The

MAC

verification

callable

service

can

use

either

of

the

following

methods

to

generate

the

MAC

for

authentication:

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

31

v

The

ANSI

X9.9-1

single

key

algorithm,

a

single-length

MAC

verification

or

MAC

generation

key

(or

a

data-encrypting

key),

and

the

message

text.

v

The

ANSI

X9.19

optional

double

key

algorithm,

a

double-length

MAC

verification

or

MAC

generation

key

and

the

message

text.

v

Using

the

Europay,

MasterCard

and

Visa

(EMV)

padding

rules.

The

method

used

to

verify

the

MAC

should

correspond

with

the

method

used

to

generate

the

MAC.

Hashing

Functions

Hashing

functions

include

one-way

hash

generation

and

modification

detection

code

(MDC)

processing.

One-Way

Hash

Generate

Callable

Service

This

service

hashes

a

supplied

message.

Supported

hashing

methods

include:

v

SHA-13

v

MD5

v

RIPEMD-160

MDC

Generation

Callable

Service

The

modification

detection

code

(MDC)

provides

a

form

of

support

for

data

integrity.

The

MDC

allows

you

to

verify

that

data

was

not

altered

during

transmission

or

while

in

storage.

The

originator

of

the

data

ensures

that

the

MDC

is

transmitted

with

integrity

to

the

intended

receiver

of

the

data.

For

instance,

the

MDC

could

be

published

in

a

reliable

source

of

public

information.

When

the

receiver

gets

the

data,

an

application

program

can

generate

an

MDC,

and

compare

it

with

the

original

MDC

value.

If

the

MDC

values

are

equal,

the

data

is

accepted

as

unaltered.

If

the

MDC

values

differ

the

data

is

assumed

to

be

bogus.

Supported

hashing

methods

through

the

MDC

generation

callable

service

are:

v

MDC-2

v

MDC-4

v

PADMDC-2

v

PADMDC-4

In

a

similar

manner,

MDCs

can

be

used

to

ensure

the

integrity

of

data

stored

on

the

system

or

on

removable

media,

such

as

tape.

When

data

is

sent,

an

application

program

can

generate

a

modification

detection

code

for

it

using

the

MDC

generation

callable

service.

The

callable

service

computes

the

modification

detection

code

by

encrypting

the

data

using

a

publicly-known

cryptographic

one-way

function.

The

MDC

is

a

128-bit

value

that

is

easy

to

compute

for

specific

data,

yet

it

is

hard

to

find

data

that

will

result

in

a

given

MDC.

Once

an

MDC

has

been

established

for

a

file,

the

MDC

generate

service

can

be

run

at

any

later

time

on

the

file.

The

resulting

MDC

can

then

be

compared

with

the

previously

established

MDC

to

detect

deliberate

or

inadvertent

modification.

3. The

Secure

Hash

Algorithm

(SHA)

is

also

called

the

Secure

Hash

Standard

(SHS),

which

Federal

Information

Processing

Standard

(FIPS)

Publication

180

defines.

32

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Managing

Personal

Authentication

The

process

of

validating

personal

identities

in

a

financial

transaction

system

is

called

personal

authentication.

The

personal

identification

number

(PIN)

is

the

basis

for

verifying

the

identity

of

a

customer

across

the

financial

industry

networks.

ICSF

checks

a

customer-supplied

PIN

by

verifying

it

using

an

algorithm.

The

financial

industry

needs

functions

to

generate,

translate,

and

verify

PINs.

These

functions

prevent

unauthorized

disclosures

when

organizations

handle

personal

identification

numbers.

ICSF

supports

the

following

algorithms

for

generating

and

verifying

personal

identification

numbers:

v

IBM

3624

v

IBM

3624

PIN

offset

v

IBM

German

Bank

Pool

v

IBM

German

Bank

Pool

PIN

Offset

(GBP-PINO)

v

VISA

PIN

validation

value

v

Interbank

With

ICSF,

you

can

translate

PIN

blocks

from

one

format

to

another.

ICSF

supports

the

following

formats:

v

ANSI

X9.8

v

ISO

formats

0,

1,

2

v

VISA

formats

1,

2,

3,

4

v

IBM

4704

Encrypting

PINPAD

format

v

IBM

3624

formats

v

IBM

3621

formats

v

ECI

formats

1,

2,

3

With

the

capability

to

translate

personal

identification

numbers

into

different

PIN

block

formats,

you

can

use

personal

identification

numbers

on

different

systems.

Verifying

Credit

Card

Data

The

Visa

International

Service

Association

(VISA)

and

MasterCard

International,

Incorporated

have

specified

a

cryptographic

method

to

calculate

a

value

that

relates

to

the

personal

account

number

(PAN),

the

card

expiration

date,

and

the

service

code.

The

VISA

card-verification

value

(CVV)

and

the

MasterCard

card-verification

code

(CVC)

can

be

encoded

on

either

track

1

or

track

2

of

a

magnetic

striped

card

and

are

used

to

detect

forged

cards.

Because

most

online

transactions

use

track-2,

the

ICSF

callable

services

generate

and

verify

the

CVV4

by

the

track-2

method.

The

VISA

CVV

service

generate

callable

service

calculates

a

1-

to

5-byte

value

through

the

DES-encryption

of

the

PAN,

the

card

expiration

date,

and

the

service

code

using

two

data-encrypting

keys

or

two

MAC

keys.

The

VISA

CVV

service

verify

callable

service

calculates

the

CVV

by

the

same

method,

compares

it

to

the

CVV

supplied

by

the

application

(which

reads

the

credit

card’s

magnetic

stripe)

in

the

CVV_value,

and

issues

a

return

code

that

indicates

whether

the

card

is

authentic.

Clear

PIN

Encrypt

Callable

Service

To

format

a

PIN

into

a

PIN

block

format

and

encrypt

the

results,

use

the

Clear

PIN

Encrypt

callable

service.

You

can

also

use

this

service

to

create

an

encrypted

PIN

4. The

VISA

CVV

and

the

MasterCard

CVC

refer

to

the

same

value.

CVV

is

used

here

to

mean

both

CVV

and

CVC.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

33

block

for

transmission.

With

the

RANDOM

keyword,

you

can

have

the

service

generate

random

PIN

numbers.

Use

of

this

service

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Clear

PIN

Generate

Alternate

Callable

Service

To

generate

a

clear

VISA

PIN

validation

value

from

an

encrypted

PIN

block,

call

the

clear

PIN

generate

alternate

callable

service.

This

service

also

supports

the

IBM-PINO

algorithm

to

produce

a

3624

offset

from

a

customer

selected

encrypted

PIN.

Note:

The

PIN

block

must

be

encrypted

under

either

an

input

PIN-encrypting

key

(IPINENC)

or

output

PIN-encrypting

key

(OPINENC).

Using

an

IPINENC

key

requires

NOCV

keys

to

be

enabled

in

the

CKDS.

Functions

other

than

VISA

PIN

validation

value

generation

require

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Clear

PIN

Generate

Callable

Service

To

generate

personal

identification

numbers,

call

the

Clear

PIN

generate

callable

service.

Using

a

PIN

generation

algorithm,

data

used

in

the

algorithm,

and

the

PIN

generation

key,

the

callable

service

generates

a

clear

PIN,

a

PIN

verification

value,

or

an

offset.

The

callable

service

can

only

execute

in

special

secure

mode,

which

is

described

in

“Special

Secure

Mode”

on

page

10.

Encrypted

PIN

Generate

Callable

Service

To

generate

personal

identification

numbers,

call

the

Encrypted

PIN

generation

callable

service.

Using

a

PIN

generation

algorithm,

data

used

in

the

algorithm,

and

the

PIN

generation

key,

the

callable

service

generates

a

PIN

and

using

a

PIN

block

format

and

the

PIN

encrypting

key,

formats

and

encrypts

the

PIN.

Use

of

this

service

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Encrypted

PIN

Translate

Callable

Service

To

translate

a

PIN

from

one

PIN-encrypting

key

to

another

or

from

one

PIN

block

format

to

another

or

both,

call

the

Encrypted

PIN

translation

callable

service.

You

must

identify

the

input

PIN-encrypting

key

that

originally

enciphers

the

PIN.

You

also

need

to

specify

the

output

PIN-encrypting

key

that

you

want

the

callable

service

to

use

to

encipher

the

PIN.

If

you

want

to

change

the

PIN

block

format,

specify

a

different

output

PIN

block

format

from

the

input

PIN

block

format.

Encrypted

PIN

Verify

Callable

Service

To

verify

a

supplied

PIN,

call

the

Encrypted

PIN

verify

callable

service.

You

need

to

specify

the

supplied

enciphered

PIN,

the

PIN-encrypting

key

that

enciphers

it,

and

other

relevant

data.

You

must

also

specify

the

PIN

verification

key

and

PIN

verification

algorithm.

It

compares

the

two

personal

identification

numbers;

if

they

are

the

same,

it

verifies

the

supplied

PIN.

See

Chapter

7,

“Financial

Services,”

on

page

229

for

additional

information.

PIN

Change/Unblock

Callable

Service

To

support

PIN

change

algorithms

specified

in

the

VISA

Integrated

Circuit

Card

Specification,

call

the

PIN

change/unblock

callable

service.

The

callable

service

can

only

execute

on

an

z890

or

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

34

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|
|
|
|

Transaction

Validation

Callable

Service

To

support

generation

and

validation

of

American

Express

card

security

codes,

call

the

transaction

validation

callable

service.

The

callable

service

can

only

execute

on

an

z890

or

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

Secure

Messaging

The

following

services

will

assist

applications

in

encrypting

secret

information

such

as

clear

keys

and

PIN

blocks

in

a

secure

message.

These

services

will

execute

within

the

secure

boundary

of

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

The

Secure

Messaging

for

Keys

(CSNBSKY)

callable

service

encrypts

a

text

block,

including

a

clear

key

value

decrypted

from

an

internal

or

external

DES

token.

The

Secure

Messaging

for

PINs

(CSNBSPN)

callable

service

encrypts

a

text

block,

including

a

clear

PIN

block

recovered

from

an

encrypted

PIN

block.

Trusted

Key

Entry

(TKE)

Support

The

Trusted

Key

Entry

(TKE)

workstation

is

an

optional

feature.

It

offers

an

alternative

to

clear

key

entry.

You

can

use

the

TKE

workstation

to

load:

v

DES

master

keys,

PKA

master

keys,

and

operational

keys

in

a

secure

way.

CCF

only

supports

Operational

Transport

and

PIN

keys.

On

the

PCIXCC,

all

operational

keys

may

be

loaded

with

TKE

4.1.

v

SYM-MK

and

ASYM-MK

master

keys

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

You

can

load

keys

remotely

and

for

multiple

Cryptographic

Coprocessor

Features,

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors.

The

TKE

workstation

eases

the

administration

for

using

one

Cryptographic

Coprocessor

Feature

or

PCI

X

Cryptographic

Coprocessor

as

a

production

machine

and

as

a

test

machine

at

the

same

time,

while

maintaining

security

and

reliability.

The

TKE

workstation

can

be

used

for

enabling/disabling

access

control

points

for

callable

services

executed

on

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors.

See

Appendix

H,

“Access

Control

Points

and

Callable

Services,”

on

page

515

for

additional

information.

For

complete

details

about

the

TKE

workstation

(Version

3

or

later),

see

z/OS

Cryptographic

Services

ICSF

TKE

Workstation

User’s

Guide.

TKE

Version

4.0

or

higher

is

required

if

using

a

PCI

X

Cryptographic

Coprocessor.

On

z890

or

z990

systems

running

with

May

2004

version

of

Licensed

Internal

Code,

you

must

enable

each

PCIXCC

card

from

the

support

element.

This

is

true

for

new

TKE

users

and

those

upgrading

from

TKE

4.0

to

4.1

when

the

new

LIC

is

installed.

See

Support

Element

Operations

Guide,

SC28-6820

and

z/OS

Cryptographic

Services

ICSF

TKE

Workstation

User’s

Guide,

SA22-7524

for

more

information.

Utilities

ICSF

provides

the

following

utilities.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

35

|

|
|
|

|
|
|

|

|
|
|
|
|
|

Character/Nibble

Conversion

Callable

Services

The

character/nibble

conversion

callable

services

are

utilities

that

convert

a

binary

string

to

a

character

string

and

vice

versa.

Code

Conversion

Callable

Services

The

code

conversion

callable

services

are

utilities

that

convert

EBCDIC

data

to

ASCII

data

and

vice

versa.

X9.9

Data

Editing

Callable

Service

The

data

editing

callable

service

is

a

utility

that

edits

an

ASCII

text

string

according

to

the

editing

rules

of

ANSI

X9.9-4.

ICSF

Query

Facility

Service

The

callable

service

provides

ICSF

status

information,

as

well

as

PCICC

and

PCIXCC

information.

Typical

Sequences

of

ICSF

Callable

Services

Sample

sequences

in

which

the

ICSF

callable

services

might

be

called

are

shown

in

Table

4

on

page

37.

36

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|
|

Table

4.

Combinations

of

the

Callable

Services

Combination

A

(DATA

keys

only)

Combination

B

1.

Random

number

generate

1.

Random

number

generate

2.

Clear

key

import

or

2.

Secure

key

import

or

multiple

clear

key

import

multiple

secure

key

import

3.

Encipher/decipher

3.

Any

service

4.

Data

key

export

or

key

export

4.

Data

key

export

for

DATA

keys,

or

(optional

step)

key

export

in

the

general

case

(optional

step)

Combination

C

Combination

D

1.

Key

generate

(OP

form

only)

1.

Key

generate

(OPEX

form)

2.

Any

service

2.

Any

service

3.

Key

export

(optional)

Combination

E

Combination

F

1.

Key

generate

(IM

form

only)

1.

Key

generate

(IMEX

form)

2.

Key

import

2.

Key

import

3.

Any

service

3.

Any

service

4.

Key

export

(optional)

Combination

G

Combination

H

1.

Key

generate

1.

Key

import

2.

Key

record

create

2.

Key

record

create

3.

Key

record

write

3.

Key

record

write

4.

Any

service

(passing

label

4.

Any

service

(passing

label

of

the

key

just

generated)

of

the

key

just

generated)

Combination

I

1.

Key

token

build

to

create

key

token

skeleton

2.

Key

generate

to

OP

form

of

AKEK

using

key

token

skeleton

3.

Use

AKEK

in

any

ANSI

X9.17

service

Notes:

1.

An

example

of

“any

service”

is

CSNBENC.

2.

These

combinations

exclude

services

that

can

be

used

on

their

own;

for

example,

key

export

or

encode,

or

using

key

generate

to

generate

an

exportable

key.

3.

These

combinations

do

not

show

key

communication,

or

the

transmission

of

any

output

from

an

ICSF

callable

service.

4.

Combination

I

is

not

available

on

the

IBM

Eserver

zSeries

990.

The

key

forms

are

described

in

“Key

Generate

(CSNBKGN)”

on

page

86.

Key

Forms

and

Types

Used

in

the

Key

Generate

Callable

Service

The

key

generate

callable

service

is

the

most

complex

of

all

the

ICSF

callable

services.

This

section

provides

examples

of

the

key

forms

and

key

types

used

in

the

key

generate

callable

service.

Generating

an

Operational

Key

To

generate

an

operational

key,

choose

one

of

the

following

methods:

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

37

v

For

operational

keys,

call

the

key

generate

callable

service

(CSNBKGN).

Table

20

on

page

94

and

Table

21

on

page

94

show

the

key

type

and

key

form

combinations

for

a

single

key

and

for

a

key

pair.

v

For

operational

keys,

call

the

random

number

generate

callable

service

(CSNBRNG)

and

specify

the

form

parameter

as

RANDOM.

Specify

ODD

parity

for

a

random

number

you

intend

to

use

as

a

key.

Then

pass

the

generated

value

to

the

secure

key

import

callable

service

(CSNBSKI)

with

a

required

key

type.

The

required

key

type

is

now

in

operational

form.

This

method

requires

a

cryptographic

unit

to

be

in

special

secure

mode.

For

more

information

about

special

secure

mode,

see

“Special

Secure

Mode”

on

page

10.

v

For

data-encrypting

keys,

call

the

random

number

generate

callable

service

(CSNBRNG)

and

specify

the

form

parameter

as

ODD.

Then

pass

the

generated

value

to

the

clear

key

import

callable

service

(CSNBCKI)

or

the

multiple

clear

key

import

callable

service

(CSNBCKM).

The

DATA

key

type

is

now

in

operational

form.

You

cannot

generate

a

PIN

verification

(PINVER)

key

in

operational

form

because

the

originator

of

the

PIN

generation

(PINGEN)

key

generates

the

PINVER

key

in

exportable

form,

which

is

sent

to

you

to

be

imported.

Generating

an

Importable

Key

To

generate

an

importable

key

form,

call

the

key

generate

callable

service

(CSNBKGN).

If

you

want

a

DATA,

MAC,

PINGEN,

DATAM,

or

DATAC

key

type

in

importable

form,

obtain

it

directly

by

generating

a

single

key.

If

you

want

any

other

key

type

in

importable

form,

request

a

key

pair

where

either

the

first

or

second

key

type

is

importable

(IM).

Discard

the

generated

key

form

that

you

do

not

need.

Generating

an

Exportable

Key

To

generate

an

exportable

key

form,

call

the

key

generate

callable

service

(CSNBKGN).

If

you

want

a

DATA,

MAC,

PINGEN,

DATAM,

or

DATAC

key

type

in

exportable

form,

obtain

it

directly

by

generating

a

single

key.

If

you

want

any

other

key

type

in

exportable

form,

request

a

key

pair

where

either

the

first

or

second

key

type

is

exportable

(EX).

Discard

the

generated

key

form

that

you

do

not

need.

Examples

of

Single-Length

Keys

in

One

Form

Only

Key

Key

Form

1

OP

DATA

Encipher

or

decipher

data.

Use

data

key

export

or

key

export

to

send

encrypted

key

to

another

cryptograpic

partner.

Then

communicate

the

ciphertext.

OP

MAC

MAC

generate.

Because

no

MACVER

key

exists,

there

is

no

secure

communication

of

the

MAC

with

another

cryptographic

partner.

IM

DATA

Key

Import,

and

then

encipher

or

decipher.

Then

key

export

to

communicate

ciphertext

and

key

with

another

cryptographic

partner.

EX

DATA

You

can

send

this

key

to

a

cryptographic

partner,

but

you

38

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

can

do

nothing

with

it

directly.

Use

it

for

the

key

distribution

service.

The

partner

could

then

use

key

import

to

get

it

in

operational

form,

and

use

it

as

in

OP

DATA

above.

Examples

of

OPIM

Single-Length,

Double-Length,

and

Triple-Length

Keys

in

Two

Forms

The

first

two

letters

of

the

key

form

indicate

the

form

that

key

type

1

parameter

is

in,

and

the

second

two

letters

indicate

the

form

that

key

type

2

parameter

is

in.

Key

Type

Type

Form

1

2

OPIM

DATA

DATA

Use

the

OP

form

in

encipher.

Use

key

export

with

the

OP

form

to

communicate

ciphertext

and

key

with

another

cryptographic

partner.

Use

key

import

at

a

later

time

to

use

encipher

or

decipher

with

the

same

key

again.

OPIM

MAC

MAC

Single-length

MAC

generation

key.

Use

the

OP

form

in

MAC

generation.

You

have

no

corresponding

MACVER

key,

but

you

can

call

the

MAC

verification

service

with

the

MAC

key

directly.

Use

the

key

import

callable

service

and

then

compute

the

MAC

again

using

the

MAC

verification

callable

service,

which

comapres

the

MAC

it

generates

with

the

MAC

supplied

with

the

message

and

issues

a

return

code

indicating

whether

they

compare.

Examples

of

OPEX

Single-Length,

Double-Length,

and

Triple-Length

Keys

in

Two

Forms

Key

Type

Type

Form

1

2

OPEX

DATA

DATA

Use

the

OP

form

in

encipher.

Send

the

EX

form

and

the

ciphertext

to

another

cryptographic

partner.

OPEX

MAC

MAC

Single-length

MAC

generation

key.

Use

the

OP

form

in

both

MAC

generation

and

MAC

verification.

Send

the

EX

form

to

a

cryptographic

partner

to

be

used

in

the

MAC

generation

or

MAC

verification

services.

OPEX

MAC

MACVER

Single-length

MAC

generation

and

MAC

verification

keys.

Use

the

OP

form

in

MAC

generation.

Send

the

EX

form

to

a

cryptographic

partner

where

it

will

be

put

into

key

import,

and

then

MAC

verification,

with

the

message

and

MAC

that

you

have

also

transmitted.

OPEX

PINGEN

PINVER

Use

the

OP

form

in

Clear

PIN

generate.

Send

the

EX

form

to

a

cryptographic

partner

where

it

is

put

into

key

import,

and

then

Encrypted

PIN

verify,

along

with

an

IPINENC

key.

OPEX

IMPORTER

EXPORTER

Use

the

OP

form

in

key

import,

key

generate,

or

secure

key

import.

Send

the

EX

form

to

a

cryptographic

partner

where

it

is

used

in

key

export,

data

key

export,

or

key

generate,

or

put

in

the

CKDS.

OPEX

EXPORTER

IMPORTER

Use

the

OP

form

in

key

export,

data

key

export,

or

key

generate.

Send

the

EX

form

to

a

cryptographic

partner

where

it

is

put

into

the

CKDS

or

used

in

key

import,

key

generate

or

secure

key

import.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

39

When

you

and

your

partner

have

the

OPEX

IMPORTER

EXPORTER,

OPEX

EXPORTER

IMPORTER

pairs

of

keys

in

“Examples

of

OPEX

Single-Length,

Double-Length,

and

Triple-Length

Keys

in

Two

Forms”

on

page

39

installed,

you

can

start

key

and

data

exchange.

Examples

of

IMEX

Single-Length

and

Double-Length

Keys

in

Two

Forms

Key

Type

Type

Form

1

2

IMEX

DATA

DATA

Use

the

key

import

callable

service

to

import

IM

form

and

use

the

OP

form

in

encipher.

Send

the

EX

form

to

a

cryptographic

partner.

IMEX

MAC

MACVER

Use

the

key

import

callable

service

to

import

the

IM

form

and

use

the

OP

form

in

MAC

generate.

Send

the

EX

form

to

a

cryptographic

partner

who

can

verify

the

MAC.

IMEX

IMPORTER

EXPORTER

Use

the

key

import

callable

service

to

import

the

IM

form

and

send

the

EX

form

to

a

cryptographic

partner.

This

establishes

a

new

IMPORTER/EXPORTER

key

between

you

and

your

partner.

IMEX

PINGEN

PINVER

Use

the

key

import

callable

service

to

import

the

IM

form

and

send

the

EX

form

to

a

cryptographic

partner.

This

establishes

a

new

PINGEN/PINVER

key

between

you

and

your

partner.

Examples

of

EXEX

Single-Length

and

Double-Length

Keys

in

Two

Forms

For

the

keys

shown

in

the

following

list,

you

are

providing

key

distribution

services

for

other

nodes

in

your

network,

or

other

cryptographic

partners.

Neither

key

type

can

be

used

in

your

installation.

Key

Type

Type

Form

1

2

EXEX

DATA

DATA

Send

the

first

EX

form

to

a

cryptographic

EXEX

MAC

MACVER

partner

with

the

corresponding

IMPORTER

and

EXEX

IMPORTER

EXPORTER

send

the

second

EX

form

to

another

EXEC

OPINENC

IPINENC

cryptographic

partner

with

the

corresponding

IMPORTER.

This

exchange

establishes

a

key

between

two

partners.

Generating

AKEKs

Restriction:

AKEKs

are

not

supported

on

the

IBM

Eserver

zSeries

990.

AKEKs

are

bidirectional

and

are

OP-form-only

keys

that

can

be

used

in

both

import

and

export.

Before

using

the

key

generate

callable

service

to

create

an

AKEK,

you

need

to

use

the

key

token

build

callable

service

to

create

a

key

token

for

receiving

the

AKEK.

The

steps

involved

in

this

process

are

presented

below.

1.

Use

the

key

token

build

callable

service

with

the

following

parameter

values:

Parameter

Value

Key_type

AKEK

Rule_array

INTERNAL

NO-KEY

{SINGLE

or

DOUBLE-O}

2.

Use

the

key

generate

callable

service

with

the

following

parameter

values:

Parameter

Value

40

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Key_form

OP

Key_type_1

TOKEN

Generated_key_identifier_1

The

skeleton

key

token

created

in

step

1

Using

the

Ciphertext

Translate

Callable

Service

Restriction:

The

ciphertext

translate

callable

service

does

not

work

in

CDMF-only

systems

(see

“System

Encryption

Algorithm”

on

page

27).

The

ciphertext

translate

callable

service

does

not

work

on

the

PCI

X

Cryptographic

Coprocessor.

This

section

describes

a

scenario

using

the

encipher,

ciphertext

translate,

and

decipher

callable

services

with

four

network

nodes:

A,

B,

C,

and

D.

You

want

to

send

data

from

your

network

node

A

to

a

destination

node

D.

You

cannot

communicate

directly

with

node

D,

and

nodes

B

and

C

are

situated

between

you.

You

do

not

want

nodes

B

and

C

to

decipher

your

data.

At

node

A,

you

use

the

encipher

callable

service

(CSNBENC

or

CSNBENC1).

Node

D

uses

the

decipher

callable

service

(CSNBDEC

or

CSNBDEC1).

Node

B

and

C

will

use

the

ciphertext

translate

callable

service.

Consider

the

keys

that

are

needed

to

support

this

process:

1.

At

your

node,

generate

one

key

in

two

forms:

OPEX

DATA

DATAXLAT

2.

Send

the

exportable

DATAXLAT

key

to

node

B.

3.

Node

B

and

C

need

to

share

a

DATAXLAT

key,

so

generate

a

different

key

in

two

forms:

EXEX

DATAXLAT

DATAXLAT.

4.

Send

the

first

exportable

DATAXLAT

key

to

node

B.

5.

Send

the

second

exportable

DATAXLAT

key

to

node

C.

6.

Node

C

and

node

D

need

to

share

a

DATAXLAT

key

and

a

DATA

key.

Node

D

can

generate

one

key

in

two

forms:

OPEX

DATA

DATAXLAT.

7.

Node

D

sends

the

exportable

DATAXLAT

key

to

node

C.

The

communication

process

is

shown

as:

Node:

A

B

C

D

Callable

Service:

Encipher

Ciphertext

Translate

Ciphertext

Translate

Decipher

Keys:

DATA

DATAXLAT

DATAXLAT

DATAXLAT

DATAXLAT

DATA

Key

Pairs:

|____

=

____|

|____

=

____|

|____

=

____|

Therefore,

you

need

three

keys,

each

in

two

different

forms.

You

can

generate

two

of

the

keys

at

node

A,

and

node

D

can

generate

the

third

key.

Note

that

the

key

used

in

the

decipher

callable

service

at

node

D

is

not

the

same

key

used

in

the

encipher

callable

service

at

node

A.

Summary

of

the

DES

Callable

Services

Table

5

on

page

42

lists

the

DES

callable

services

described

in

this

document,

and

their

corresponding

verbs.

The

figure

also

references

the

chapter

that

describes

the

callable

service.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

41

Table

5.

Summary

of

ICSF

DES

Callable

Services

Verb

Service

Name

Function

Chapter

4,

“Managing

DES

Cryptographic

Keys”

CSNBCKI

Clear

key

import

Imports

an

8-byte

clear

DATA

key,

enciphers

it

under

the

master

key,

and

places

the

result

into

an

internal

key

token.

CSNBCKI

converts

the

clear

key

into

operational

form

as

a

DATA

key.

CSNBCVG

Control

vector

generate

Builds

a

control

vector

from

keywords

specified

by

the

key_type

and

rule_array

parameters.

CSNBCVT

Control

vector

translate

Changes

the

control

vector

used

to

encipher

an

external

key.

CSNBCVE

Cryptographic

variable

encipher

Uses

a

CVARENC

key

to

encrypt

plaintext

by

using

the

Cipher

Block

Chaining

(CBC)

method.

The

plaintext

must

be

a

multiple

of

eight

bytes

in

length.

CSNBDKX

Data

key

export

Converts

a

DATA

key

from

operational

form

into

exportable

form.

CSNBDKM

Data

key

import

Imports

an

encrypted

source

DES

single-

or

double-length

DATA

key

and

creates

or

updates

a

target

internal

key

token

with

the

master

key

enciphered

source

key.

CSNBDKG

Diversified

key

generate

Generates

a

key

based

upon

the

key-generating

key,

the

processing

method,

and

the

parameter

data

that

is

supplied.

CSNBKEX

Key

export

Converts

any

key

from

operational

form

into

exportable

form.

(However,

this

service

does

not

export

a

key

that

was

marked

non-exportable

when

it

was

imported.)

CSNBKGN

Key

generate

Generates

a

64-bit,

128-bit,

or

192-bit

odd

parity

key,

or

a

pair

of

keys;

and

returns

them

in

encrypted

forms

(operational,

exportable,

or

importable).

CSNBKGN

does

not

produce

keys

in

plaintext.

CSNBKIM

Key

import

Converts

any

key

from

importable

form

into

operational

form.

CSNBKPI

Key

part

import

Combines

the

clear

key

parts

of

any

key

type

and

returns

the

combined

key

value

in

an

internal

key

token

or

an

update

to

the

CKDS.

CSNBKRC

Key

record

create

Adds

a

key

record

containing

a

key

token

set

to

binary

zeros

to

both

the

in-storage

and

DASD

copies

of

the

CKDS.

CSNBKRD

Key

record

delete

Deletes

a

key

record

from

both

the

in-storage

and

DASD

copies

of

the

CKDS.

CSNBKRR

Key

record

read

Copies

an

internal

key

token

from

the

in-storage

copy

of

the

CKDS

to

application

storage.

CSNBKRW

Key

record

write

Writes

an

internal

key

token

to

the

CKDS

record

specified

in

the

key

label

parameter.

Updates

both

the

in-storage

and

DASD

copies

of

the

CKDS

currently

in

use.

42

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

5.

Summary

of

ICSF

DES

Callable

Services

(continued)

Verb

Service

Name

Function

CSNBKYT

or

CSNBKYTX

Key

test

service

Generates

or

verifies

(depending

on

keywords

in

the

rule

array)

a

secure

verification

pattern

for

keys.

CSNBKYT

requires

the

tested

key

to

be

in

the

clear

or

encrypted

under

the

master

key.

CSNBKYTX

also

allows

the

tested

key

to

be

encrypted

under

a

key-encrypting

key.

CSNBKTB

Key

token

build

Builds

an

internal

or

external

token

from

the

supplied

parameters.

You

can

use

this

callable

service

to

build

an

internal

token

for

an

AKEK

for

input

to

the

key

generate

and

key

part

import

callable

services.

You

can

also

use

this

service

to

build

CCA

key

tokens

for

all

key

types

ICSF

supports

or

to

update

the

DES

or

SYS-ENC

markings

in

a

supplied

DATA,

IMPORTER,

or

EXPORTER

token.

CSNBKTR

Key

translate

Uses

one

key-encrypting

key

to

decipher

an

input

key

and

then

enciphers

this

key

using

another

key-encrypting

key

within

the

secure

environment.

CSNBCKM

Multiple

clear

key

import

Imports

a

single-,

double-,

or

triple-length

clear

DATA

key,

enciphers

it

under

the

master

key,

and

places

the

result

into

an

internal

key

token.

CSNBCKM

converts

the

clear

key

into

operational

form

as

a

DATA

key.

CSNBSKM

Multiple

secure

key

import

Enciphers

a

single-,

double-,

or

triple-length

clear

key

under

the

master

key

or

an

input

importer

key,

and

places

the

result

into

an

internal

or

external

key

token

as

any

key

type.

Triple-length

keys

can

only

be

imported

as

DATA

keys.

CSNBSKM

executes

only

in

special

secure

mode.

CSNDPKD

PKA

decrypt

Uses

an

RSA

private

key

to

decrypt

the

RSA-encrypted

key

value

and

return

the

clear

key

value

to

the

application.

CSNDPKE

PKA

encrypt

Encrypts

a

supplied

clear

key

value

under

an

RSA

public

key.

CSNBPEX

Prohibit

export

Modifies

an

operational

key

so

that

it

cannot

be

exported.

CSNBPEXX

Prohibit

export

extended

Changes

the

external

token

of

a

key

in

exportable

form

so

that

it

can

be

imported

at

the

receiver

node

but

not

exported

from

that

node.

CSNBRNG

Random

number

generate

Generates

an

8-byte

random

number.

The

output

can

be

specified

in

three

forms

of

parity:

RANDOM,

ODD,

and

EVEN.

CSNBSKI

Secure

key

import

Enciphers

a

clear

key

under

the

master

key,

and

places

the

result

into

an

internal

or

external

key

token

as

any

key

type.

CSNBSKI

executes

only

in

special

secure

mode.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

43

Table

5.

Summary

of

ICSF

DES

Callable

Services

(continued)

Verb

Service

Name

Function

CSNDSYG

Symmetric

key

generate

Generates

a

symmetric

DATA

key

and

returns

the

key

in

two

forms:

enciphered

under

the

DES

master

key

or

KEK

and

under

a

PKA

public

key.

CSNDSYI

Symmetric

key

import

Imports

a

symmetric

DATA

key

enciphered

under

an

RSA

public

key

into

operational

form

enciphered

under

a

DES

master

key.

CSNDSYX

Symmetric

key

export

Transfers

an

application-supplied

symmetric

key

(a

DATA

key)

from

encryption

under

the

DES

host

master

key

to

encryption

under

an

application-supplied

RSA

public

key.

The

application-supplied

DATA

key

must

be

an

ICSF

DES

internal

key

token

or

the

label

of

such

a

token

in

the

CKDS.

CSNBTCK

Transform

CDMF

key

Changes

a

CDMF

DATA

key

in

an

internal

or

external

token

to

a

transformed

shortened

DES

key.

CSFUDK

User

Derived

Key

Generates

single-length

or

double-length

MAC

keys,

or

updates

an

existing

user

derived

key.

Chapter

5,

“Protecting

Data”

CSNBCTT

or

CSNBCTT1

Ciphertext

translate

Translates

the

user-supplied

ciphertext

from

one

key

and

enciphers

the

ciphertext

to

another

key.

(This

is

for

DES

encryption

only.)

CSNBCTT

requires

the

ciphertext

to

reside

in

the

caller’s

primary

address

space.

CSNBCTT1

allows

the

ciphertext

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

CSNBDEC

or

CSNBDEC1

Decipher

Deciphers

data

using

either

the

CDMF

or

the

cipher

block

chaining

mode

of

the

DES.

(The

method

depends

on

the

token

marking

or

keyword

specification.)

The

result

is

called

plaintext.

CSNBDEC

requires

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space.

CSNBDEC1

allows

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

CSNBDCO

Decode

Decodes

an

8-byte

string

of

data

using

the

electronic

code

book

mode

of

the

DES.

(This

is

for

DES

encryption

only.)

44

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

5.

Summary

of

ICSF

DES

Callable

Services

(continued)

Verb

Service

Name

Function

CSNBENC

or

CSNBENC1

Encipher

Enciphers

data

using

either

the

CDMF

or

the

cipher

block

chaining

mode

of

the

DES.

(The

method

depends

on

the

token

marking

or

keyword

specification.)

The

result

is

called

ciphertext.

CSNBENC

requires

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space.

CSNBENC1

allows

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

CSNBECO

Encode

Encodes

an

8-byte

string

of

data

using

the

electronic

code

book

mode

of

the

DES.

(This

is

for

DES

encryption

only.)

CSNBSYD

or

CSNBSYD1

Symmetric

key

decipher

Deciphers

data

using

the

AES

or

DES

algorithm

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

or

electronic

code

book

modes.

Only

clear

keys

are

supported.

CSNBSYD

requires

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space.

CSNBSYD1

allows

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

CSNBSYE

or

CSNBSYE1

Symmetric

key

encipher

Enciphers

data

using

the

AES

or

DES

algorithm

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

or

electronic

code

book

modes.

Only

clear

keys

are

supported.

CSNBSYE

requires

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space.

CSNBSYE1

allows

the

plaintext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

Chapter

6,

“Verifying

Data

Integrity

and

Authenticating

Messages”

CSNBMGN

or

CSNBMGN1

MAC

generate

Generates

a

4-,

6-,

or

8-byte

message

authentication

code

(MAC)

for

a

text

string

that

the

application

program

supplies.

The

MAC

is

computed

using

either

the

ANSI

X9.9-1

algorithm

or

the

ANSI

X9.19

optional

double

key

algorithm.

CSNBMGN

requires

data

to

reside

in

the

caller’s

primary

address

space.

CSNBMGN1

allows

data

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

45

Table

5.

Summary

of

ICSF

DES

Callable

Services

(continued)

Verb

Service

Name

Function

CSNBMVR

or

CSNBMVR1

MAC

verify

Verifies

a

4-,

6-,

or

8-byte

message

authentication

code

(MAC)

for

a

text

string

that

the

application

program

supplies.

The

MAC

is

computed

using

either

the

ANSI

X9.9-1

algorithm

or

the

ANSI

X9.19

optional

double

key

algorithm

and

is

compared

with

a

user-supplied

MAC.

CSNBMVR

requires

data

to

reside

in

the

caller’s

primary

address

space.

CSNBMVR1

allows

data

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

CSNBMDG

or

CSNBMDG1

MDC

generate

Generates

a

128-bit

modification

detection

code

(MDC)

for

a

text

string

that

the

application

program

supplies.

CSNBMDG

requires

data

to

reside

in

the

caller’s

primary

address

space.

CSNBMDG1

allows

data

to

reside

in

the

caller’s

primary

address

space

or

in

a

z/OS

data

space.

CSNBOWH

or

CSNBOWH1

One

way

hash

generate

Generates

a

one-way

hash

on

specified

text.

Chapter

7,

“Financial

Services”

CSNBCPE

Clear

PIN

encrypt

Formats

a

PIN

into

a

PIN

block

format

and

encrypts

the

results.

CSNBPGN

Clear

PIN

generate

Generates

a

clear

personal

identification

number

(PIN),

a

PIN

verification

value

(PVV),

or

an

offset

using

one

of

the

following

algorithms:

IBM

3624

(IBM-PIN

or

IBM-PINO)

IBM

German

Bank

Pool

(GBP-PIN

or

GBP-PINO)

VISA

PIN

validation

value

(VISA-PVV)

Interbank

PIN

(INBK-PIN)

CSNBPGN

executes

only

in

special

secure

mode.

CSNBCPA

Clear

PIN

generate

alternate

Generates

a

clear

VISA

PIN

validation

value

(PVV)

from

an

input

encrypted

PIN

block.

The

PIN

block

may

have

been

encrypted

under

either

an

input

or

output

PIN

encrypting

key.

The

IBM-PINO

algorithm

is

supported

to

produce

a

3624

offset

from

a

customer

selected

encrypted

PIN.

CSNBEPG

Encrypted

PIN

generate

Generates

and

formats

a

PIN

and

encrypts

the

PIN

block.

CSNBPTR

Encrypted

PIN

translate

Reenciphers

a

PIN

block

from

one

PIN-encrypting

key

to

another

and,

optionally,

changes

the

PIN

block

format.

UKPT

keywords

are

supported.

46

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

5.

Summary

of

ICSF

DES

Callable

Services

(continued)

Verb

Service

Name

Function

CSNBPVR

Encrypted

PIN

verify

Verifies

a

supplied

PIN

using

one

of

the

following

algorithms:

IBM

3624

(IBM-PIN

or

IBM-PINO)

IBM

German

Bank

Pool

(GBP-PIN

or

GBP-PINO)

VISA

PIN

validation

value

(VISA-PVV)

Interbank

PIN

(INBK-PIN)

UKPT

keywords

are

supported.

CSNBPCU

PIN

Change/Unblock

Supports

the

PIN

change

algorithms

specified

in

the

VISA

Integrated

Circuit

Card

Specification;

only

available

on

a

z890

or

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

CSNBSKY

Secure

messaging

for

keys

Encrypts

a

text

block,

including

a

clear

key

value

decrypted

from

an

internal

or

external

DES

token.

CSNBSPN

Secure

messaging

for

PINs

Encrypts

a

text

block,

including

a

clear

PIN

block

recovered

from

an

encrypted

PIN

block.

CSNDSBC

SET

block

compose

Composes

the

RSA-OAEP

block

and

the

DES-encrypted

block

in

support

of

the

SET

protocol.

CSNDSBD

SET

block

decompose

Decomposes

the

RSA-OAEP

block

and

the

DES-encrypted

block

to

provide

unencrypted

data

back

to

the

caller.

CSNBTRV

Transaction

Validation

Supports

the

generation

and

validation

of

American

Express

card

security

codes;

only

available

on

a

z890

or

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

CSNBCSG

VISA

CVV

service

generate

Generates

a

VISA

Card

Verification

Value

(CVV)

or

a

MasterCard

Card

Verification

Code

(CVC).

CSNBCSV

VISA

CVV

service

verify

Verifies

a

VISA

Card

Verification

Value

(CVV)

or

a

MasterCard

Card

Verification

Code

(CVC).

Chapter

10,

“Utilities”

CSNBXBC

or

CSNBXCB

Character/nibble

conversion

Converts

a

binary

string

to

a

character

string

or

vice

versa.

CSNBXEA

or

CSNBXAE

Code

conversion

Converts

EBCDIC

data

to

ASCII

data

or

vice

versa.

CSNB9ED

X9.9

data

editing

Edits

an

ASCII

text

string

according

to

the

editing

rules

of

ANSI

X9.9–4.

CSFIQF

ICSF

Query

Service

Provides

ICSF

status,

as

well

as

PCICC

and

PCIXCC

information.

Chapter

11,

“Trusted

Key

Entry

Workstation

Interfaces”

CSFPCI

PCI

interface

Puts

a

request

to

a

specific

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

queue

and

removes

the

corresponding

response

when

complete.

Only

the

Trusted

Key

Entry

(TKE)

workstation

uses

this

service.

Chapter

2.

Introducing

DES

Cryptography

and

Using

DES

Callable

Services

47

|||
|
|
|
|

|||
|
|
|

|||
|

Table

5.

Summary

of

ICSF

DES

Callable

Services

(continued)

Verb

Service

Name

Function

CSFPKSC

PKSC

interface

Puts

a

request

to

a

specific

cryptographic

module

and

removes

the

corresponding

response

when

complete.

Only

the

Trusted

Key

Entry

(TKE)

workstation

uses

this

service.

Chapter

12,

“Managing

Keys

According

to

the

ANSI

X9.17

Standard”

CSNAEGN

ANSI

X9.17

EDC

generate

Generates

an

ANSI

X9.17

error

detection

code

on

an

arbitrary

length

string

using

the

special

MAC

key

(x’0123456789ABCDEF’).

CSNAKEX

ANSI

X9.17

key

export

Uses

the

ANSI

X9.17

protocol

to

export

a

DATA

key

or

a

pair

of

DATA

keys

with

or

without

an

AKEK.

Supports

the

export

of

a

CCA

IMPORTER

or

EXPORTER

KEK.

Converts

a

single

DATA

key

or

combines

two

DATA

keys

into

a

single

MAC

key.

CSNAKIM

ANSI

X9.17

key

import

Uses

the

ANSI

X9.17

protocol

to

import

a

DATA

key

or

a

pair

of

DATA

keys

with

or

without

an

AKEK.

Supports

the

import

of

a

CCA

IMPORTER

or

EXPORTER

KEK.

Converts

a

single

DATA

key

or

combines

two

DATA

keys

into

a

single

MAC

key.

CSNAKTR

ANSI

X9.17

key

translate

Uses

the

ANSI

X9.17

protocol

to

translate,

in

a

single

service

call,

either

one

or

two

DATA

keys

or

a

single

KEK

from

encryption

under

one

AKEK

to

encryption

under

another

AKEK.

Converts

a

single

DATA

key

or

combines

two

DATA

keys

into

a

single

MAC

key.

CSNATKN

ANSI

X9.17

transport

key

partial

notarize

Permits

the

preprocessing

of

an

AKEK

with

origin

and

destination

identifiers

to

create

a

partially

notarized

AKEK.

48

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

The

preceding

section

focused

on

DES

cryptography

or

secret-key

cryptography.

This

is

symmetric—senders

and

receivers

use

the

same

key

(which

must

be

exchanged

securely

in

advance)

to

encipher

and

decipher

data.

DES

functions

are

synchronous

and

performed

at

high

speed.

Public

key

cryptography

does

not

require

exchanging

a

secret

key.

It

is

asymmetric—the

sender

and

receiver

each

have

a

pair

of

keys,

a

public

key

and

a

different

but

corresponding

private

key.

PKA

functions

are

performed

in

an

asynchronous

processor;

this

is

much

slower

than

for

DES

functions.

You

can

use

PKA

support

to

exchange

DES

secret

keys

securely

and

to

compute

digital

signatures

for

authenticating

messages

to

users.

You

can

also

use

public

key

cryptography

in

support

of

secure

electronic

transactions

over

open

networks,

using

SET

protocols.

PKA

Key

Algorithms

Public

key

cryptography

uses

a

key

pair

consisting

of

a

public

key

and

a

private

key.

The

PKA

public

key

uses

one

of

two

algorithms:

v

Rivest-Shamir-Adleman

(RSA)

v

Digital

Signature

Standard

(DSS)

The

RSA

Algorithm

The

RSA

algorithm

is

the

most

widely

used

and

accepted

of

the

public

key

algorithms.

It

uses

three

quantities

to

encrypt

and

decrypt

text:

a

public

exponent

(PU),

a

private

exponent

(PR),

and

a

modulus

(M).

Given

these

three

and

some

cleartext

data,

the

algorithm

generates

ciphertext

as

follows:

ciphertext

=

cleartextPU

(modulo

M)

Similarly,

the

following

operation

recovers

cleartext

from

ciphertext:

cleartext

=

ciphertextPR

(modulo

M)

An

RSA

key

consists

of

an

exponent

and

a

modulus.

The

private

exponent

must

be

secret,

but

the

public

exponent

and

modulus

need

not

be

secret.

Digital

Signature

Standard

(DSS)

The

U.S.

National

Institute

of

Standards

and

Technology

(NIST)

defines

DSS

in

Federal

Information

Processing

Standard

(FIPS)

Publication

186.

PKA

Master

Keys

PKA

master

keys

protect

private

keys.

On

the

Cryptographic

Coprocessor

Feature,

there

are

two

PKA

master

keys:

the

Signature

Master

Key

(SMK)

and

the

RSA

Key

Management

Master

Key

(KMMK).

The

SMK

protects

PKA

private

keys

used

only

in

digital

signature

services.

The

KMMK

protects

PKA

private

keys

used

in

digital

signature

services

and

in

the

DES

DATA

key

distribution

functions.

©

Copyright

IBM

Corp.

1997,

2004

49

PCI

Cryptographic

Coprocessor

On

the

PCI

Cryptographic

Coprocessor,

PKA

keys

are

protected

by

the

Asymmetric-Keys

Master

Key

(ASYM-MK).

The

ASYM-MK

is

a

triple-length

key

used

to

encipher

and

decipher

PKA

keys.

In

order

for

the

PCI

Cryptographic

Coprocessor

to

function,

the

hash

pattern

of

the

ASYM-MK

must

match

the

hash

pattern

of

the

SMK

on

the

Cryptographic

Coprocessor

Feature.

The

ICSF

administrator

installs

the

PKA

master

keys

on

the

Cryptographic

Coprocessor

Feature

and

the

ASYM-MK

on

the

PCI

Cryptographic

Coprocessor

by

using

either

the

pass

phrase

initialization

routine,

the

Clear

Master

Key

Entry

panels,

or

the

optional

Trusted

Key

Entry

(TKE)

workstation.

Before

PKA

services

are

enabled

on

the

PCI

Cryptographic

Coprocessor,

the

following

conditions

must

be

met:

v

The

Symmetric-Keys

Master

Key

(SYM-MK)

must

be

installed

on

the

PCI

Cryptographic

Coprocessor.

It

must

match

the

Cryptographic

Coprocessor

Feature

DES

master

key

and

match

the

master

key

that

the

CKDS

was

enciphered

with.

v

The

PKDS

is

required

for

OS/390

V2

R9

ICSF

and

above.

v

The

PKA

master

keys

(SMK

and

KMMK)

on

the

Cryptographic

Coprocessor

Feature

must

be

installed

and

valid.

v

The

ASYM-MK

PKA

master

key

on

the

PCI

Cryptographic

Coprocessor

must

be

installed

and

valid.

v

The

hash

pattern

of

the

ASYM-MK

on

the

PCI

Cryptographic

Coprocessor

must

match

the

hash

pattern

of

the

SMK

on

the

Cryptographic

Coprocessor

Feature.

v

The

PKDS

must

be

initialized

with

the

PKA

master

keys

installed

on

the

Cryptographic

Coprocessor

Feature.

PCI

X

Cryptographic

Coprocessor

On

the

PCI

X

Cryptographic

Coprocessor,

PKA

keys

are

protected

by

the

Asymmetric-Keys

Master

Key

(ASYM-MK).

The

ASYM-MK

is

a

triple-length

key

used

to

encipher

and

decipher

PKA

keys.

In

order

for

PKA

services

to

function

on

the

PCI

X

Cryptographic

Coprocessor,

the

PKA

master

keys

must

be

installed.

The

ICSF

administrator

installs

the

PKA

master

keys

on

the

PCI

X

Cryptographic

Coprocessor

by

using

either

the

pass

phrase

initialization

routine,

the

Clear

Master

Key

Entry

panels,

or

the

optional

Trusted

Key

Entry

(TKE)

workstation.

Before

PKA

services

are

enabled

on

the

PCI

X

Cryptographic

Coprocessor,

the

following

conditions

must

be

met:

v

The

Symmetric-Keys

Master

Key

(SYM-MK)

must

be

installed

on

the

PCI

X

Cryptographic

Coprocessor.

v

The

ASYM-MK

master

key

on

the

PCI

X

Cryptographic

Coprocessor

must

be

installed.

v

The

PKDS

must

be

initialized

with

the

ASYM-MK

master

key

installed

on

the

PCI

X

Cryptographic

Coprocessor.

Operational

private

keys

Operational

private

keys

are

protected

under

two

layers

of

DES

encryption.

They

are

encrypted

under

an

Object

Protection

Key

(OPK)

that

in

turn

is

encrypted

under

the

SMK

or

KMMK.

You

dynamically

generate

the

OPK

for

each

private

key

at

50

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|

|

import

time.

ICSF

provides

a

public

key

data

set

(PKDS)

for

the

storage

of

application

PKA

keys.

Although

you

cannot

change

PKA

master

keys

dynamically,

the

PKA

Key

Token

Change

callable

service

can

be

executed

to

change

a

private

PKA

token

(RSA

or

DSS)

from

encryption

under

the

old

ASYM-MK

to

encryption

under

the

current

ASYM-MK.

This

service

requires

a

PCI

Cryptographic

Coprocessor

and

PKA

callable

services

must

be

enabled.

Private

tokens

encrypted

under

the

KMMK

will

only

be

reenciphered

if

the

KMMK

was

equal

to

the

SMK.

Private

tokens

in

the

PKDS

are

reenciphered

after

the

SMK

and

ASYM-MK

keys

are

changed

by

executing

the

Reencipher

PKDS

panel

option.

The

reenciphered

PKDS

is

then

activated

through

the

Activate

PKDS

panel

option.

PKA

Callable

Services

The

Cryptographic

Coprocessor

Feature

available

on

S/390

Enterprise

Servers,

the

S/390

Multiprise,

the

IBM

Eserver

zSeries

800,

and

the

IBM

Eserver

zSeries

900,

provides

RSA

and

DSS

digital

signature

functions,

key

management

functions,

and

DES

key

distribution

functions.

The

S/390

G5

Enterprise

Server,

S/390

G6

Enterprise

Server,

IBM

Eserver

zSeries

800,

and

the

IBM

Eserver

zSeries

900

provide

the

ability

to

generate

RSA

keys

on

the

PCI

Cryptographic

Coprocessor.

ICSF

provides

application

programming

interfaces

to

these

functions

through

callable

services.

The

PCI

X

Cryptographic

Coprocessor

available

on

the

IBM

Eserver

zSeries

990

provides

RSA

digital

signature

functions,

key

management

functions,

and

DES

key

distribution

functions,

PIN,

MAC

and

data

encryption

functions,

and

application

programming

interfaces

to

these

functions

through

callable

services.

The

IBM

Eserver

zSeries

990

also

provides

the

ability

to

generate

RSA

keys

on

the

PCI

X

Cryptographic

Coprocessor

Callable

Services

Supporting

Digital

Signatures

ICSF

provides

the

following

services

that

support

digital

signatures.

Restriction:

DSS

is

not

supported

on

the

IBM

Eserver

zSeries

990.

Digital

Signature

Generate

Callable

Service

This

service

generates

a

digital

signature.

This

service

may

use

either

type.

It

supports

the

following

methods:

v

ANSI

X9.30

(DSS)

v

ANSI

X9.31

(RSA)

v

ISO

9796-1

(RSA)

v

RSA

DSI

PKCS

1.0

and

1.1

(RSA)

v

Padding

on

the

left

with

zeros

(RSA)

The

input

text

must

have

been

previously

hashed

using

the

one-way

hash

generate

callable

service

or

the

MDC

generation

service.

Digital

Signature

Verify

Callable

Service

This

service

verifies

a

digital

signature

using

a

PKA

public

key.

(There

are

two

types

of

PKA

public

key

tokens:

RSA

and

DSS.

This

service

can

use

either

type.)

It

supports

the

following

methods:

v

ANSI

X9.30

(DSS)

v

ANSI

X9.31

(RSA)

v

ISO

9796-1

(RSA)

v

RSA

DSI

PKCS

1.0

and

1.1

(RSA)

v

Padding

on

the

left

with

zeros

(RSA)

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

51

The

text

that

is

input

to

this

service

must

be

previously

hashed

using

the

one-way

hash

generate

callable

service

or

the

MDC

generation

service.

Callable

Services

for

PKA

Key

Management

ICSF

provides

the

following

services

for

PKA

key

management.

PKA

Key

Generate

Callable

Service

This

service

generates

a

PKA

internal

token

for

use

with

the

DSS

algorithm

in

digital

signature

services.

You

can

then

use

the

PKA

public

key

extract

callable

service

to

extract

a

DSS

public

key

token

from

the

internal

key

token.

This

service

also

supports

the

generation

of

RSA

keys

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Input

to

the

PKA

key

generate

callable

service

is

either

a

skeleton

key

token

created

by

the

PKA

key

token

build

callable

service

or

a

valid

key

token.

Upon

examination

of

the

input

skeleton

key

token,

the

PKA

key

generate

service

routes

the

key

generation

request

as

follows:

v

If

the

skeleton

is

for

a

DSS

key

token,

ICSF

routes

the

request

to

a

Cryptographic

Coprocessor

Feature.

v

If

the

skeleton

is

for

an

RSA

key,

ICSF

routes

the

request

to

any

available

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

v

If

the

skeleton

is

for

a

retained

RSA

key,

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

where

the

key

is

generated

and

retained

for

additional

security.

PKA

Key

Import

Callable

Service

This

service

imports

a

PKA

private

key,

which

may

be

RSA

or

DSS.

The

key

token

to

import

can

be

in

the

clear

or

encrypted.

The

PKA

key

token

build

utility

creates

a

clear

PKA

key

token.

The

PKA

key

generate

callable

service

generates

either

a

clear

or

an

encrypted

PKA

key

token.

PKA

Key

Token

Build

Callable

Service

The

PKA

key

token

build

callable

service

is

a

utility

you

can

use

to

create

an

external

PKA

key

token

containing

an

unenciphered

private

RSA

or

DSS

key.

You

can

supply

this

token

as

input

to

the

PKA

key

import

callable

service

to

obtain

an

operational

internal

token

containing

an

enciphered

private

key.

You

can

also

use

this

service

to

input

a

clear

unenciphered

public

RSA

or

DSS

key

and

return

the

public

key

in

a

token

format

that

other

PKA

services

can

use

directly.

Use

this

service

to

build

skeleton

key

tokens

for

input

to

the

PKA

key

generate

callable

service

for

creation

of

RSA

keys

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

PKA

Key

Token

Change

Callable

Service

The

PKA

key

token

change

callable

service

is

a

utility

you

can

use

to

change

PKA

key

tokens

(RSA

and

DSS)

from

encipherment

with

the

old

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

asymmetric-keys

master

key

to

encipherment

with

the

current

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

asymmetric-keys

master

key.

This

callable

service

only

changes

private

internal

tokens.

An

active

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

is

required

and

PKA

callable

services

must

be

enabled.

52

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

PKA

Public

Key

Extract

Callable

Service

This

service

extracts

a

PKA

public

key

token

from

a

PKA

internal

(operational)

or

external

(importable)

private

key

token.

It

performs

no

cryptographic

verification

of

the

PKA

private

key

token.

Callable

Services

to

Update

The

Public

Key

Data

Set

(PKDS)

The

Public

Key

Data

Set

(PKDS)

is

a

repository

for

RSA

and

DSS

public

and

private

keys.

An

application

can

store

keys

in

the

PKDS

and

refer

to

them

by

label

when

using

any

of

the

callable

services

which

accept

public

key

tokens

as

input.

The

PKDS

update

callable

services

provide

support

for

creating

and

writing

records

to

the

PKDS

and

reading

and

deleting

records

from

the

PKDS.

PKDS

Record

Create

Callable

Service

This

service

accepts

an

RSA

or

DSS

private

key

token

in

either

external

or

internal

format,

or

an

RSA

or

DSS

public

key

token

and

writes

a

new

record

to

the

PKDS.

An

application

can

create

a

null

token

in

the

PKDS

by

specifying

a

token

length

of

zero.

The

key

label

must

be

unique

and

the

caller

must

be

in

task

mode

and

cannot

be

in

SRB

mode.

PKDS

Record

Delete

Callable

Service

This

service

deletes

a

record

from

the

PKDS.

An

application

can

specify

that

the

entire

record

be

deleted,

or

that

only

the

contents

of

the

record

be

deleted.

If

only

the

contents

of

the

record

are

deleted,

the

record

will

still

exist

in

the

PKDS

but

will

contain

only

binary

zeros.

The

key

label

must

be

unique

and

the

caller

must

be

in

task

mode

and

cannot

be

in

SRB

mode.

Note:

Retained

keys

cannot

be

deleted

from

the

PKDS

with

this

service.

See

“Retained

Key

Delete

(CSNDRKD)”

on

page

345

for

information

on

deleting

retained

keys.

PKDS

Record

Read

Callable

Service

This

service

reads

a

record

from

the

PKDS

and

returns

the

contents

of

that

record

to

the

caller.

The

key

label

must

be

unique

and

the

caller

must

be

in

task

mode

and

cannot

be

in

SRB

mode.

PKDS

Record

Write

Callable

Service

This

service

accepts

an

RSA

or

DSS

private

key

token

in

either

external

or

internal

format,

or

an

RSA

or

DSS

public

key

token

and

writes

over

an

existing

record

in

the

PKDS.

An

application

can

check

the

PKDS

for

a

null

record

with

the

label

provided

and

overwrite

this

record

if

it

does

exist.

Alternatively,

an

application

can

specify

to

overwrite

a

record

regardless

of

the

contents

of

the

record.

The

caller

must

be

in

task

mode

and

cannot

be

in

SRB

mode.

Note:

Retained

keys

cannot

be

written

to

the

PKDS

with

the

PKDS

Record

Write

service,

nor

can

a

retained

key

record

in

the

PKDS

be

overwritten

with

this

service.

Callable

Services

for

Working

with

Retained

Private

Keys

Private

keys

can

be

generated,

retained,

and

used

within

the

secure

boundary

of

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Retained

keys

are

generated

by

the

PKA

Key

Generate

(CSNDPKG)

callable

service.

The

private

key

values

of

retained

keys

never

appear

in

any

form

outside

the

secure

boundary.

All

retained

keys

have

an

entry

in

the

PKDS

that

identifies

the

PCI

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

53

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

where

the

retained

private

key

is

stored.

ICSF

provides

the

following

callable

services

to

list

and

delete

retained

private

keys.

In

the

following

situations,

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

clears

the

master

key

registers

so

that

the

master

key

values

are

not

disclosed.

v

If

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

detects

tampering

(the

intrusion

latch

is

tripped),

ALL

installation

data

is

cleared:

master

keys,

retained

keys

for

all

domains,

as

well

as

roles

and

profiles.

v

If

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

detects

tampering

(the

secure

boundary

of

the

card

is

compromised),

it

self-destructs

and

can

no

longer

be

used.

v

If

you

issue

a

command

from

the

TKE

workstation

to

zeroize

a

domain

This

command

zeroizes

the

data

specific

to

a

domain:

master

keys

and

retained

keys.

v

If

you

issue

a

command

from

the

Support

Element

panels

to

zeroize

all

domains.

This

command

zeroizes

ALL

installation

data:

master

keys,

retained

keys

and

access

control

roles

and

profiles.

Retained

Key

Delete

Callable

Service

The

retained

key

delete

callable

service

deletes

a

key

that

has

been

retained

within

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

and

also

deletes

the

record

containing

the

key

token

from

the

PKDS.

Retained

Key

List

Callable

Service

The

retained

key

list

callable

service

lists

the

key

labels

of

private

keys

that

are

retained

within

the

boundaries

of

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors

installed

on

your

server.

Callable

Services

for

SET

Secure

Electronic

Transaction

SET

is

an

industry-wide

open

standard

for

securing

bankcard

transactions

over

open

networks.

The

SET

protocol

addresses

the

payment

phase

of

a

transaction

from

the

individual,

to

the

merchant,

to

the

acquirer

(the

merchant’s

current

bankcard

processor).

It

can

be

used

to

help

ensure

the

privacy

and

integrity

of

real

time

bankcard

payments

over

the

Internet.

In

addition,

with

SET

in

place,

everyone

in

the

payment

process

knows

who

everyone

else

is.

The

card

holder,

the

merchant,

and

the

acquirer

can

be

fully

authenticated

because

the

core

protocol

of

SET

is

based

on

digital

certificates.

Each

participant

in

the

payment

transaction

holds

a

certificate

that

validates

his

or

her

identity.

The

public

key

infrastructure

allows

these

digital

certificates

to

be

exchanged,

checked,

and

validated

for

every

transaction

made

over

the

Internet.

The

mechanics

of

this

operation

are

transparent

to

the

application.

Under

the

SET

protocol,

every

online

purchase

must

be

accompanied

by

a

digital

certificate

which

identifies

the

card-holder

to

the

merchant.

The

buyer’s

digital

certificate

serves

as

an

electronic

representation

of

the

buyer’s

credit

card

but

does

not

actually

show

the

credit

card

number

to

the

merchant.

Once

the

merchant’s

SET

application

authenticates

the

buyer’s

identity,

it

then

decrypts

the

order

information,

processes

the

order,

and

forwards

the

still-encrypted

payment

information

to

the

acquirer

for

processing.

The

acquirer’s

SET

application

authenticates

the

buyer’s

credit

card

information,

identifies

the

merchant,

and

arranges

settlement.

With

SET,

the

Internet

becomes

a

safer,

more

secure

environment

for

the

use

of

payment

cards.

54

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

ICSF

provides

the

following

callable

services

that

can

be

used

in

developing

SET

applications

that

make

use

of

the

S/390

and

IBM

Eserver

zSeries

cryptographic

hardware

at

the

merchant

and

acquirer

payment

gateway.

SET

Block

Compose

Callable

Service

The

SET

Block

Compose

callable

service

performs

DES

encryption

of

data,

OAEP-formatting

through

a

series

of

SHA-1

hashing

operations,

and

the

RSA-encryption

of

the

Optimal

Asymmetric

Encryption

Padding

(OAEP)

block.

SET

Block

Decompose

Callable

Service

The

SET

Block

Decompose

callable

service

decrypts

both

the

RSA-encrypted

and

the

DES-encrypted

data.

PKA

Key

Tokens

PKA

key

tokens

contain

RSA

or

DSS

private

or

public

keys.

Although

DES

tokens

are

64

bytes,

PKA

tokens

are

variable

length

because

they

contain

either

RSA

or

DSS

key

values,

which

are

variable

in

length.

Consequently,

length

parameters

precede

all

PKA

token

parameters.

The

maximum

allowed

size

is

2500

bytes.

PKA

key

tokens

consist

of

a

token

header,

any

required

sections,

and

any

optional

sections.

Optional

sections

depend

on

the

token

type.

PKA

key

tokens

can

be

public

or

private,

and

private

key

tokens

can

be

internal

or

external.

Therefore,

there

are

three

basic

types

of

tokens,

each

of

which

can

contain

either

RSA

or

DSS

information:

v

A

public

key

token

v

A

private

external

key

token

v

A

private

internal

key

token

Public

key

tokens

contain

only

the

public

key.

Private

key

tokens

contain

the

public

and

private

key

pair.

Table

6

summarizes

the

sections

in

each

type

of

token.

Table

6.

Summary

of

PKA

Key

Token

Sections

Section

Public

External

Key

Token

Private

External

Key

Token

Private

Internal

Key

Token

Header

X

X

X

RSA

or

DSS

private

key

information

X

X

RSA

or

DSS

public

key

information

X

X

X

Key

name

(optional)

X

X

Internal

information

X

As

with

DES

key

tokens,

the

first

byte

of

a

PKA

key

token

contains

the

token

identifier

which

indicates

the

type

of

token.

A

first

byte

of

X'1E'

indicates

an

external

token

with

a

cleartext

public

key

and

optionally

a

private

key

that

is

either

in

cleartext

or

enciphered

by

a

transport

key-encrypting

key.

An

external

key

token

is

in

importable

key

form.

It

can

be

sent

on

the

link.

A

first

byte

of

X'1F'

indicates

an

internal

token

with

a

cleartext

public

key

and

a

private

key

that

is

enciphered

by

the

PKA

master

key

and

ready

for

internal

use.

An

internal

key

token

is

in

operational

key

form.

A

PKA

private

key

token

must

be

in

operational

form

for

ICSF

to

use

it.

(PKA

public

key

tokens

are

used

directly

in

the

external

form.)

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

55

Formats

for

public

and

private

external

and

internal

RSA

and

DSS

key

tokens

begin

in

“Format

of

the

RSA

Public

Key

Token”

on

page

434.

PKA

Key

Management

You

can

also

generate

PKA

keys

in

several

ways.

v

Using

the

ICSF

PKA

key

generate

callable

service.

v

Using

the

Transaction

Security

System

PKA

key

generate

verb,

or

a

comparable

product

from

another

vendor.

If

you

have

a

S/390

G5

Enterprise

Server,

or

higher,

with

a

PCI

Cryptographic

Coprocessor,

or

a

z990

with

a

PCI

X

Cryptographic

Coprocessor,

you

can

use

the

ICSF

PKA

key

generate

callable

service

to

generate

internal

and

external

PKA

tokens.

You

can

also

generate

RSA

keys

on

another

system.

To

input

a

clear

RSA

key

to

ICSF,

create

the

token

with

the

PKA

key

token

build

callable

service

and

import

it

using

the

PKA

key

import

callable

service.

To

input

an

encrypted

RSA

key,

generate

the

key

on

the

Transaction

Security

System

and

import

it

using

the

PKA

key

import

callable

service.

In

either

case,

use

the

PKA

key

token

build

callable

service

to

create

a

skeleton

key

token

as

input

(see

“PKA

Key

Token

Build

(CSNDPKB)”

on

page

323).

You

can

generate

DSS

keys

on

another

system

or

on

ICSF.

You

need

to

supply

DSS

network

quantities

to

the

PKA

key

generate

callable

service.

If

you

generate

DSS

keys

on

another

system,

you

can

import

them

the

same

way

as

RSA

keys.

If

you

generate

a

DSS

key

on

ICSF,

you

can

never

export

it.

You

can

use

it

on

another

ICSF

host

only

if

the

same

PKA

master

keys

are

installed

on

both

systems.

The

PKA

key

import

callable

service

uses

the

clear

token

from

the

PKA

key

token

build

service

or

a

clear

or

encrypted

token

from

the

Transaction

Security

System

to

securely

import

the

key

token

into

operational

form

for

ICSF

to

use.

ICSF

does

not

permit

the

export

of

the

imported

PKA

key.

The

PKA

public

key

extract

callable

service

builds

a

public

key

token

from

a

private

key

token.

Application

RSA

and

DSS

public

and

private

keys

can

be

stored

in

the

public

key

data

set

(PKDS),

a

VSAM

data

set.

External encrypted
PKA token

PKA Key Import

Clear Key Values

PKA Key Token
Build Service

External unencrypted
PKA token

TSS Skeleton Key Token

PKA Key Generate
Service

Clear external
PKA token

Internal PKA
token

Figure

2.

PKA

Key

Management

56

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Security

and

Integrity

of

the

Token

PKA

private

key

tokens

may

optionally

have

a

64-byte

private_key_name

field.

If

private_key_name

exists,

ICSF

uses

RACHECK

to

verify

it

before

using

the

token

in

a

callable

service.

For

additional

security,

the

processor

also

validates

the

entire

private

key

token.

Key

Identifier

for

PKA

Key

Token

A

key

identifier

for

a

PKA

key

token

is

a

variable

length

(maximum

allowed

size

is

2500

bytes)

area

that

contains

one

of

the

following:

v

Key

label

identifies

keys

that

are

in

the

PKDS.

Ask

your

ICSF

administrator

for

the

key

labels

that

you

can

use.

v

Key

token

can

be

either

an

internal

key

token,

an

external

key

token,

or

a

null

key

token.

Key

tokens

are

generated

by

an

application

(for

example,

using

the

PKA

key

generate

callable

service),

or

received

from

another

system

that

can

produce

external

key

tokens.

An

internal

key

token

can

be

used

only

on

ICSF,

because

a

PKA

master

key

encrypts

the

key

value.

Internal

key

tokens

contain

keys

in

operational

form

only.

An

external

key

token

can

be

exchanged

with

other

systems

because

a

transport

key

that

is

shared

with

the

other

system

encrypts

the

key

value.

External

key

tokens

contain

keys

in

either

exportable

or

importable

form.

A

null

key

token

consists

of

8

bytes

of

binary

zeros.

The

PKDS

Record

Create

service

can

be

used

to

write

a

null

token

to

the

PKDS.

This

PKDS

record

can

subsequently

be

identified

as

the

target

token

for

the

PKA

key

import

or

PKA

key

generate

service.

The

term

key

identifier

is

used

when

a

parameter

could

be

one

of

the

above

items

and

to

indicate

that

different

inputs

are

possible.

For

example,

you

may

want

to

specify

a

specific

parameter

as

either

an

internal

key

token

or

a

key

label.

The

key

label

is,

in

effect,

an

indirect

reference

to

a

stored

internal

key

token.

Key

Label

If

the

first

byte

of

the

key

identifier

is

greater

than

X'40',

the

field

is

considered

to

be

holding

a

key

label.

The

contents

of

a

key

label

are

interpreted

as

a

pointer

to

a

public

key

data

set

(PKDS)

key

entry.

The

key

label

is

an

indirect

reference

to

an

internal

key

token.

A

key

label

is

specified

on

callable

services

with

the

key_identifier

parameter

as

a

64-byte

character

string,

left-justified,

and

padded

on

the

right

with

blanks.

In

most

cases,

the

callable

service

does

not

check

the

syntax

of

the

key

label

beyond

the

first

byte.

One

exception

is

the

key

record

create

callable

service

which

enforces

the

KGUP

rules

for

key

labels

unless

syntax

checking

is

bypassed

by

a

preprocessing

exit.

A

key

label

has

the

following

form:

Offset

Length

Data

00-63

64

Key

label

name

Key

Token

A

key

token

is

a

variable

length

(maximum

allowed

size

is

2500

bytes)

field

composed

of

key

value

and

control

information.

PKA

keys

can

be

either

public

or

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

57

private

RSA

or

DSS

keys.

Each

key

token

can

be

either

an

internal

key

token

(the

first

byte

of

the

key

identifier

is

X'1F'),

an

external

key

token

(the

first

byte

of

the

key

identifier

is

X'1E'),

or

a

null

PKA

private

key

token

(the

first

byte

of

the

key

identifier

is

X'00').

The

following

is

a

list

of

private

key

section

identifiers

for

internal

and

external

private

RSA

key

tokens:

Table

7.

Internal

and

External

Private

RSA

Key

Token

Section

Identifiers

Key

token

Section

identifier

RSA

Private

Key

Token

1024

Modulus-Exponent

External

Form

X'02'

RSA

Private

Key

Token

2048

Chinese

Remainder

Theorem

External

Form

X'08'

RSA

Private

Key

Token

1024

Modulus-Exponent

Internal

Form

(Cryptographic

Coprocessor

Feature)

X'02'

RSA

Private

Key

Token

1024

Modulus-Exponent

Internal

Form

(PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor)

X'06'

RSA

Private

Key

Token

2048

Chinese

Remainder

Theorem

Internal

Form

(PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor)

X'08'

See

Appendix

B,

“Key

Token

Formats,”

on

page

431

for

descriptions

of

the

PKA

key

tokens.

An

internal

key

token

is

a

token

that

can

be

used

only

on

the

ICSF

system

that

created

it

(or

another

ICSF

system

with

the

same

PKA

master

key).

It

contains

a

key

that

is

encrypted

under

the

PKA

master

key.

An

application

obtains

an

internal

key

token

by

using

one

of

the

callable

services

such

as

those

listed

below.

The

callable

services

are

described

in

detail

in

Chapter

9,

“Managing

PKA

Cryptographic

Keys.”

v

PKA

key

generate

The

PKA

Key

Token

Change

callable

service

can

reencipher

private

internal

tokens

from

encryption

under

the

old

ASYM-MK

to

encryption

under

the

current

ASYM-MK.

PKDS

Reencipher/Activate

options

are

available

to

reencipher

RSA

and

DSS

internal

tokens

in

the

PKDS

after

the

SMK/ASYM-MK

keys

are

changed.

PKA

master

keys

may

not

be

changed

dynamically.

For

debugging

information,

see

Appendix

B,

“Key

Token

Formats”

for

the

format

of

an

internal

key

token.

If

the

first

byte

of

the

key

identifier

is

X'1E',

the

key

identifier

is

interpreted

as

an

external

key

token.

An

external

PKA

key

token

contains

key

(possibly

encrypted)

and

control

information.

By

using

the

external

key

token,

you

can

exchange

keys

between

systems.

An

application

obtains

the

external

key

token

by

using

one

of

the

callable

services

such

as

those

listed

below.

They

are

described

in

detail

in

Chapter

9,

“Managing

PKA

Cryptographic

Keys.”

v

PKA

public

key

extract

v

PKA

key

import

v

PKA

key

token

build

v

PKA

key

generate

58

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

For

debugging

information,

see

Appendix

B,

“Key

Token

Formats”

for

the

format

of

an

external

key

token.

If

the

first

byte

of

the

key

identifier

is

X'00',

the

key

identifier

is

interpreted

as

a

null

key

token.

For

debugging

information,

see

Appendix

B,

“Key

Token

Formats”

for

the

format

of

a

null

key

token.

The

Transaction

Security

System

and

ICSF

Portability

The

Transaction

Security

System

PKA

verbs

from

releases

prior

to

1996

can

run

only

on

the

Transaction

Security

System.

The

PKA96

release

of

the

Transaction

Security

System

PKA

verbs

generally

runs

on

ICSF

without

change.

As

with

DES

cryptography,

you

cannot

interchange

internal

PKA

tokens

but

can

interchange

external

tokens.

Summary

of

the

PKA

Callable

Services

Table

8

lists

the

PKA

callable

services,

described

in

this

book,

and

their

corresponding

verbs.

(The

PKA

services

start

with

CSNDxxx

and

have

corresponding

CSFxxx

names.)

This

table

also

references

the

chapter

that

describes

the

callable

service.

Table

8.

Summary

of

PKA

Callable

Services

Verb

Service

Name

Function

Chapter

7,

“Financial

Services”

CSNDSBC

SET

block

compose

Composes

the

RSA-OAEP

block

and

the

DES-encrypted

block

in

support

of

the

SET

protocol.

CSNDSBD

SET

block

decompose

Decomposes

the

RSA-OAEP

block

and

the

DES-encrypted

block

to

provide

unencrypted

data

back

to

the

caller.

Chapter

8,

“Using

Digital

Signatures”

CSNDDSG

Digital

signature

generate

Generates

a

digital

signature

using

a

PKA

private

key

supporting

RSA

and

DSS

algorithms.

CSNDDSV

Digital

signature

verify

Verifies

a

digital

signature

using

a

PKA

public

key

supporting

RSA

and

DSS

algorithms.

Chapter

9,

“Managing

PKA

Cryptographic

Keys”

CSNDPKG

PKA

key

generate

Generates

a

DSS

internal

token

for

use

in

digital

signature

services

and

RSA

keys

for

use

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

CSNDPKI

PKA

key

import

Imports

a

PKA

key

token

containing

either

a

clear

PKA

key

or

a

PKA

key

enciphered

under

a

limited

authority

IMP-PKA

KEK.

Chapter

3.

Introducing

PKA

Cryptography

and

Using

PKA

Callable

Services

59

Table

8.

Summary

of

PKA

Callable

Services

(continued)

Verb

Service

Name

Function

CSNDPKB

PKA

key

token

build

Creates

an

external

PKA

key

token

containing

a

clear

private

RSA

or

DSS

key.

Using

this

token

as

input

to

the

PKA

key

import

callable

service

returns

an

operational

internal

token

containing

an

enciphered

private

key.

Using

CSNDPKB

on

a

clear

public

RSA

or

DSS

key,

returns

the

public

key

in

a

token

format

that

other

PKA

services

can

directly

use.

CSNDPKB

can

also

be

used

to

create

a

skeleton

token

for

input

to

the

PKA

Key

Generate

service

for

the

generation

of

an

internal

DSS

or

RSA

key

token.

CSNDKTC

PKA

key

token

change

Changes

PKA

key

tokens

(RSA

and

DSS)

from

encipherment

with

the

old

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

asymmetric-keys

master

key

to

encipherment

with

the

current

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

asymmetric-keys

master

key.

This

callable

service

only

changes

private

internal

tokens.

CSNDPKX

PKA

public

key

extract

Extracts

a

PKA

public

key

token

from

a

supplied

PKA

internal

or

external

private

key

token.

Performs

no

cryptographic

verification

of

the

PKA

private

token.

CSNDKRC

PKDS

record

create

Writes

a

new

record

to

the

PKDS.

CSNDKRD

PKDS

record

delete

Delete

a

record

from

the

PKDS.

CSNDKRR

PKDS

record

read

Read

a

record

from

the

PKDS

and

return

the

contents

of

that

record.

CSNDKRW

PKDS

record

write

Write

over

an

existing

record

in

the

PKDS.

CSNDRKL

Retained

key

list

Lists

key

labels

of

keys

that

have

been

retained

within

all

currently

active

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors.

CSNDRKD

Retained

key

delete

Deletes

a

key

that

has

been

retained

within

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

60

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Part

2.

CCA

Callable

Services

This

part

of

the

document

introduces

DES

and

PKA

callable

services.

©

Copyright

IBM

Corp.

1997,

2004

61

62

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

4.

Managing

DES

Cryptographic

Keys

This

chapter

describes

the

callable

services

that

generate

and

maintain

cryptographic

keys.

Using

ICSF,

you

can

generate

keys

using

either

the

key

generator

utility

program

or

the

key

generate

callable

service.

ICSF

provides

a

number

of

callable

services

to

assist

you

in

managing

and

distributing

keys

and

maintaining

the

cryptographic

key

data

set

(CKDS).

This

chapter

describes

the

following

callable

services:

v

“Clear

Key

Import

(CSNBCKI)”

v

“Control

Vector

Generate

(CSNBCVG)”

on

page

65

v

“Control

Vector

Translate

(CSNBCVT)”

on

page

68

v

“Cryptographic

Variable

Encipher

(CSNBCVE)”

on

page

71

v

“Data

Key

Export

(CSNBDKX)”

on

page

73

v

“Data

Key

Import

(CSNBDKM)”

on

page

75

v

“Diversified

Key

Generate

(CSNBDKG)”

on

page

78

v

“Key

Export

(CSNBKEX)”

on

page

82

v

“Key

Generate

(CSNBKGN)”

on

page

86

v

“Key

Import

(CSNBKIM)”

on

page

97

v

“Key

Part

Import

(CSNBKPI)”

on

page

102

v

“Key

Record

Create

(CSNBKRC)”

on

page

105

v

“Key

Record

Delete

(CSNBKRD)”

on

page

107

v

“Key

Record

Read

(CSNBKRR)”

on

page

109

v

“Key

Record

Write

(CSNBKRW)”

on

page

111

v

“Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)”

on

page

113

v

“Key

Token

Build

(CSNBKTB)”

on

page

117

v

“Key

Translate

(CSNBKTR)”

on

page

125

v

“Multiple

Clear

Key

Import

(CSNBCKM)”

on

page

127

v

“Multiple

Secure

Key

Import

(CSNBSKM)”

on

page

130

v

“PKA

Decrypt

(CSNDPKD)”

on

page

134

v

“PKA

Encrypt

(CSNDPKE)”

on

page

139

v

“Prohibit

Export

(CSNBPEX)”

on

page

142

v

“Prohibit

Export

Extended

(CSNBPEXX)”

on

page

144

v

“Random

Number

Generate

(CSNBRNG)”

on

page

145

v

“Secure

Key

Import

(CSNBSKI)”

on

page

147

v

“Symmetric

Key

Export

(CSNDSYX)”

on

page

150

v

“Symmetric

Key

Generate

(CSNDSYG)”

on

page

153

v

“Symmetric

Key

Import

(CSNDSYI)”

on

page

158

v

“Transform

CDMF

Key

(CSNBTCK)”

on

page

162

v

“User

Derived

Key

(CSFUDK)”

on

page

164

Clear

Key

Import

(CSNBCKI)

Use

the

clear

key

import

callable

service

to

import

a

clear

DATA

key

that

is

to

be

used

to

encipher

or

decipher

data.

This

callable

service

can

import

only

DATA

keys.

Clear

key

import

accepts

an

8-byte

clear

DATA

key,

enciphers

it

under

the

master

key,

and

returns

the

encrypted

DATA

key

in

operational

form

in

an

internal

key

token.

If

the

clear

key

value

does

not

have

odd

parity

in

the

low-order

bit

of

each

byte,

the

service

returns

a

warning

value

in

the

reason_code

parameter.

The

callable

service

does

not

adjust

the

parity

of

the

key.

©

Copyright

IBM

Corp.

1997,

2004

63

Note:

To

import

16-byte

or

24-byte

DATA

keys,

use

the

multiple

clear

key

import

callable

service

that

is

described

in

“Multiple

Clear

Key

Import

(CSNBCKM)”

on

page

127.

Format

CALL

CSNBCKI(

return_code,

reason_code,

exit_data_length,

exit_data,

clear_key,

key_identifier

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

clear_key

Direction:

Input

Type:

String

The

clear_key

specifies

the

8-byte

clear

key

value

to

import.

key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

that

is

to

receive

the

internal

key

token.

“Key

Identifier

for

Key

Token”

on

page

7

describes

the

internal

key

token.

Clear

Key

Import

(CSNBCKI)

64

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Usage

Notes

These

usage

notes

only

apply

to

CCF

systems.

This

service

produces

an

internal

DATA

token

with

a

control

vector

which

is

usable

on

the

Cryptographic

Coprocessor

Feature.

If

a

valid

internal

token

is

supplied

as

input

to

the

service

in

the

key_identifier

field,

that

token’s

control

vector

will

not

be

used

in

the

encryption

of

the

clear

key

value.

This

service

marks

this

internal

key

token

CDMF

or

DES,

according

to

the

system's

default

encryption

algorithm,

unless

token

copying

overrides

this.

The

service

marks

this

internal

key

token

CDMF

or

DES,

according

to

the

system's

default

encryption

algorithm,

unless

token

copying

overrides

this.

See

“System

Encryption

Algorithm”

on

page

27

for

details.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

9.

Clear

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

There

are

no

internal

token

markings

for

CDMF

or

DES.

There

is

no

token

copying.

Control

Vector

Generate

(CSNBCVG)

The

Control

Vector

Generate

callable

service

builds

a

control

vector

from

keywords

specified

by

the

key_type

and

rule_array

parameters.

Format

CALL

CSNBCVG(

return_code,

reason_code,

exit_data_length,

exit_data,

key_type,

rule_array_count,

rule_array,

reserved,

control_vector

)

Clear

Key

Import

(CSNBCKI)

Chapter

4.

Managing

DES

Cryptographic

Keys

65

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFFFF'

(2

gigabytes).

The

data

is

defined

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_type

Direction:

Input

Type:

String

A

string

variable

containing

a

keyword

for

the

key

type.

The

keyword

is

8

bytes

in

length,

left

justified,

and

padded

on

the

right

with

space

characters.

It

is

taken

from

the

following

list:

CIPHER

DATAM

IKEYXLAT

OPINENC

CVARDEC

DATAMV

IMPORTER

PINGEN

CVARENC

DECIPHER

IPINENC

PINVER

CVARPINE

DKYGENKY

KEYGENKY

SECMSG

CVARXCVL

ENCIPHER

MAC

CVARXCVR

EXPORTER

MACVER

DATA

OKEYXLAT

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

rule_array

Direction:

Input

Type:

Character

String

Keywords

that

provide

control

information

to

the

callable

service.

Each

keyword

is

left

justified

in

8-byte

fields,

and

padded

on

the

right

with

blanks.

All

keywords

Control

Vector

Generate

(CSNBCVG)

66

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

must

be

in

contiguous

storage.

“Key

Token

Build

(CSNBKTB)”

on

page

117

illustrates

the

key

type

and

key

usage

keywords

that

can

be

combined

in

the

Control

Vector

Generate

and

Key

Token

Build

callable

services

to

create

a

control

vector.

The

rule

array

keywords

are

shown

below.

CLR8-ENC

DKYL5

IBM-PIN

NOOFFSET

CPINENC

DKYL6

IBM-PINO

OPEX

CPINGEN

DKYL7

IMEX

OPIM

CPINGENA

DMAC

IMIM

REFORMAT

DALL

DMKEY

IMPORT

SINGLE

DATA

DMPIN

INBK-PIN

SMKEY

DDATA

DMV

KEY-PART

SMPIN

DEXP

DOUBLE

KEYLN8

TRANSLAT

DIMP

DPVR

KEYLN16

UKPT

DKYL0

EPINGEN

MIXED

VISA-PVV

DKYL1

EPINVER

NO-SPEC

XLATE

DKYL2

EXEX

NO-XPORT

XPORT-OK

DKYL3

EXPORT

DKYL4

GBP-PIN

GBP-PINO

Note:

CLR8-ENC

or

UKPT

must

be

coded

in

rule_array

when

the

KEYGENKY

key

type

is

coded.

When

the

SECMSG

key_type

is

coded,

either

SMKEY

or

SMPIN

must

be

specified

in

the

rule_array.

reserved

Direction:

Input

Type:

String

The

reserved

parameter

must

be

a

variable

of

8

bytes

of

X'00'.

control_vector

Direction:

Output

Type:

String

A

16-byte

string

variable

in

application

storage

where

the

service

returns

the

generated

control

vector.

Usage

Notes

See

Table

33

on

page

123

for

an

illustration

of

key

type

and

key

usage

keywords

that

can

be

combined

in

the

Control

Vector

Generate

and

Key

Token

Build

callable

services

to

create

a

control

vector.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

10.

Control

vector

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

Control

Vector

Generate

(CSNBCVG)

Chapter

4.

Managing

DES

Cryptographic

Keys

67

Table

10.

Control

vector

generate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Control

Vector

Translate

(CSNBCVT)

The

Control

Vector

Translate

callable

service

changes

the

control

vector

used

to

encipher

an

external

key.

See

“Changing

Control

Vectors

with

the

Control

Vector

Translate

Callable

Service”

on

page

459

for

additional

information

about

this

service.

Format

CALL

CSNBCVT(

return_code,

reason_code,

exit_data_length,

exit_data,

KEK_key_identifier,

source_key_token,

array_key_left,

mask_array_left,

array_key_right,

mask_array_right,

rule_array_count,

rule_array,

target_key_token

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

Control

Vector

Generate

(CSNBCVG)

68

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFFFF'

(2

gigabytes).

The

data

is

defined

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

KEK_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

string

variable

containing

an

internal

key

token

or

the

key

label

of

an

internal

key

token

record

containing

the

key-encrypting

key.

The

control

vector

in

the

internal

key

token

must

specify

the

key

type

of

IMPORTER,

EXPORTER,

IKEYXLAT,

or

OKEYXLAT.

source_key_token

Direction:

Input

Type:

String

A

64-byte

string

variable

containing

the

external

key

token

with

the

key

and

control

vector

to

be

processed.

array_key_left

Direction:

Input/Output

Type:

String

A

64-byte

string

variable

containing

an

internal

key

token

or

a

key

label

of

an

internal

key

token

record

that

deciphers

the

left

mask

array.

The

internal

key

token

must

contain

a

control

vector

specifying

a

CVARXCVL

key

type.

mask_array_left

Direction:

Input

Type:

String

A

string

of

seven

8-byte

elements

containing

the

mask

array

enciphered

under

the

left

array

key.

array_key_right

Direction:

Input/Ouput

Type:

String

A

64-byte

string

variable

containing

an

internal

key

token

or

a

key

label

of

an

internal

key

token

record

that

deciphers

the

right

mask

array.

The

internal

key

token

must

contain

a

control

vector

specifying

a

CVARXCVR

key

type.

Control

Vector

Translate

(CSNBCVT)

Chapter

4.

Managing

DES

Cryptographic

Keys

69

mask_array_right

Direction:

Input

Type:

String

A

string

of

seven

8-byte

elements

containing

the

mask

array

enciphered

under

the

right

array

key.

rule_array_count

Direction:

Input

Type:

Integer

An

integer

containing

the

number

of

elements

in

the

rule

array.

The

value

of

the

rule_array_count

must

be

zero,

one,

or

two

for

this

service.

If

the

rule

array

count

is

zero,

the

default

keywords

ADJUST

and

LEFT

are

used.

rule_array

Direction:

Input

Type:

Character

String

The

rule_array

parameter

is

an

array

of

keywords.

The

keywords

are

8

bytes

in

length,

and

must

be

left-justified

and

padded

on

the

right

with

space

characters.

The

rule_array

keywords

are

shown

below.

Table

11.

Keywords

for

Control

Vector

Translate

Keyword

Meaning

Parity

Adjustment

Rule

(optional)

ADJUST

Ensures

that

all

target

key

bytes

have

odd

parity.

This

is

the

default.

NOADJUST

Prevents

the

parity

of

the

target

being

altered.

Key-portion

Rule

(optional)

BOTH

Causes

both

halves

of

a

16-byte

source

key

to

be

processed

with

the

result

placed

into

corresponding

halves

of

the

target

key.

When

you

use

the

BOTH

keyword,

the

mask

array

must

be

able

to

validate

the

translation

of

both

halves.

LEFT

Causes

an

8-byte

source

key,

or

the

left

half

of

a

16-byte

source

key,

to

be

processed

with

the

result

placed

into

both

halves

of

the

target

key.

This

is

the

default.

RIGHT

Causes

the

right

half

of

a

16-byte

source

key

to

be

processed

with

the

result

placed

into

the

right

half

of

the

target

key.

The

left

half

is

copied

unchanged

(still

enciphered)

from

the

source

key.

SINGLE

Causes

the

left

half

of

the

source

key

to

be

processed

with

the

result

placed

into

the

left

half

of

the

target

key

token.

The

right

half

of

the

target

key

is

unchanged.

target_key_token

Direction:

Input/Output

Type:

String

A

64-byte

string

variable

containing

an

external

key

token

with

the

new

control

vector.

This

key

token

contains

the

key

halves

with

the

new

control

vector.

Control

Vector

Translate

(CSNBCVT)

70

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restriction

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

Usage

Notes

If

KEK_key_identifier

is

a

label

of

an

IMPORTER

or

EXPORTER

key,

the

label

must

be

unique

in

the

CKDS.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

12.

Control

vector

translate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Cryptographic

Variable

Encipher

(CSNBCVE)

The

Cryptographic

Variable

Encipher

callable

service

uses

a

CVARENC

key

to

encrypt

plaintext

by

using

the

Cipher

Block

Chaining

(CBC)

method.

You

can

use

this

service

to

prepare

a

mask

array

for

the

Control

Vector

Translate

service.

The

plaintext

must

be

a

multiple

of

eight

bytes

in

length.

Format

CALL

CSNBCVE(

return_code,

reason_code,

exit_data_length,

exit_data,

c-variable_encrypting_key_identifier,

text_length,

plaintext,

initialization_vector,

ciphertext

)

Parameters

return_code

Direction:

Output

Type:

Integer

Control

Vector

Translate

(CSNBCVT)

Chapter

4.

Managing

DES

Cryptographic

Keys

71

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFFFF'

(2

gigabytes).

The

data

is

defined

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

c-variable_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

string

variable

containing

an

internal

key

or

a

key

label

of

an

internal

key

token

record

in

the

CKDS.

The

internal

key

must

contain

a

control

vector

that

specifies

a

CVARENC

key

type.

text_length

Direction:

Input

Type:

Integer

An

integer

variable

containing

the

length

of

the

plaintext

and

the

returned

ciphertext.

plaintext

Direction:

Input

Type:

String

A

string

of

length

8

to

256

bytes

which

contains

the

plaintext.

The

data

must

be

a

multiple

of

8

bytes.

initialization_vector

Direction:

Input

Type:

String

A

string

variable

containing

the

8-byte

initialization

vector

that

the

service

uses

in

encrypting

the

plaintext.

ciphertext

Direction:

Output

Type:

String

Cryptographic

Variable

Encipher

(CSNBCVE)

72

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

The

field

which

receives

the

ciphertext.

The

length

of

this

field

is

the

same

as

the

length

of

the

plaintext.

Restrictions

v

The

text

length

must

be

a

multiple

of

8

bytes.

v

The

maximum

length

of

text

that

the

security

server

can

process

is

256

bytes.

v

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

13.

Cryptographic

variable

encipher

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Data

Key

Export

(CSNBDKX)

Use

the

data

key

export

callable

service

to

reencipher

a

data-encrypting

key

(key

type

of

DATA

only)

from

encryption

under

the

master

key

to

encryption

under

an

exporter

key-encrypting

key.

The

reenciphered

key

is

in

a

form

suitable

for

export

to

another

system.

The

data

key

export

service

generates

a

key

token

with

the

same

key

length

as

the

input

token’s

key.

Format

CALL

CSNBDKX(

return_code,

reason_code,

exit_data_length,

exit_data,

source_key_identifier,

exporter_key_identifier,

target_key_identifier

)

Cryptographic

Variable

Encipher

(CSNBCVE)

Chapter

4.

Managing

DES

Cryptographic

Keys

73

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

source_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

for

an

internal

key

token

or

label

that

contains

a

data-encrypting

key

to

be

reenciphered.

The

data-encrypting

key

is

encrypted

under

the

master

key.

exporter_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

for

an

internal

key

token

or

key

label

that

contains

the

exporter

key_encrypting

key.

The

data-encrypting

key

above

will

be

encrypted

under

this

exporter

key_encrypting

key.

target_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

field

that

is

to

receive

the

external

key

token,

which

contains

the

reenciphered

key

that

has

been

exported.

The

reenciphered

key

can

now

be

exchanged

with

another

cryptographic

system.

Data

Key

Export

(CSNBDKX)

74

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restriction

For

existing

TKE

V3.1

(or

later)

users,

you

may

have

to

explicitly

enable

new

access

control

points.

Current

applications

will

fail

if

they

use

an

equal

key

halves

exporter

to

export

a

key

with

unequal

key

halves.

You

must

have

access

control

point

'Data

Key

Export

-

Unrestricted'

explicitly

enabled

if

APAR

OW53666

is

installed

or

you

are

running

ICSF

HCR7708

or

later.

Usage

Notes

When

the

service

is

processed

on

the

CCF,

ICSF

examines

the

data

encryption

algorithm

bits

on

the

exporter

key-encrypting

key

and

DATA

key

for

consistency.

It

does

not

export

a

CDMF

key

under

a

DES-marked

key-encrypting

key

or

a

DES

key

under

a

CDMF-marked

key-encrypting

key.

ICSF

does

not

propagate

the

data

encryption

marking

on

the

operational

key

to

the

external

token.

Token

marking

for

DES/CDMF

on

DATA

and

key-encrypting

keys

is

ignored

on

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

14.

Data

key

export

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

of

the

exporter_key_identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

of

the

exporter_key_identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Data

Key

Import

(CSNBDKM)

Use

the

data

key

import

callable

service

to

import

an

encrypted

source

DES

single-length,

double-length

or

triple-length

DATA

key

and

create

or

update

a

target

internal

key

token

with

the

master

key

enciphered

source

key.

Data

Key

Export

(CSNBDKX)

Chapter

4.

Managing

DES

Cryptographic

Keys

75

Format

CALL

CSNBDKM(

return_code,

reason_code,

exit_data_length,

exit_data,

source_key_token,

importer_key_identifier,

target_key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

source_key_token

Direction:

Input

Type:

String

64-byte

string

variable

containing

the

source

key

to

be

imported.

The

source

key

must

be

an

external

token

or

null

token.

The

external

key

token

must

indicate

that

a

control

vector

is

present;

however,

the

control

vector

is

usually

valued

at

zero.

A

double-length

key

that

should

result

in

a

default

DATA

control

vector

must

be

specified

in

a

version

X'01'

external

key

token.

Otherwise,

both

single

and

double-length

keys

are

presented

in

a

version

X'00'

key

token.

For

the

null

token,

the

service

will

process

this

token

format

as

a

DATA

key

encrypted

by

the

importer

key

and

a

null

(all

zero)

control

vector.

Data

Key

Import

(CSNBDKM)

76

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|
|
|
|
|
|

importer_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

variable

containing

the

(IMPORTER)

transport

key

or

key

label

of

the

transport

key

used

to

decipher

the

source

key.

target_key_identifier

Direction:

Output

Type:

String

A

64-byte

string

variable

containing

a

null

key

token

or

an

internal

key

token.

The

key

token

receives

the

imported

key.

Restriction

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

However,

this

is

not

a

restriction

on

the

IBM

Eserver

zSeries

990.

For

existing

TKE

V3.1

(or

later)

users,

you

may

have

to

explicitly

enable

new

access

control

points.

Current

applications

will

fail

if

they

use

an

equal

key

halves

importer

to

import

a

key

with

unequal

key

halves.

You

must

have

access

control

point

'Data

Key

Import

-

Unrestricted'

explicitly

enabled

if

APAR

OW53666

is

installed

or

you

are

running

ICSF

HCR7708

or

later.

Usage

Notes

This

service

does

not

adjust

the

key

parity

of

the

source

key.

CDMF/DES

token

markings

will

be

ignored.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

15.

Data

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

Does

not

support

triple

length

DATA

keys.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

Does

not

support

triple

length

DATA

keys.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Data

Key

Import

(CSNBDKM)

Chapter

4.

Managing

DES

Cryptographic

Keys

77

Diversified

Key

Generate

(CSNBDKG)

Use

the

diversified

key

generate

service

to

generate

a

key

based

on

the

key-generating

key,

the

processing

method,

and

the

parameter

supplied.

The

control

vector

of

the

key-generating

key

also

determines

the

type

of

target

key

that

can

be

generated.

To

use

this

service,

specify

the

following:

v

The

rule

array

keyword

to

select

the

diversification

process.

v

The

operational

key-generating

key

from

which

the

diversified

keys

are

generated.

The

control

vector

associated

with

this

key

restricts

the

use

of

this

key

to

the

key

generation

process.

This

control

vector

also

restricts

the

type

of

key

that

can

be

generated.

v

The

data

and

length

of

data

used

in

the

diversification

process.

v

The

generated-key

may

be

an

internal

token

or

a

skeleton

token

containing

the

desired

CV

of

the

generated-key.

The

generated

key

CV

must

be

one

that

is

permitted

by

the

processing

method

and

the

key-generating

key.

The

generated-key

will

be

returned

in

this

parameter.

v

A

key

generation

method

keyword.

Some

keywords

require

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

a

z890.

This

service

generates

diversified

keys

as

follows:

v

Determines

if

it

can

support

the

process

specified

in

rule

array.

v

Recovers

the

key-generating

key

and

checks

the

key-generating

key

class

and

the

specified

usage

of

the

key-generating

key.

v

Determines

that

the

control

vector

in

the

generated-key

token

is

permissible

for

the

specified

processing

method.

v

Determines

that

the

control

vector

in

the

generated-key

token

is

permissible

by

the

control

vector

of

the

key-generating

key.

v

Determines

the

required

data

length

from

the

processing

method

and

the

generated-key

CV.

Validates

the

data_length.

v

Generates

the

key

appropriate

to

the

specific

processing

method.

Adjusts

parity

of

the

key

to

odd.

Creates

the

internal

token

and

returns

the

generated

diversified

key.

Format

CALL

CSNBDKG(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

generating_key_identifier,

data_length,

data,

key_identifier,

generated_key_identifier)

Diversified

Key

Generate

(CSNBDKG)

78

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

only

valid

value

is

1.

rule_array

Direction:

Input

Type:

String

The

keyword

that

provides

control

information

to

the

callable

service.

The

processing

method

is

the

algorithm

used

to

create

the

generated

key.

The

keyword

is

left

justified

and

padded

on

the

right

with

blanks.

Table

16.

Rule

Array

Keywords

for

Diversified

Key

Generate

Keyword

Meaning

Processing

Method

for

generating

or

updating

diversified

keys

(required)

CLR8-ENC

Specifies

that

8-bytes

of

clear

data

shall

be

multiply

encrypted

with

the

generating

key.

The

generating_key_identifier

must

be

a

KEYGENKY

key

type

with

bit

19

of

the

control

vector

set

to

1.

The

control

vector

in

generated_key_identifier

must

specify

a

single-length

key.

The

key

type

may

be

DATA,

MAC,

or

MACVER.

Note:

CIPHER

class

keys

are

not

supported.

Diversified

Key

Generate

(CSNBDKG)

Chapter

4.

Managing

DES

Cryptographic

Keys

79

Table

16.

Rule

Array

Keywords

for

Diversified

Key

Generate

(continued)

Keyword

Meaning

TDES-DEC

Data

supplied

may

be

8

or

16

bytes

of

clear

data.

If

the

generated_key_identifier

specifies

a

single

length

key,

then

8-bytes

of

data

is

TDES

decrypted

under

the

generating_key_identifier.

If

the

generated_key_identifier

specifies

a

double

length

key,

then

16-bytes

of

data

is

TDES

ECB

mode

decrypted

under

the

generating_key_identifier.

No

formating

of

data

is

done

before

encryption.

The

generating_key_identifier

must

be

a

DKYGENKY

key

type,

with

appropriate

usage

bits

for

the

desired

generated

key.

TDES-ENC

Data

supplied

may

be

8

or

16

bytes

of

clear

data.

If

the

generated_key_identifier

specifies

a

single

length

key,

then

8-bytes

of

data

is

TDES

encrypted

under

the

generating_key_identifier.

If

the

generated_key_identifier

specifies

a

double

length

key,

then

16-bytes

of

data

is

TDES

ECB

mode

encrypted

under

the

generating_key_identifier.

No

formatting

of

data

is

done

before

encryption.

The

generating_key_identifier

must

be

a

DKYGENKY

key

type,

with

appropriate

usage

bits

for

the

desired

generated

key.

The

generated_key_identifier

may

be

a

single

or

double

length

key

with

a

CV

that

is

permitted

by

the

generating_key_identifier.

TDES-XOR

Requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

It

combines

the

function

of

the

existing

TDES-ENC

and

SESS-XOR

into

one

step.

The

generating

key

must

be

a

level

0

DKYGENKY

and

cannot

have

replicated

halves.

The

session

key

generated

must

be

double

length

and

the

allowed

key

types

are

DATA,

DATAC,

MAC,

MACVER,

DATAM,

DATAMV,

SMPIN

and

SMKEY.

Key

type

must

be

allowed

by

the

generating

key

control

vector.

TDESEMV2

Requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC):

supports

generation

of

a

session

key

by

the

EMV

2000

algorithm

(This

EMV2000

algorithm

uses

a

branch

factor

of

2).

The

generating

key

must

be

a

level

0

DKYGENKY

and

cannot

have

replicated

halves.

The

session

key

generated

must

be

double

length

and

the

allowed

key

types

are

DATA,

DATAC,

MAC,

MACVER,

DATAM,

DATAMV,

SMPIN

and

SMKEY.

Key

type

must

be

allowed

by

the

generating

key

control

vector.

TDESEMV4

Requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC):

supports

generation

of

a

session

key

by

the

EMV

2000

algorithm

(This

EMV2000

algorithm

uses

a

branch

factor

of

4).

The

generating

key

must

be

a

level

0

DKYGENKY

and

cannot

have

replicated

halves.

The

session

key

generated

must

be

double

length

and

the

allowed

key

types

are

DATA,

DATAC,

MAC,

MACVER,

DATAM,

DATAMV,

SMPIN

and

SMKEY.

Key

type

must

be

allowed

by

the

generating

key

control

vector.

Processing

Method

for

updating

a

diversified

key

Diversified

Key

Generate

(CSNBDKG)

80

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

Table

16.

Rule

Array

Keywords

for

Diversified

Key

Generate

(continued)

Keyword

Meaning

SESS-XOR

Specifies

the

VISA

method

for

session

key

generation.

Data

supplied

may

be

8

or

16

bytes

of

data

depending

on

whether

the

generating_key_identifier

is

a

single

or

double

length

key.

The

8

or

16

bytes

of

data

is

XORed

with

the

clear

value

of

the

generating_key_identifier.

The

generated_key_identifier

has

the

same

control

vector

as

the

generating_key_identifier.

The

generating_key_identifier

may

be

DATA/DATAC,

MAC/DATAM

or

MACVER/DATAMV

key

types.

generating_key_identifier

Direction:

Input/Output

Type:

String

The

label

or

internal

token

of

a

key

generating

key.

The

type

of

key-generating

key

depends

on

the

processing

method.

data_length

Direction:

Input

Type:

Integer

The

length

of

the

data

parameter

that

follows.

Length

depends

on

the

processing

method

and

the

generated

key.

data

Direction:

Input

Type:

String

Data

input

to

the

diversified

key

or

session

key

generation

process.

Data

depends

on

the

processing

method

and

the

generated_key_identifier.

key_identifier

Direction:

Input/Output

Type:

String

This

parameter

is

currently

not

used.

It

must

be

a

64-byte

null

token.

generated_key_identifier

Direction:

Input/Output

Type:

String

The

internal

token

of

an

operational

key,

a

skeleton

token

containing

the

control

vector

of

the

key

to

be

generated,

or

a

null

token.

A

null

token

can

be

supplied

if

the

generated_key_identifier

will

be

a

DKYGENKY

with

a

CV

derived

from

the

generating_key_identifier.

A

skeleton

token

or

internal

token

is

required

when

generated_key_identifier

will

not

be

a

DKYGENKY

key

type

or

the

processing

method

is

not

SESS-XOR.

For

SESS-XOR,

this

must

be

a

null

token.

On

output,

this

parameter

contains

the

generated

key.

Restrictions

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

However,

this

is

not

a

restriction

on

the

IBM

Eserver

zSeries

990.

Diversified

Key

Generate

(CSNBDKG)

Chapter

4.

Managing

DES

Cryptographic

Keys

81

Usage

Notes

Refer

to

Appendix

C,

“Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service,”

on

page

449

for

information

on

the

control

vector

bits

for

the

DKG

key

generating

key.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

17.

Diversified

key

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

Keywords

TDES-XOR,

TDESEMV2

and

TDESEMV4

are

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

Keywords

TDES-XOR,

TDESEMV2

and

TDESEMV4

are

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Keywords

TDES-XOR,

TDESEMV2

and

TDESEMV4

require

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

Key

Export

(CSNBKEX)

Use

the

key

export

callable

service

to

reencipher

any

type

of

key

(except

an

AKEK

or

an

IMP-PKA)

from

encryption

under

a

master

key

variant

to

encryption

under

the

same

variant

of

an

exporter

key-encrypting

key.

The

reenciphered

key

can

be

exported

to

another

system.

If

the

key

to

be

exported

is

a

DATA

key,

the

key

export

service

generates

a

key

token

with

the

same

key

length

as

the

input

token’s

key.

This

service

supports

the

no-export

bit

that

the

prohibit

export

service

sets

in

the

internal

token.

Format

CALL

CSNBKEX(

return_code,

reason_code,

exit_data_length,

exit_data,

key_type,

source_key_identifier,

exporter_key_identifier,

target_key_identifier

)

Diversified

Key

Generate

(CSNBDKG)

82

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_type

Direction:

Input

Type:

Character

string

The

parameter

is

an

8-byte

field

that

contains

either

a

key

type

value

or

the

keyword

TOKEN.

The

keyword

is

left-justified

and

padded

on

the

right

with

blanks.

If

the

key

type

is

TOKEN,

ICSF

determines

the

key

type

from

the

control

vector

(CV)

field

in

the

internal

key

token

provided

in

the

source_key_identifier

parameter.

If

the

control

vector

is

invalid

on

the

Cryptographic

Coprocessor

Feature,

the

key

export

request

will

be

routed

to

the

PCI

Cryptographic

Coprocessor.

Key

type

values

for

the

Key

Export

callable

service

are:

CIPHER,

DATA,

DATAC,

DATAM,

DATAMV,

DATAXLAT,

DECIPHER,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

IPINENC,

MAC,

MACD,

MACVER,

OKEYXLAT,

OPINENC,

PINGEN

and

PINVER.

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

source_key_identifier

Direction:

Input

Type:

String

A

64-byte

string

of

the

internal

key

token

that

contains

the

key

to

be

reenciphered.

This

parameter

must

identify

an

internal

key

token

in

application

storage,

or

a

label

of

an

existing

key

in

the

cryptographic

key

data

set.

Key

Export

(CSNBKEX)

Chapter

4.

Managing

DES

Cryptographic

Keys

83

If

you

supply

TOKEN

for

the

key_type

parameter,

ICSF

looks

at

the

control

vector

in

the

internal

key

token

and

determines

the

key

type

from

this

information.

If

you

supply

TOKEN

for

the

key_type

parameter

and

supply

a

label

for

this

parameter,

the

label

must

be

unique

in

the

cryptographic

key

data

set.

exporter_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

of

the

internal

key

token

or

key

label

that

contains

the

exporter

key-encrypting

key.

This

parameter

must

identify

an

internal

key

token

in

application

storage,

or

a

label

of

an

existing

key

in

the

cryptographic

key

data

set.

If

the

NOCV

bit

is

on

in

the

internal

key

token

containing

the

key-encrypting

key,

the

key-encrypting

key

itself

(not

the

key-encrypting

key

variant)

is

used

to

encipher

the

generated

key.

For

example,

the

key

has

been

installed

in

the

cryptographic

key

data

set

through

the

key

generator

utility

program

or

the

key

entry

hardware

using

the

NOCV

parameter;

or

you

are

passing

the

key-encrypting

key

in

the

internal

key

token

with

the

NOCV

bit

on

and

your

program

is

running

in

supervisor

state

or

in

key

0-7.

Control

vectors

are

explained

in

“Control

Vector”

on

page

16

and

the

NOCV

bit

is

shown

in

Table

176

on

page

431.

target_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

field

external

key

token

that

contains

the

reenciphered

key.

The

reenciphered

key

can

be

exchanged

with

another

cryptographic

system.

Restriction

For

existing

TKE

V3.1

(or

later)

users,

you

may

have

to

explicitly

enable

new

access

control

points.

Current

applications

will

fail

if

they

use

an

equal

key

halves

exporter

to

export

a

key

with

unequal

key

halves.

You

must

have

access

control

point

'Key

Export

-

Unrestricted'

explicitly

enabled

if

APAR

OW53666

is

installed

or

you

are

running

ICSF

HCR7708

or

later.

This

service

cannot

be

used

to

export

AKEKs.

Refer

to

“ANSI

X9.17

Key

Export

(CSNAKEX)”

on

page

379

for

information

on

exporting

AKEKs.

Usage

Notes

For

key

export,

you

can

use

the

following

combinations

of

parameters:

v

A

valid

key

type

in

the

key_type

parameter

and

an

internal

key

token

in

the

source_key_identifier

parameter.

The

key

type

must

be

equivalent

to

the

control

vector

specified

in

the

internal

key

token.

v

A

key_type

parameter

of

TOKEN

and

an

internal

key

token

in

the

source_key_identifier

parameter.

The

source_key_identifier

can

be

a

label

with

TOKEN

only

if

the

labelname

is

unique

on

the

CKDS.

The

key

type

is

extracted

from

the

control

vector

contained

in

the

internal

key

token.

v

A

valid

key

type

in

the

key_type

parameter,

and

a

label

in

the

source_key_identifier

parameter.

Key

Export

(CSNBKEX)

84

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

If

internal

key

tokens

are

supplied

in

the

source_key_identifier

or

exporter_key_identifier

parameters,

the

key

in

one

or

both

tokens

can

be

reenciphered.

This

occurs

if

the

master

key

was

changed

since

the

internal

key

token

was

last

used.

The

return

and

reason

codes

that

indicate

this

do

not

indicate

which

key

was

reenciphered.

Therefore,

assume

both

keys

have

been

reenciphered.

Systems

with

the

Cryptographic

Coprocessor

Feature.

ICSF

examines

the

data

encryption

algorithm

bits

on

the

exporter

key-encrypting

key

and

the

key

being

exported

for

consistency.

It

does

not

export

a

CDMF

key

under

a

DES-marked

key-encrypting

key

or

a

DES

key

under

a

CDMF-marked

key-encrypting

key.

ICSF

does

not

propagate

the

data

encryption

marking

on

the

operational

key

to

the

external

token.

If

the

key

type

is

MACD,

the

control

vectors

of

the

input

keys

must

be

the

standard

control

vectors

supported

by

the

Cryptographic

Coprocessor

Feature,

since

the

key

export

service

will

be

processed

on

the

Cryptographic

Coprocessor

Feature

in

this

case.

To

use

NOCV

key-encrypting

keys

or

to

export

double-length

DATAM

and

DATAMV

keys,

the

NOCV-enablement

keys

must

be

installed

in

the

CKDS.

NOCV-enablement

keys

are

only

needed

with

the

Cryptographic

Coprocessor

Feature.

For

a

double-length

MAC

key

with

a

key

type

of

DATAM,

the

service

uses

the

data

compatibility

control

vector

to

create

an

external

token.

For

a

double-length

MAC

key

with

a

key

type

of

MACD,

the

service

uses

the

single-length

control

vector

for

both

the

left

and

right

half

of

the

key

to

create

an

external

token

(MAC||MAC).

For

a

table

of

control

vectors,

refer

to

Control

Vector

Table.

Key

Export

operations

which

specify

a

NOCV

key-encrypting

key

as

the

exporter

key

and

also

specify

a

source

or

key-encrypting

key

which

contains

a

control

vector

not

supported

by

the

Cryptographic

Coprocessor

Feature

will

fail.

To

export

a

double-length

MAC

generation

or

MAC

verification

key,

it

is

recommended

that

a

key

type

of

TOKEN

be

used.

Systems

with

a

PCI

X

Cryptographic

Coprocessor

If

running

with

a

PCI

X

Cryptographic

Coprocessor,

existing

internal

tokens

created

with

key

type

MACD

must

be

exported

with

either

a

TOKEN

or

DATAM

key

type.

The

external

CV

will

be

DATAM

CV.

The

MACD

key

type

is

not

supported.

To

export

a

double-length

MAC

generation

or

MAC

verification

key,

it

is

recommended

that

a

key

type

of

TOKEN

be

used.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Key

Export

(CSNBKEX)

Chapter

4.

Managing

DES

Cryptographic

Keys

85

Table

18.

Key

export

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Key_type

MACD

is

processed

on

a

Cryptographic

Coprocessor

Feature.

DATAC

key

type

is

not

supported

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

key_type

specified

is

one

of

the

following:

DECIPHER,

ENCIPHER,

IKEYXLAT,

OKEYXLAT

or

CIPHER.

v

The

control

vector

of

either

the

exporter_key_identifier

or

the

source_key_identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

Token

markings

for

DES/CDMF

on

DATA

and

KEKs

are

ignored.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Key_type

MACD

is

processed

on

a

Cryptographic

Coprocessor

Feature.

DATAC

key

type

is

not

supported.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

key_type

specified

is

one

of

the

following:

DECIPHER,

ENCIPHER,

IKEYXLAT,

OKEYXLAT

or

CIPHER.

v

The

control

vector

of

either

the

exporter_key_identifier

or

the

source_key_identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

Token

markings

for

DES/CDMF

on

DATA

and

KEKs

are

ignored.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Key_type

MACD

and

DATAXLAT

are

not

supported.

Token

markings

for

DES/CDMF

on

DATA

and

KEKs

are

ignored.

Key

Generate

(CSNBKGN)

Use

the

key

generate

callable

service

to

generate

either

one

or

two

odd

parity

DES

keys

of

any

type.

The

keys

can

be

single-length

(8

bytes),

double-length

(16

bytes),

or,

in

the

case

of

DATA

keys,

triple-length

(24

bytes).

The

callable

service

does

not

produce

keys

in

clear

form

and

all

keys

are

returned

in

encrypted

form.

When

two

keys

are

generated,

each

key

has

the

same

clear

value,

although

this

clear

value

is

not

exposed

outside

the

secure

cryptographic

feature.

Key

Export

(CSNBKEX)

86

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Format

CALL

CSNBKGN(

return_code,

reason_code,

exit_data_length,

exit_data,

key_form,

key_length,

key_type_1,

key_type_2,

kek_key_identifier_1,

kek_key_identifier_2,

generated_key_identifier_1,

generated_key_identifier_2

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_form

Direction:

Input

Type:

Character

string

A

4-byte

keyword

that

defines

the

type

of

key(s)

you

want

generated.

This

parameter

also

specifies

if

each

key

should

be

returned

for

either

operational,

importable,

or

exportable

use.

The

keyword

must

be

in

a

4-byte

field,

left-justified,

and

padded

with

blanks.

The

first

two

characters

refer

to

key_type_1.

The

next

two

characters

refer

to

key_type_2.

Key

Generate

(CSNBKGN)

Chapter

4.

Managing

DES

Cryptographic

Keys

87

The

following

keywords

are

allowed:

OP,

IM,

EX,

OPIM,

OPEX,

IMEX,

EXEX,

OPOP,

and

IMIM.

See

Table

19

for

their

meanings.

Table

19.

Key

Form

Values

for

the

Key

Generate

Callable

Service

Keyword

Meaning

EX

One

key

that

can

be

sent

to

another

system.

EXEX

A

key

pair;

both

keys

to

be

sent

elsewhere,

possibly

for

exporting

to

two

different

systems.

The

key

pair

has

the

same

clear

value.

IM

One

key

that

can

be

locally

imported.

The

key

can

later

be

imported

onto

this

system

to

make

it

operational.

IMEX

A

key

pair

to

be

imported;

one

key

to

be

imported

locally

and

one

key

to

be

sent

elsewhere.

Both

keys

have

the

same

clear

value.

IMIM

A

key

pair

to

be

imported;

both

keys

to

be

imported

locally

at

a

later

time.

OP

One

operational

key.

The

key

is

returned

to

the

caller

in

the

key

token

format.

Specify

the

OP

key

form

when

generating

AKEKs.

OPEX

A

key

pair;

one

key

that

is

operational

and

one

key

to

be

sent

from

this

system.

Both

keys

have

the

same

clear

value.

OPIM

A

key

pair;

one

key

that

is

operational

and

one

key

to

be

imported

to

the

local

system.

Both

keys

have

the

same

clear

value.

On

the

other

system,

the

external

key

token

can

be

imported

to

make

it

operational.

OPOP

A

key

pair;

normally

with

different

control

vector

values.

The

key

forms

are

defined

as

follows:

Operational

(OP)

The

key

value

is

enciphered

under

a

master

key.

The

result

is

placed

into

an

internal

key

token.

The

key

is

then

operational

at

the

local

system.

For

AKEKs,

the

result

is

placed

in

a

skeleton

token

created

by

the

key

token

build

callable

service.

Importable

(IM)

The

key

value

is

enciphered

under

an

importer

key-encrypting

key.

The

result

is

placed

into

an

external

key

token.

Exportable

(EX)

The

key

value

is

enciphered

under

an

exporter

key-encrypting

key.

The

result

is

placed

into

an

external

key

token.

The

key

can

then

be

transported

or

exported

to

another

system

and

imported

there

for

use.

This

key

form

cannot

be

used

by

any

ICSF

callable

service.

The

keys

are

placed

into

tokens

that

the

generated_key_identifier_1

and

generated_key_identifier_2

parameters

identify.

Valid

key

type

combinations

depend

on

the

key

form.

See

Table

21

for

valid

key

combinations.

key_length

Direction:

Input

Type:

Character

string

Key

Generate

(CSNBKGN)

88

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||
|

An

8-byte

value

that

defines

the

length

of

the

key

as

being

8,

16

or

24

bytes.

The

keyword

must

be

left-justified

and

padded

on

the

right

with

blanks.

You

must

supply

one

of

the

key

length

values

in

the

key_length

parameter.

To

generate

a

single-length

key,

specify

key_length

as

SINGLE

or

KEYLN8.

Double-length

(16-byte)

keys

have

an

8-byte

left

half

and

an

8-byte

right

half.

Both

halves

can

have

identical

clear

values

or

not.

If

you

want

the

same

value

to

be

used

in

both

key

halves

(refered

to

as

replicated

key

values),

specify

key_length

as

SINGLE,

SINGLE-R

or

KEYLN8.

If

you

want

different

values

to

be

the

basis

of

each

key

half,

specify

key_length

as

DOUBLE

or

KEYLN16.

Triple-length

(24-byte)

keys

have

three

8-byte

key

parts.

This

key

length

is

valid

for

DATA

keys

only.

To

generate

a

triple-length

DATA

key

with

three

different

values

to

be

the

basis

of

each

key

part,

specify

key_length

as

KEYLN24.

Use

SINGLE/SINGLE-R

if

you

want

to

create

a

transport

key

that

you

would

use

to

exchange

DATA

keys

with

a

PCF

system.

Because

PCF

does

not

use

double-length

transport

keys,

specify

SINGLE

so

that

the

effects

of

multiple

encipherment

are

nullified.

When

generating

an

AKEK,

the

key_length

parameter

is

ignored.

The

AKEK

key

length

(8-byte

or

16-byte)

is

determined

by

the

skeleton

token

created

by

the

key

token

build

callable

service

and

provided

in

the

generated_key_identifier_1

parameter.

Note:

SINGLE-R

is

only

supported

on

a

z990

or

z890.

Systems

with

CCFs

(with

or

without

PCICCs)

This

table

shows

the

valid

key

lengths

for

each

key

type.

An

X

indicates

that

a

key

length

is

permitted

for

a

key

type.

A

Y

indicates

that

the

key

generated

will

be

a

double-length

key

with

replicated

key

values.

Note:

When

generating

a

double-length

key

with

replicated

key

values

and

the

key_form

parameter

as

IMEX,

the

kek_key_identifier_1

parameter

must

contain

a

NOCV

IMPORTER

key-encrypting

key

either

as

a

key

label

or

an

internal

key

token.

Also

the

CKDS

must

contain

NOCV

enablement

keys.

Key

Type

Single

-

KEYLN8

Double

-

KEYLN16

KEYLN24

MAC

MACVER

X

X

DATA

X

X

X

DATAM

DATAMV

X

X

EXPORTER

IMPORTER

Y

Y

X

X

IKEYXLAT

OKEYXLAT

Y

Y

X

X

CIPHER#

DECIPHER#

ENCIPHER#

X

X

X

IPINENC

OPINENC

PINGEN

PINVER

Y

Y

Y

Y

X

X

X

X

Key

Generate

(CSNBKGN)

Chapter

4.

Managing

DES

Cryptographic

Keys

89

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|

|||||

|
|
|
|
||

||||

|
|
||
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

||

|
|
|
|

|
|
|
|

|
|
|
|

|

CVARDEC*#

CVARENC*#

CVARPINE*#

CVARXCVL*#

CVARXCVR*#

X

X

X

X

X

X

X

X

X

X

DKYGENKY*#

KEYGENKY*#

Y

X

X

X

Notes:

1.

*

—

key

types

marked

with

an

asterisk

(*)

are

requested

through

the

use

of

the

TOKEN

keyword

and

specifying

a

proper

control-vector

in

a

key

token

2.

#

—

key

types

marked

with

a

pound

sign

(#)

require

a

PCICC

Systems

with

PCIXCCs

This

table

shows

the

valid

key

lengths

for

each

key

type.

An

X

indicates

that

a

key

length

is

permitted

for

a

key

type.

A

Y

indicates

that

the

key

generated

will

be

a

double-length

key

with

replicated

key

values.

It

is

preferred

that

SINGLE-R

be

used

for

this

result.

Key

Type

Single

-

KEYLN8

Single-R

Double

-

KEYLN16

KEYLN24

MAC

MACVER

X

X

X

X

DATA

X

X

X

DATAC

DATAM

DATAMV

X

X

X

EXPORTER

IMPORTER

Y

Y

X

X

X

X

IKEYXLAT

OKEYXLAT

Y

Y

X

X

X

X

CIPHER

DECIPHER

ENCIPHER

X

X

X

X

X

X

IPINENC

OPINENC

PINGEN

PINVER

Y

Y

Y

Y

X

X

X

X

X

X

X

X

CVARDEC*

CVARENC*

CVARPINE*

CVARXCVL*

CVARXCVR*

X

X

X

X

X

X

X

X

X

X

DKYGENKY*

KEYGENKY*

X

X

X

X

X

Note:

*

—

key

types

marked

with

an

asterisk

(*)

are

requested

through

the

use

of

the

TOKEN

keyword

and

specifying

a

proper

control-vector

in

a

key

token

Key

Generate

(CSNBKGN)

90

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|

|
|

|

|

|
|
|
|

|||
|
||
|
|

|
|
|
|
||
|
|

|||||

|
|
|

|||
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

||
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

||
|
|
|
|

|

|
|
||
|
|
|
|

|

|
|
|

key_type_1

Direction:

Input

Type:

Character

string

An

8-byte

keyword

from

the

following

group:

v

CIPHER,

DATA,

DATAC,

DATAM,

DATAMV,

DATAXLAT,

DECIPHER,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

IPINENC,

MAC,

MACVER,

OKEYLAT,

OPINENC,

PINGEN

and

PINVER

v

or

the

keyword

TOKEN

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

Use

the

key_type_1

parameter

for

the

first,

or

only

key,

that

you

want

generated.

The

keyword

must

be

left-justified

and

padded

with

blanks.

Valid

type

combinations

depend

on

the

key

form.

If

key_type_1

is

TOKEN,

ICSF

examines

the

control

vector

(CV)

field

in

the

generated_key_identifier_1

parameter

to

derive

the

key

type.

When

key_type_1

is

TOKEN,

ICSF

does

not

check

for

the

length

of

the

key

for

DATA

keys.

Instead,

ICSF

uses

the

key_length

parameter

to

determine

the

length

of

the

key.

To

generate

an

AKEK,

specify

a

key_type_1

of

TOKEN.

The

generated_key_identifier_1

parameter

must

be

a

skeleton

token

of

an

AKEK

created

by

the

key

token

build

(CSNBKTB)

callable

service.

The

token

cannot

be

a

partially

notarized

AKEK

or

an

AKEK

key

part.

See

Table

20

and

Table

21

for

valid

key

type

and

key

form

combinations.

key_type_2

Direction:

Input

Type:

Character

string

An

8-byte

keyword

from

the

following

group:

v

CIPHER,

DATA,

DATAC,

DATAM,

DATAMV,

DATAXLAT,

DECIPHER,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

IPINENC,

MAC,

MACVER,

OKEYLAT,

OPINENC,

PINGEN

and

PINVER

v

or

the

keyword

TOKEN

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

Use

the

key_type_2

parameter

for

a

key

pair,

which

is

shown

in

Table

21

on

page

94.

The

keyword

must

be

left-justified

and

padded

with

blanks.

Valid

type

combinations

depend

on

the

key

form.

If

key_type_2

is

TOKEN,

ICSF

examines

the

control

vector

(CV)

field

in

the

generated_key_identifier_2

parameter

to

derive

the

key

type.

When

key_type_2

is

TOKEN,

ICSF

does

not

check

for

the

length

of

the

key

for

DATA

keys.

Instead,

ICSF

uses

the

key_length

parameter

to

determine

the

length

of

the

key.

If

you

want

only

one

key

to

be

generated,

specify

the

key_type_2

and

KEK_key_identifier_2

as

binary

zeros.

See

Table

20

on

page

94

and

Table

21

on

page

94

for

valid

key

type

and

key

form

combinations.

Key

Generate

(CSNBKGN)

Chapter

4.

Managing

DES

Cryptographic

Keys

91

KEK_key_identifier_1

Direction:

Input/Output

Type:

String

A

64-byte

string

of

an

internal

key

token

containing

the

importer

or

exporter

key-encrypting

key,

or

a

key

label.

If

you

supply

a

key

label

that

is

less

than

64-bytes,

it

must

be

left-justified

and

padded

with

blanks.

KEK_key_identifier_1

is

required

for

a

key_form

of

IM,

EX,

IMEX,

EXEX,

or

IMIM.

If

the

key_form

is

OP,

OPEX,

OPIM,

or

OPOP,

the

KEK_key_identifier_1

is

null.

If

the

NOCV

bit

is

on

in

the

internal

key

token

containing

the

key-encrypting

key,

the

key-encrypting

key

itself

(not

the

key-encrypting

key

variant)

is

used

to

encipher

the

generated

key.

For

example,

the

key

has

been

installed

in

the

cryptographic

key

data

set

through

the

key

generator

utility

program

or

the

key

entry

hardware

using

the

NOCV

parameter;

or

you

are

passing

the

key-encrypting

key

in

the

internal

key

token

with

the

NOCV

bit

on

and

your

program

is

running

in

supervisor

state

or

key

0-7.

Control

vectors

are

explained

in

“Control

Vector”

on

page

16

and

the

NOCV

bit

is

shown

in

Table

176

on

page

431.

KEK_key_identifier_2

Direction:

Input/Output

Type:

String

A

64-byte

string

of

an

internal

key

token

containing

the

importer

or

exporter

key-encrypting

key,

or

a

key

label

of

an

internal

token.

If

you

supply

a

key

label

that

is

less

than

64-bytes,

it

must

be

left-justified

and

padded

with

blanks.

KEK_key_identifier_2

is

required

for

a

key_form

of

OPIM,

OPEX,

IMEX,

IMIM,

or

EXEX.

This

field

is

ignored

for

key_form

keywords

OP,

IM

and

EX.

If

the

NOCV

bit

is

on

in

the

internal

key

token

containing

the

key-encrypting

key,

the

key-encrypting

key

itself

(not

the

key-encrypting

key

variant)

is

used

to

encipher

the

generated

key.

For

example,

the

key

has

been

installed

in

the

cryptographic

key

data

set

through

the

key

generator

utility

program

or

the

key

entry

hardware

using

the

NOCV

parameter;

or

you

are

passing

the

key-encrypting

key

in

the

internal

key

token

with

the

NOCV

bit

on

and

your

program

is

running

in

supervisor

state

or

in

key

0-7.

Control

vectors

are

explained

in

“Control

Vector”

on

page

16

and

the

NOCV

bit

is

shown

in

Table

176

on

page

431.

generated_key_identifier_1

Direction:

Input/Output

Type:

String

This

parameter

specifies

either

a

generated:

v

Internal

key

token

for

an

operational

key

form,

or

v

External

key

token

containing

a

key

enciphered

under

the

kek_key_identifier_1

parameter.

If

you

specify

a

key_type_1

of

TOKEN,

then

this

field

contains

a

valid

token

of

the

key

type

you

want

to

generate.

Otherwise,

on

input,

this

parameter

must

be

binary

zeros.

See

key_type_1

for

a

list

of

valid

key

types.

Key

Generate

(CSNBKGN)

92

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

If

you

specify

a

key_type_1

of

IMPORTER

or

EXPORTER

and

a

key_form

of

OPEX,

and

if

the

generated_key_identifier_1

parameter

contains

a

valid

internal

token

of

the

SAME

type,

the

NOCV

bit,

if

on,

is

propagated

to

the

generated

key

token.

When

generating

an

AKEK,

specify

the

skeleton

key

token

created

by

the

key

token

build

callable

service

(CSNBKTB)

as

input

for

this

parameter.

generated_key_identifier_2

Direction:

Input/Output

Type:

String

This

parameter

specifies

a

generated

external

key

token

containing

a

key

enciphered

under

the

kek_key_identifier_2

parameter.

If

you

specify

a

key_type_2

of

TOKEN,

then

this

field

contains

a

valid

token

of

the

key

type

you

want

to

generate.

Otherwise,

on

input,

this

parameter

must

be

binary

zeros.

See

key_type_1

for

a

list

of

valid

key

types.

The

token

can

be

an

internal

or

external

token.

Restriction

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

Usage

Notes

System

Encryption

Algorithm

Marks

(CCF

systems

only)

This

applies

to

requests

processed

on

a

system

with

CCFs

and

only

if

the

request

is

processed

by

the

CCF.

Processing

on

a

PCICC

does

not

cause

tokens

to

be

marked.

Internal

DATA,

IMPORTER

and

EXPORTER

tokens

are

marked

with

the

system

encryption

algorithm.

No

external

tokens

generated

by

this

service

are

marked.

When

the

key

form

is

OP,

the

token

is

marked

with

the

system

default

algorithm.

This

marking

can

be

overridden

by

specifing

a

valid

token

in

the

generated_key_identifer_1

parameter

with

the

marking

required.

When

the

key

form

is

OPEX

or

OPIM,

the

operational

token

is

marked

with

the

markings

of

the

key-encrypting

key

(KEK_key_identifier_2).

This

marking

can

be

overridden

by

specifing

a

valid

token

in

the

generated_key_identifer_1

parameter

with

the

marking

required.

It

is

possible

to

generate

an

operational

DES-marked

DATA

key

on

a

CDMF-only

system

or

a

CDMF-marked

DATA

key

on

a

DES-only

system.

However,

the

encipher

(CSNBENC)

and

decipher

(CSNBDEC)

callable

services

fail

when

you

use

these

keys

on

the

systems

where

they

were

generated

unless

overridden

by

keyword

Key

type

and

key

form

combinations

Table

20

on

page

94

shows

the

valid

key

type

and

key

form

combinations

for

a

single

key.

Key

types

marked

with

an

″*″

must

be

requested

through

the

specification

of

a

proper

control

vector

in

a

key

token

and

through

the

use

of

the

TOKEN

keyword.

Key

Generate

(CSNBKGN)

Chapter

4.

Managing

DES

Cryptographic

Keys

93

Note:

Not

all

keytypes

are

valid

on

all

hardware.

See

Table

2

on

page

19.

Table

20.

Key

Generate

Valid

Key

Types

and

Key

Forms

for

a

Single

Key

Key

Type

1

Key

Type

2

OP

IM

EX

DATA

Not

applicable

X

X

X

DATAC

Not

applicable

X

X

X

DATAM

Not

applicable

X

X

X

DKYGENKY*

Not

applicable

X

X

X

KEYGENKY*

Not

applicable

X

X

X

MAC

Not

applicable

X

X

X

PINGEN

Not

applicable

X

X

X

Table

21

shows

the

valid

key

type

and

key

form

combinations

for

a

key

pair.

Key

types

marked

with

an

″*″

must

be

requested

through

the

specification

of

a

proper

control

vector

in

a

key

token

and

through

the

use

of

the

TOKEN

keyword.

Table

21.

Key

Generate

Valid

Key

Types

and

Key

Forms

for

a

Key

Pair

Key

Type

1

Key

Type

2

OPEX

EXEX

OPIM,

OPOP,

IMIM

IMEX

CIPHER

CIPHER

X

X

X

X

CIPHER

DECIPHER

X

X

X

X

CIPHER

ENCIPHER

X

X

X

X

CVARDEC*

CVARENC*

X

X

CVARDEC*

CVARPINE*

X

X

CVARENC*

CVARDEC*

X

X

CVARENC*

CVARXCVL*

X

X

CVARENC*

CVARXCVR*

X

X

CVARXCVL*

CVARENC*

X

X

CVARXCVR*

CVARENC*

X

X

CVARPINE*

CVARDEC*

X

X

DATA

DATA

X

X

X

X

DATA

DATAXLAT

X

X

X

DATAC

DATAC

X

X

X

X

DATAM

DATAM

X

X

X

X

DATAM

DATAMV

X

X

X

X

DATAXLAT

DATAXLAT

X

X

X

DECIPHER

CIPHER

X

X

X

X

DECIPHER

ENCIPHER

X

X

X

X

DKYGENKY*

DKYGENKY*

X

X

X

X

ENCIPHER

CIPHER

X

X

X

X

ENCIPHER

DECIPHER

X

X

X

X

EXPORTER

IKEYXLAT

X

X

X

EXPORTER

IMPORTER

X

X

X

Key

Generate

(CSNBKGN)

94

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

Table

21.

Key

Generate

Valid

Key

Types

and

Key

Forms

for

a

Key

Pair

(continued)

Key

Type

1

Key

Type

2

OPEX

EXEX

OPIM,

OPOP,

IMIM

IMEX

IKEYXLAT

EXPORTER

X

X

X

IKEYXLAT

OKEYXLAT

X

X

X

IMPORTER

EXPORTER

X

X

X

IMPORTER

OKEYXLAT

X

X

X

IPINENC

OPINENC

X

X

X

X

KEYGENKY*

KEYGENKY*

X

X

X

X

MAC

MAC

X

X

X

X

MAC

MACVER

X

X

X

X

OKEYXLAT

IKEYXLAT

X

X

X

OKEYXLAT

IMPORTER

X

X

X

OPINENC

IPINENC

X

X

X

X

OPINENC

OPINENC

X

PINVER

PINGEN

X

X

X

PINGEN

PINVER

X

X

X

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature

and

the

key_form

is

IMEX,

the

key_length

is

SINGLE,

and

key_type_1

is

IPINENC,

OPINENC,

PINGEN,

IMPORTER,

or

EXPORTER,

you

must

specify

the

kek_key_identifier_1

parameter

as

NOCV

IMPORTER

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature

and

need

to

use

NOCV

key-encrypting

keys,

NOCV-enablement

keys

must

be

installed

in

the

CKDS.

If

you

running

with

the

PCI

X

Cryptographic

Coprocessor

and

need

to

use

NOCV

key-encrypting

keys,

you

need

to

enable

NOCV

IMPORTER

and

NOCV

EXPORTER

access

control

points

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature

and

need

to

generate

DATAM

and

DATAMV

keys

in

the

importable

form,

the

ANSI

system

keys

must

be

installed

in

the

CKDS.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Key

Generate

(CSNBKGN)

Chapter

4.

Managing

DES

Cryptographic

Keys

95

Table

22.

Key

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

OPIM

is

valid

on

the

Cryptographic

Coprocessor

Feature

for

key

forms

DATA/DATA,

DATAM/DATAM

and

MAC/MAC.

All

other

OPIM

key

forms

are

routed

to

the

PCI

Cryptographic

Coprocessor.

In

key_form

and

generated_key_identifier_1,

marking

of

data

encryption

algorithm

bits

and

token

copying

are

only

performed

if

this

service

is

proccessed

on

a

Cryptographic

Coprocessor

Feature.

In

KEK_key_identifier_2

propagation

of

token

markings

is

only

relevant

when

this

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

In

generated_key_identifier_1,

propagation

of

the

NOCV

bit

is

performed

only

if

the

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

AKEKs

are

processed

on

CCFs

DATAC

is

not

supported.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

OPIM

key

forms

are

not

DATA/DATA,

DATAM/DATAM

or

MAC/MAC.

v

The

key

type

specified

in

key_type_1

or

key_type_2

is

not

valid

for

the

Cryptographic

Coprocessor

Feature

or

if

the

control

vector

in

a

supplied

token

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

A

key

length

of

SINGLE-R

is

specified,

or

if

a

key

form

of

OPIM,

OPOP

or

IMIM

is

specified.

v

Tokens

are

not

marked

with

the

system

encryption

algorithm.

The

NOCV

flag

is

not

propagated

to

key-encrypting

keys.

Key

Generate

(CSNBKGN)

96

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

22.

Key

generate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

OPIM

is

valid

on

the

Cryptographic

Coprocessor

Feature

for

key

forms

DATA/DATA,

DATAM/DATAM

and

MAC/MAC.

All

other

OPIM

key

forms

are

routed

to

the

PCI

Cryptographic

Coprocessor.

In

key_form

and

generated_key_identifier_1,

marking

of

data

encryption

algorithm

bits

and

token

copying

are

only

performed

if

this

service

is

proccessed

on

a

Cryptographic

Coprocessor

Feature.

In

KEK_key_identifier_2

propagation

of

token

markings

is

only

relevant

when

this

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

In

generated_key_identifier_1,

propagation

of

the

NOCV

bit

is

performed

only

if

the

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

AKEKs

are

processed

on

CCFs

DATAC

is

not

supported.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

OPIM

key

forms

are

not

DATA/DATA,

DATAM/DATAM

or

MAC/MAC.

v

The

key

type

specified

in

key_type_1

or

key_type_2

is

not

valid

for

the

Cryptographic

Coprocessor

Feature

or

if

the

control

vector

in

a

supplied

token

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

A

key

length

of

SINGLE-R

is

specified,

or

if

a

key

form

of

OPIM,

OPOP

or

IMIM

is

specified.

v

Tokens

are

not

marked

with

the

system

encryption

algorithm.

The

NOCV

flag

is

not

propagated

to

key-encrypting

keys.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Key_type

DATAXLAT

is

not

supported.

AKEK

key

type

is

not

supported.

Key

Import

(CSNBKIM)

Use

the

key

import

callable

service

to

reencipher

a

key

(except

an

AKEK)

from

encryption

under

an

importer

key-encrypting

key

to

encryption

under

the

master

key.

The

reenciphered

key

is

in

operational

form.

Choose

one

of

the

following

options:

Key

Generate

(CSNBKGN)

Chapter

4.

Managing

DES

Cryptographic

Keys

97

v

Specify

the

key_type

parameter

as

TOKEN

and

specify

the

external

key

token

in

the

source_key_identifier

parameter.

The

key

type

information

is

determined

from

the

control

vector

in

the

external

key

token.

v

Specify

a

key

type

in

the

key_type

parameter

and

specify

an

external

key

token

in

the

source_key_identifier

parameter.

The

specified

key

type

must

be

compatible

with

the

control

vector

in

the

external

key

token.

v

Specify

a

valid

key

type

in

the

key_type

parameter

and

a

null

key

token

in

the

source_key_identifier

parameter.

The

default

control

vector

for

the

key_type

specified

will

be

used

to

process

the

key.

For

DATA

keys,

this

service

generates

a

key

of

the

same

length

as

that

contained

in

the

input

token.

Format

CALL

CSNBKIM(

return_code,

reason_code,

exit_data_length,

exit_data,

key_type,

source_key_identifier,

importer_key_identifier,

target_key_identifier

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

Key

Import

(CSNBKIM)

98

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

key_type

Direction:

Input

Type:

Character

string

The

type

of

key

you

want

to

reencipher

under

the

master

key.

Specify

an

8-byte

keyword

or

the

keyword

TOKEN.

The

keyword

must

be

left-justified

and

padded

on

the

right

with

blanks.

If

the

key

type

is

TOKEN,

ICSF

determines

the

key

type

from

the

control

vector

(CV)

field

in

the

external

key

token

provided

in

the

source_key_identifier

parameter.

TOKEN

is

never

allowed

when

the

importer_key_identifier

is

NOCV.

Key

type

values

for

the

Key

Import

callable

service

are:

CIPHER,

CVARDEC,

CVARENC,

CVARPINE,

CVARXCVL,

CVARXCVR,

DATA,

DATAC,

DATAM,

DATAMV,

DATAXLAT,

DECIPHER,

DKYGENKY,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

IPINENC,

KEYGENKY,

MAC,

MACVER,

OKEYLAT,

OPINENC,

PINGEN

and

PINVER.

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

We

recommend

using

key

type

of

TOKEN

when

importing

double-length

MAC

and

MACVER

keys.

source_key_identifier

Direction:

Input

Type:

String

The

key

you

want

to

reencipher

under

the

master

key.

The

parameter

is

a

64-byte

field

for

the

enciphered

key

to

be

imported

containing

either

an

external

key

token

or

a

null

key

token.

If

you

specify

a

null

token,

the

token

is

all

binary

zeros,

except

for

a

key

in

bytes

16-23

or

16-31,

or

in

bytes

16-31

and

48-55

for

triple-length

DATA

keys.

Refer

to

Table

178

on

page

434.

If

key

type

is

TOKEN,

this

field

may

not

specify

a

null

token.

This

service

supports

the

no-export

function

in

the

CV.

importer_key_identifier

Direction:

Input/Output

Type:

String

The

importer

key-encrypting

key

that

the

key

is

currently

encrypted

under.

The

parameter

is

a

64-byte

area

containing

either

the

key

label

of

the

key

in

the

cryptographic

key

data

set

or

the

internal

key

token

for

the

key.

If

you

supply

a

key

label

that

is

less

than

64-bytes,

it

must

be

left-justified

and

padded

with

blanks.

Note:

If

you

specify

a

NOCV

importer

in

the

importer_key_identifier

parameter,

the

key

to

be

imported

must

be

enciphered

under

the

importer

key

itself.

target_key_identifier

Direction:

Input/Output

Type:

String

This

parameter

is

the

generated

reenciphered

key.

The

parameter

is

a

64-byte

area

that

receives

the

internal

key

token

for

the

imported

key.

If

the

imported

key

TYPE

is

IMPORTER

or

EXPORTER

and

the

token

key

TYPE

is

the

same,

the

target_key_identifier

parameter

changes

direction

to

Key

Import

(CSNBKIM)

Chapter

4.

Managing

DES

Cryptographic

Keys

99

both

input

and

output.

If

the

application

passes

a

valid

internal

key

token

for

an

IMPORTER

or

EXPORTER

key

in

this

parameter,

the

NOCV

bit

is

propagated

to

the

imported

key

token.

Note:

Propagation

of

the

NOCV

bit

is

performed

only

if

the

service

is

processed

on

Cryptographic

Coprocessor

Feature

or

PCI

X

Cryptographic

Coprocessor.

Restriction

For

existing

TKE

V3.1

(or

later)

users,

you

may

have

to

explicitly

enable

new

access

control

points.

Current

applications

will

fail

if

they

use

an

equal

key

halves

importer

to

import

a

key

with

unequal

key

halves.

You

must

have

access

control

point

'Key

Import

-

Unrestricted'

explicitly

enabled

if

APAR

OW53666

is

installed

or

you

are

running

ICSF

HCR7708

or

later.

Usage

Notes

Use

of

NOCV

keys

are

controlled

by

an

access

control

point

in

the

PCIXCC.

Creation

of

NOCV

key-encrypting

keys

is

only

available

for

standard

IMPORTERs

and

EXPORTERs.

Systems

with

the

Cryptographic

Coprocessor

Feature

The

key

import

callable

service

cannot

be

used

to

import

ANSI

key-encrypting

keys.

For

information

on

importing

these

types

of

keys,

refer

to

“ANSI

X9.17

Key

Import

(CSNAKIM)”

on

page

384.

To

use

NOCV

key-encrypting

keys

or

to

import

DATAM

or

DATAMV

keys,

NOCV-enablement

keys

must

be

installed

in

the

CKDS.

This

service

will

marked

an

imported

KEK

as

a

NOCV-KEK

KEK

by

suppling

a

valid

IMPORTER

or

EXPORTER

token

in

the

target_key_identifier

field

with

the

NOCV-KEK

flag

enabled.

The

type

of

the

token

must

match

the

key

type

of

the

imported

key.

This

service

will

mark

DATA

and

key-encrypting

key

tokens

with

the

system

encryption

algorithm

if

the

request

is

processed

on

the

CCF.

The

service

propagates

the

data

encryption

algorithm

mark

on

the

operational

KEK

unless

token

copying

overrides

this:

v

The

imported

token

is

marked

with

the

DES

or

CDMF

encryption

algorithm

marks

of

the

KEK

token

v

The

imported

token

is

marked

with

the

system’s

default

encryption

algorithm

when

the

KEK

is

marked

SYS-ENC

v

To

override

the

encryption

algorithm

marks

of

the

KEK,

supply

a

valid

token

in

the

target_key_identifier

field

of

the

same

key

type

being

imported.

The

mark

of

the

target_key_identifier

token

are

used

to

mark

the

imported

key

token.

Key

Import

operations

which

specify

a

NOCV

key-encrypting

key

as

either

the

importer

key

or

the

target

and

also

specify

a

source

or

key-encrypting

key

which

contains

a

control

vector

not

supported

by

the

Cryptographic

Coprocessor

Feature

will

fail.

Systems

with

the

PCI

X

Cryptographic

Coprocessor

Use

of

NOCV

keys

are

controlled

by

an

access

control

point

in

the

PCIXCC.

This

service

will

marked

an

imported

KEK

as

a

NOCV-KEK

KEK:

Key

Import

(CSNBKIM)

100

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

v

If

a

token

is

supplied

in

the

target

token

field,

it

must

be

a

valid

importer

or

exporter

token.

If

the

token

fails

token

validation,

processing

continues,

but

the

NOCV

flag

will

not

be

copied

v

The

source

token

(key

to

be

imported)

must

be

a

importer

or

exporter

with

the

default

control

vector.

v

If

the

target

token

is

valid

and

the

NOCV

flag

is

on

and

the

source

token

is

valid

and

the

control

vector

of

the

target

token

is

exactly

the

same

as

the

source

token,

the

imported

token

will

have

the

NOCV

flag

set

on.

v

If

the

target

token

is

valid

and

the

NOCV

flag

is

on

and

the

source

token

is

valid

and

the

control

vector

of

the

target

token

is

NOT

exactly

the

same

as

the

source

token,

a

return

code

will

be

given.

v

All

other

scenarios

will

complete

successfully,

but

the

NOCV

flag

will

not

be

copied

The

software

bit

used

to

mark

the

imported

token

with

export

prohibited

is

not

supported

on

a

PCI

X

Cryptographic

Coprocessor.

The

internal

token

for

an

export

prohibited

key

will

have

the

appropriate

control

vector

that

prohibits

export.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

23.

Key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Propagation

of

token

markings

is

only

relevant

when

this

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

If

the

key_type

is

MACD

or

IMP-PKA,

the

control

vectors

of

supplied

internal

tokens

must

all

be

supported

by

the

Cryptographic

Coprocessor

Feature,

since

processing

for

these

key

types

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor.

DATAC

is

not

supported.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

key_type

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

The

control

vector

of

the

source_key_identifier

or

the

importer_key_identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

Key

Import

(CSNBKIM)

Chapter

4.

Managing

DES

Cryptographic

Keys

101

Table

23.

Key

import

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Propagation

of

token

markings

is

only

relevant

when

this

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

If

the

key_type

is

MACD

or

IMP-PKA,

the

control

vectors

of

supplied

internal

tokens

must

all

be

supported

by

the

Cryptographic

Coprocessor

Feature,

since

processing

for

these

key

types

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor.

DATAC

is

not

supported.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

key_type

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

The

control

vector

of

the

source_key_identifier

or

the

importer_key_identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Key_type

DATAXLAT

is

not

supported.

DES

and

CDMF

markings

are

not

made

on

DATA

and

key-encrypting

keys

and

are

ignored

on

the

IMPORTER

key-encrypting

key.

IMP-PKA

keys

are

not

supported.

Key

Part

Import

(CSNBKPI)

Use

the

key

part

import

callable

service

to

combine,

by

exclusive

ORing,

the

clear

key

parts

of

any

key

type

and

return

the

combined

key

value

either

in

an

internal

token

or

as

an

update

to

the

CKDS.

Before

you

use

the

key

part

import

service

for

the

first

key

part,

you

must

use

the

key

token

build

service

to

create

the

internal

key

token

into

which

the

key

will

be

imported.

Subsequent

key

parts

are

combined

with

the

first

part

in

internal

token

form

or

as

a

label

from

the

CKDS.

The

preferred

way

to

specify

key

parts

is

FIRST,

ADD-PART,

and

COMPLETE

in

the

rule_array.

Only

when

the

combined

key

parts

have

been

marked

as

COMPLETE

can

the

key

token

be

used

in

any

other

service.

Key

parts

can

also

be

specified

as

FIRST,

MIDDLE,

or

LAST

in

the

rule_array.

ADD-PART

or

MIDDLE

can

be

executed

multiple

times

for

as

many

key

parts

as

necessary.

Only

when

the

LAST

part

has

been

combined

can

the

key

token

be

used

in

any

other

service.

New

applications

should

employ

the

ADD-PART

and

COMPLETE

keywords

in

lieu

of

the

MIDDLE

and

LAST

keywords

in

order

to

ensure

a

separation

of

responsibilities

between

someone

who

can

add

key-part

information

and

someone

who

can

declare

that

appropriate

information

has

been

accumulated

in

a

key.

Key

Import

(CSNBKIM)

102

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

key

part

import

callable

service

can

also

be

used

to

import

a

key

without

using

key

parts.

Call

the

key

part

import

service

FIRST

with

key

part

value

X'0000...'

then

call

the

key

part

import

service

LAST

with

the

complete

value.

Keys

created

via

this

service

have

odd

parity.

The

FIRST

key

part

is

adjusted

to

odd

parity.

All

subsequent

key

parts

are

adjusted

to

even

parity

before

being

combined.

Format

CALL

CSNBKPI(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_part,

key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

must

be

1.

Key

Part

Import

(CSNBKPI)

Chapter

4.

Managing

DES

Cryptographic

Keys

103

rule_array

Direction:

Input

Type:

String

The

keyword

that

provides

control

information

to

the

callable

service.

The

keywords

must

be

8

bytes

of

contiguous

storage

with

the

keyword

left-justified

in

its

8-byte

location

and

padded

on

the

right

with

blanks.

Table

24.

Keywords

for

Key

Part

Import

Control

Information

Keyword

Meaning

Key

Part

(Required)

FIRST

This

keyword

specifies

that

an

initial

key

part

is

being

entered.

The

callable

service

returns

this

key-part

encrypted

by

the

master

key

in

the

key

token

that

you

supplied.

ADD-PART

This

keyword

specifies

that

additional

key-part

information

is

provided.

COMPLETE

This

keyword

specifies

that

the

key-part

bit

shall

be

turned

off

in

the

control

vector

of

the

key

rendering

the

key

fully

operational.

Note

that

no

key-part

information

is

added

to

the

key

with

this

keyword.

MIDDLE

This

keyword

specifies

that

an

intermediate

key

part,

which

is

neither

the

first

key

part

nor

the

last

key

part,

is

being

entered.

Note

that

the

command

control

point

for

this

keyword

is

the

same

as

that

for

the

LAST

keyword

and

different

from

that

for

the

ADD-PART

keyword.

LAST

This

keyword

specifies

that

the

last

key

part

is

being

entered.

The

key-part

bit

is

turned

off

in

the

control

vector.

key_part

Direction:

Input

Type:

String

A

16-byte

field

containing

the

clear

key

part

to

be

entered.

If

the

key

is

a

single-length

key,

the

key

part

must

be

left-justified

and

padded

on

the

right

with

zeros.

This

field

is

ignored

if

COMPLETE

is

specified.

key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

field

containing

an

internal

token

or

a

label

of

an

existing

CKDS

record.

If

rule_array

is

FIRST,

this

field

is

the

skeleton

of

an

internal

token

of

a

single-

or

double-length

key

with

the

KEY-PART

marking.

If

rule_array

is

MIDDLE

or

LAST,

this

is

an

internal

token

or

the

label

of

a

CKDS

record

of

a

partially

combined

key.

Depending

on

the

input

format,

the

accumulated

partial

or

complete

key

is

returned

as

an

internal

token

or

as

an

updated

CKDS

record.

The

returned

key_identifier

will

be

encrypted

under

the

current

master

key.

Restriction

The

caller

must

be

in

task

mode.

If

a

label

is

specified

on

key_identifier,

the

label

must

be

unique.

If

more

than

one

record

is

found,

the

service

fails.

Key

Part

Import

(CSNBKPI)

104

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

For

existing

TKE

V3.1

(or

later)

users,

you

may

have

to

explicitly

enable

new

access

control

points.

You

must

have

access

control

point

'Key

Part

Import

-

Unrestricted'

explicitly

enabled

if

APAR

OW53666

is

installed

or

you

are

running

ICSF

HCR7708

or

later.

Otherwise,

current

applications

will

fail

with

either

of

the

following

conditions:

v

the

first

8

bytes

of

key

identifier

is

different

than

the

second

8

bytes

AND

the

first

8

bytes

of

the

combined

key

are

the

same

as

the

last

second

8

bytes

v

the

first

8

bytes

of

key

identifier

is

the

same

as

the

second

8

bytes

AND

the

first

8

bytes

of

the

combined

key

are

different

than

the

second

8

bytes.

Usage

Notes

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature,

this

service

requires

that

the

ANSI

system

keys

be

installed

on

the

CKDS.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

25.

Key

part

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Only

key

type

AKEK

is

supported

PCI

Cryptographic

Coprocessor

ICSF

routes

all

requests

to

the

PCI

Cryptographic

Coprocessor

except

for

key

type

of

AKEK.

AKEK

is

always

processed

on

the

Cryptographic

Coprocessor

Feature.

Key

type

AKEK

is

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Only

key

type

AKEK

is

supported

PCI

Cryptographic

Coprocessor

ICSF

routes

all

requests

to

the

PCI

Cryptographic

Coprocessor

except

for

key

type

of

AKEK.

AKEK

is

always

processed

on

the

Cryptographic

Coprocessor

Feature.

Key

type

AKEK

is

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

AKEK

key

types

are

not

supported.

Related

Information

This

service

is

consistent

with

the

Transaction

Security

System

key

part

import

verb.

Key

Record

Create

(CSNBKRC)

Use

the

key

record

create

callable

service

to

add

a

key

record

to

the

CKDS.

The

record

contains

a

key

token

set

to

binary

zeros

and

is

identified

by

the

label

passed

in

the

key_label

parameter.

This

service

updates

both

the

DASD

copy

of

the

CKDS

currently

in

use

by

ICSF

and

the

in-storage

copy

of

the

CKDS.

Key

Part

Import

(CSNBKPI)

Chapter

4.

Managing

DES

Cryptographic

Keys

105

|
|
|
|
|

|
|

|
|

Format

CALL

CSNBKRC(

return_code,

reason_code,

exit_data_length,

exit_data,

key_label)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_label

Direction:

Input

Type:

Character

string

The

64-byte

label

of

a

record

in

the

CKDS

that

is

the

target

of

this

service.

The

created

record

contains

a

key

token

set

to

binary

zeros

and

has

a

key

type

of

NULL.

Restrictions

The

caller

must

be

in

task

mode.

The

record

must

have

a

unique

label.

Therefore,

there

cannot

be

another

record

in

the

CKDS

with

the

same

label

and

a

different

key

type.

Usage

Notes

The

key

record

create

callable

service

checks

the

syntax

of

the

label

provided

in

the

key_label

parameter

to

ensure

that

it

follows

the

KGUP

rules.

To

bypass

label

Key

Record

Create

(CSNBKRC)

106

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

syntax

checking,

use

a

preprocessing

exit

to

turn

on

the

bypass

parse

bit

in

the

Exit

Parameter

Control

Block

(EXPB).

For

more

information

about

preprocessing

exits

and

the

EXPB,

refer

to

the

z/OS

Cryptographic

Services

ICSF

System

Programmer’s

Guide.

You

must

use

either

the

key

record

create

callable

service

or

KGUP

to

create

an

initial

record

in

the

CKDS

before

you

can

use

the

key

record

write

service

to

update

the

record

with

a

valid

key

token.

Your

applications

perform

better

if

you

use

KGUP

to

create

the

initial

records

and

REFRESH

the

entire

in-storage

copy

of

the

CKDS,

rather

than

using

key

record

create

to

create

the

initial

NULL

key

entries.

This

is

particularly

true

if

you

are

creating

a

large

number

of

key

records.

Key

record

create

adds

a

record

to

a

portion

of

the

CKDS

that

is

searched

sequentially

during

key

retrieval.

Using

KGUP

followed

by

a

REFRESH

puts

the

null

key

records

in

the

portion

of

the

CKDS

that

is

ordered

in

key-label/type

sequence.

A

binary

search

of

the

key-label/type

sequenced

part

of

the

CKDS

is

more

efficient

than

searching

the

sequentially

ordered

section.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

26.

CKDS

record

create

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Key

Record

Delete

(CSNBKRD)

Use

the

key

record

delete

callable

service

to

delete

a

key

record

from

both

the

DASD

copy

of

the

CKDS

and

the

in-storage

copy.

Format

CALL

CSNBKRD(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_label)

Key

Record

Create

(CSNBKRC)

Chapter

4.

Managing

DES

Cryptographic

Keys

107

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

supplied

in

the

rule_array

parameter.

This

number

must

always

be

1.

rule_array

Direction:

Input

Type:

Character

string

The

8

byte

keyword

that

defines

the

action

to

be

performed.

The

keyword

must

be

LABEL-DL.

key_label

Direction:

Input

Type:

Character

string

The

64-byte

label

of

a

record

in

the

CKDS

that

is

the

target

of

this

service.

The

record

pointed

to

by

this

label

is

deleted.

Restrictions

The

caller

must

be

in

task

mode.

The

record

defined

by

the

key_label

must

be

unique.

If

more

than

one

record

per

label

is

found,

the

service

fails.

Key

Record

Delete

(CSNBKRD)

108

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

27.

CKDS

record

delete

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Key

Record

Read

(CSNBKRR)

Use

the

key

record

read

callable

service

to

copy

an

internal

key

token

from

the

in-storage

CKDS

to

application

storage.

Other

cryptographic

services

can

then

use

the

copied

key

token

directly.

The

key

token

can

also

be

used

as

input

to

the

token

copying

functions

of

key

generate,

key

import,

or

secure

key

import

services

to

create

additional

NOCV

keys.

Format

CALL

CSNBKRR(

return_code,

reason_code,

exit_data_length,

exit_data,

key_label,

key_token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

Key

Record

Delete

(CSNBKRD)

Chapter

4.

Managing

DES

Cryptographic

Keys

109

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

indicating

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_label

Direction:

Input

Type:

Character

string

The

64-byte

label

of

a

record

in

the

in-storage

CKDS.

The

internal

key

token

in

this

record

is

returned

to

the

caller.

key_token

Direction:

Output

Type:

String

The

64-byte

internal

key

token

retrieved

from

the

in-storage

CKDS.

Restrictions

The

record

defined

by

the

key_label

parameter

must

be

unique

and

must

already

exist

in

the

CKDS.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

28.

CKDS

record

read

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

Key

Record

Read

(CSNBKRR)

110

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

28.

CKDS

record

read

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Key

Record

Write

(CSNBKRW)

Use

the

key

record

write

callable

service

to

write

an

internal

key

token

to

the

CKDS

record

specified

by

the

key_label

parameter.

This

service

supports

writing

a

record

to

the

CKDS

which

contains

a

key

token

with

a

control

vector

which

is

not

supported

by

the

Cryptographic

Coprocessor

Feature.

These

records

will

be

written

to

the

CKDS

with

a

key

type

of

CV,

unless

the

key

is

an

IMPORTER,

EXPORTER,

PINGEN,

PINVER,

IPINENC,

or

OPINENC

type.

These

key

types

will

be

preserved

in

the

CKDS

record,

even

if

the

control

vector

is

not

supported

by

the

Cryptographic

Coprocessor

Feature.

This

service

updates

both

the

DASD

copy

of

the

CKDS

currently

in

use

by

ICSF

and

the

in-storage

copy.

The

record

you

are

updating

must

be

unique

and

must

already

exist

in

both

the

DASD

and

in-storage

copies

of

the

CKDS.

Format

CALL

CSNBKRW(

return_code,

reason_code,

exit_data_length,

exit_data,

key_token,

key_label)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

Key

Record

Read

(CSNBKRR)

Chapter

4.

Managing

DES

Cryptographic

Keys

111

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_token

Direction:

Input/output

Type:

String

The

64-byte

internal

key

token

that

is

written

to

the

CKDS.

key_label

Direction:

Input

Type:

Character

string

The

64-byte

label

of

a

record

in

the

CKDS

that

is

the

target

of

this

service.

The

record

is

updated

with

the

internal

key

token

supplied

in

the

key_token

parameter.

Restrictions

The

caller

must

be

in

task

mode.

The

record

defined

by

the

key_label

parameter

must

be

unique

and

must

already

exist

in

the

CKDS.

On

CCF

systems,

writing

a

NOCV

key-encrypting

key

is

restricted

to

callers

in

supervisor

mode

or

in

system

key.

Usage

Notes

With

a

PCI

X

Cryptographic

Coprocessor,

you

can

write

NOCV

keys

to

the

CKDS

without

being

in

supervisor

state.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

29.

CKDS

record

write

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

Key

Record

Write

(CSNBKRW)

112

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

29.

CKDS

record

write

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Related

Information

You

can

use

this

service

with

the

key

record

create

callable

service

to

write

an

initial

record

to

key

storage.

Use

it

following

the

key

import

and

key

generate

callable

services

to

write

an

operational

key

imported

or

generated

by

these

services

directly

to

the

CKDS.

Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)

Use

the

key

test

callable

service

to

generate

or

verify

a

secure,

cryptographic

verification

pattern

for

keys.

The

key

to

test

can

be

in

the

clear

or

encrypted

under

the

master

key.

The

key

test

extended

callable

service

also

supports

keys

encrypted

under

a

key-encrypting

key

(KEK).

Keywords

in

the

rule

array

specify

whether

the

callable

service

generates

or

verifies

a

verification

pattern.

This

algorithm

is

supported

for

clear

and

encrypted

single

and

double

length

keys.

Single,

double

and

triple

length

keys

are

also

supported

with

the

ENC-ZERO

algorithm.

Clear

triple

length

keys

are

not

supported.

When

the

service

generates

a

verification

pattern,

it

creates

and

cryptographically

processes

a

random

number.

The

service

returns

the

random

number

with

the

verification

pattern.

When

the

service

tests

a

verification

pattern

against

a

key,

you

must

supply

the

random

number

and

the

verification

pattern

from

a

previous

call

to

key

test

or

key

test

extended.

The

service

returns

the

verification

result

in

the

return

and

reason

codes.

CSNBKYT

is

consistent

with

the

Transaction

Security

System

verb

of

the

same

name.

If

you

generate

a

key

on

the

Transaction

Security

System,

you

can

verify

it

on

ICSF

and

vice

versa.

Format

CALL

CSNBKYT(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_identifier,

random_number,

verification_pattern)

Key

Record

Write

(CSNBKRW)

Chapter

4.

Managing

DES

Cryptographic

Keys

113

|
|
|

CALL

CSNBKYTX(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_identifier,

random_number,

verification_pattern,

kek_key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

can

be

2

or

3.

rule_array

Direction:

Input

Type:

String

Two

or

three

keywords

that

provide

control

information

to

the

callable

service.

Table

30

on

page

115

lists

the

keywords.

The

keywords

must

be

in

16

or

24

bytes

of

contiguous

storage

with

each

of

the

keywords

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)

114

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

30.

Keywords

for

Key

Test

and

Key

Test

Extended

Control

Information

Keyword

Meaning

Key

Rule

(required)

KEY-CLR

Specifies

the

key

supplied

in

key_identifier

is

a

single-length

clear

key.

This

keyword

is

not

valid

for

the

key

test

extended

callable

service.

KEY-CLRD

Specifies

the

key

supplied

in

key_identifier

is

a

double-length

clear

key.

This

keyword

is

not

valid

for

the

key

test

extended

callable

service.

KEY-ENC

Specifies

the

key

supplied

in

key_identifier

is

a

single-length

encrypted

key.

KEY-ENCD

Specifies

the

key

supplied

in

key_identifier

is

a

double-length

encrypted

key.

Process

Rule

(required)

GENERATE

Generate

a

verification

pattern

for

the

key

supplied

in

key_identifier.

VERIFY

Verify

a

verification

pattern

for

the

key

supplied

in

key_identifier.

Parity

Adjustment

(optional)

ADJUST

Adjust

the

parity

of

test

key

to

odd

before

generating

or

verifying

the

verification

pattern.

The

key_identifier

field

itself

is

not

adjusted.

NOADJUST

Do

not

adjust

the

parity

of

test

key

to

odd

before

generating

or

verifying

the

verification

pattern.

This

is

the

default.

Verification

Process

Rule

(optional)

ENC-ZERO

Specifies

use

of

the

″encrypted

zeros″

method.

ENC-ZERO

is

supported

on

the

PCIXCC

for

key

test

extended.

It’s

not

supported

on

systems

with

CCFs.

key_identifier

Direction:

Input/Output

Type:

String

The

key

for

which

to

generate

or

verify

the

verification

pattern.

The

parameter

is

a

64-byte

string

of

an

internal

token,

key

label,

or

a

clear

key

value

left-justified.

In

the

CSNBKYTX

service,

this

parameter

can

also

be

an

external

token.

Note:

If

you

supply

a

key

label

for

this

parameter,

it

must

be

unique

on

the

CKDS.

random_number

Direction:

Input/Output

Type:

String

This

is

an

8-byte

field

that

contains

a

random

number

supplied

as

input

for

the

test

pattern

verification

process

and

returned

as

output

with

the

test

pattern

generation

process.

verification_pattern

Direction:

Input/Output

Type:

String

Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)

Chapter

4.

Managing

DES

Cryptographic

Keys

115

This

is

an

8-byte

field

that

contains

a

verification

pattern

supplied

as

input

for

the

test

pattern

verification

process

and

returned

as

output

with

the

test

pattern

generation

process.

kek_key_identifier

Direction:

Input/Output

Type:

String

This

parameter

is

for

the

CSNBKYTX

service

only.

If

key_identifier

is

an

external

token,

then

this

is

a

64-byte

string

of

an

internal

token

or

a

key

label

of

an

IMPORTER

or

EXPORTER

used

to

encrypt

the

test

key.

If

key_identifier

is

an

internal

token,

then

the

parameter

is

ignored.

Note:

If

you

supply

a

key

label

for

this

parameter,

it

must

be

unique

on

the

CKDS.

Usage

Notes

You

can

generate

the

verification

pattern

for

a

key

when

you

generate

the

key.

You

can

distribute

the

pattern

with

the

key

and

it

can

be

verified

at

the

receiving

node.

In

this

way,

users

can

ensure

using

the

same

key

at

the

sending

and

receiving

locations.

You

can

generate

and

verify

keys

of

any

combination

of

key

forms,

that

is,

clear,

operational

or

external.

The

parity

of

the

key

is

not

tested.

With

a

PCI

X

Cryptographic

Coprocessor,

there

is

support

for

the

generation

and

verification

of

single,

double

and

triple-length

keys

for

the

ENC-ZERO

verification

process.

For

triple-length

keys,

use

KEY-ENC

or

KEY-ENCD

with

ENC-ZERO.

Clear

triple-length

keys

are

not

supported.

In

the

Transaction

Security

System,

KEY-ENC

and

KEY-ENCD

both

support

enciphered

single-length

and

double-length

keys.

They

use

the

key-form

bits

in

byte

5

of

CV

to

determine

the

length

of

the

key.

To

be

consistent,

in

ICSF,

both

KEY-ENC

and

KEY-ENCD

handle

single-

and

double-length

keys.

Both

products

effectively

ignore

the

keywords,

which

are

supplied

only

for

compatibility

reasons.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)

116

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Table

31.

Key

test

and

key

test

extended

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

The

key

test

and

key

test

extended

callable

services

do

not

support

triple-length

DATA

keys.

The

key

test

extended

callable

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

Rule_array

keywords

KEY-CLR,

KEY-CLRD,

and

ENC-ZERO

are

not

valid

for

CSNBKYTX.

PCI

Cryptographic

Coprocessor

The

key

test

callable

service

does

not

support

triple-length

DATA

keys.

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

ANSI

enablement

keys

are

not

installed

in

the

CKDS.

v

Verification

process

rule

ENC-ZERO

is

specified.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

key

test

and

key

test

extended

callable

services

do

not

support

triple-length

DATA

keys.

The

key

test

extended

callable

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

Rule_array

keywords

KEY-CLR,

KEY-CLRD,

and

ENC-ZERO

are

not

valid

for

CSNBKYTX.

PCI

Cryptographic

Coprocessor

The

key

test

callable

service

does

not

support

triple-length

DATA

keys.

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

ANSI

enablement

keys

are

not

installed

in

the

CKDS.

v

Verification

process

rule

ENC-ZERO

is

specified.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Clear

triple-length

keys

are

not

supported.

Encrypted

triple-length

keys

are

supported

with

the

ENC-ZERO

keyword

only.

Key

Token

Build

(CSNBKTB)

Use

the

key

token

build

callable

service

to

build

an

external

or

internal

key

token

from

information

which

you

supply.

The

token

can

be

used

as

input

for

the

key

generate

and

key

part

import

callable

services.

You

can

specify

a

control

vector

or

the

service

can

build

a

control

vector

based

upon

the

key

type

you

specify

and

the

control

vector-related

keywords

in

the

rule

array.

ICSF

supports

the

building

of

an

internal

key

token

with

the

key

encrypted

under

a

master

key

other

than

the

current

master

key.

Key

Test

and

Key

Test

Extended

(CSNBKYT

and

CSNBKYTX)

Chapter

4.

Managing

DES

Cryptographic

Keys

117

Note:

CLR8-ENC

or

UKPT

must

be

coded

in

rule_array

when

the

KEYGENKY

key

type

is

coded.

When

the

SECMSG

key_type

is

coded,

either

SMKEY

or

SMPIN

must

be

specified

in

the

rule_array.

You

can

also

use

this

service

to

update

the

DES

or

SYS-ENC

markings

in

a

supplied

DATA,

IMPORTER,

or

EXPORTER

token

and

to

build

CCA

key

tokens

for

all

key

types

ICSF

supports.

Format

CALL

CSNBKTB(

return_code,

reason_code,

exit_data_length,

exit_data,

key_token,

key_type,

rule_array_count,

rule_array,

key_value,

master_key_version_number,

key_register_number,

secure_token,

control_vector,

initialization_vector,

pad_character,

cryptographic_period_start,

masterkey_verify_parm

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

Reserved

field.

exit_data

Direction:

Input/Output

Type:

String

Reserved

field.

Key

Token

Build

(CSNBKTB)

118

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|

key_token

Direction:

Input/Output

Type:

String

If

the

following

parameter

key_type

is

TOKEN

then

this

is

a

64-byte

internal

token

that

is

updated

as

specified

in

the

rule_array.

The

internal

token

must

be

a

DATA,

IMPORTER

or

EXPORTER

key

type.

Otherwise

this

field

is

an

output-only

field.

key_type

Direction:

Input

Type:

String

An

8-byte

field

that

specifies

the

type

of

key

you

want

to

build

or

the

keyword

TOKEN

for

updating

a

supplied

token.

If

key_type

is

TOKEN,

then

the

key_token

field

cannot

contain

a

double-

or

triple-length

DATA

key

token.

No

other

keywords

are

valid.

The

TOKEN

keyword

indicates

changing

an

internal

token

in

the

key_token

parameter.

A

valid

key_type

indicates

building

a

key

token

from

the

parameters

specified.

Key

type

values

for

the

Key

Token

Build

callable

service

are:

AKEK,

CIPHER,

CVARDEC,

CVARENC,

CVARPINE,

CVARXCVL,

CVARXCVR,

DATA,

DATAC,

DATAM,

DATAMV,

DATAXLAT,

DECIPHER,

DKYGENKY,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

IPINENC,

KEYGENKY,

MAC,

MACVER,

OKEYLAT,

OPINENC,

PINGEN,

PINVER,

and

SECMSG.

Key

type

USE-CV

is

used

when

a

user-supplied

control

vector

is

specified.

The

USE-CV

key

type

specifies

that

the

key

type

should

be

obtained

from

the

control

vector

specified

in

the

control_vector

parameter.

The

CV

rule

array

keyword

should

be

specified

if

USE-CV

is

specified.

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

rule_array

Direction:

Input

Type:

String

One

to

four

keywords

that

provide

control

information

to

the

callable

service.

See

Table

32

for

a

list.

The

keywords

must

be

in

contiguous

storage

with

each

of

the

keywords

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

For

any

key

type,

there

are

no

more

than

four

valid

rule_array

values.

If

you

specify

TOKEN

for

the

key_type,

then

the

only

valid

rule_array

values

are

INTERNAL

and

DES

or

SYS-ENC.

The

Data

Encryption

Algorithm

(see

the

table

that

follows)

keyword

has

no

default.

If

you

specify

a

key_type

of

DATA,

IMPORTER

or

EXPORTER,

the

Data

Encryption

Algorithm

selection

keyword

defaults

to

SYS-ENC.

The

other

rule_array

keywords

do

not

apply.

Table

32.

Keywords

for

Key

Token

Build

Control

Information

Keyword

Meaning

Token

Type

(required)

EXTERNAL

Specifies

an

external

key

token.

Key

Token

Build

(CSNBKTB)

Chapter

4.

Managing

DES

Cryptographic

Keys

119

Table

32.

Keywords

for

Key

Token

Build

Control

Information

(continued)

Keyword

Meaning

INTERNAL

Specifies

an

internal

key

token.

Key

Status

(optional)

KEY

This

keyword

indicates

that

the

key

token

to

build

will

contain

an

encrypted

key.

The

key_value

parameter

identifies

the

field

that

contains

the

key.

NO-KEY

This

keyword

indicates

that

the

key

token

to

build

will

not

contain

a

key.

This

is

the

default

key

status.

Data

Encryption

Algorithm

(optional)

—

valid

only

for

single-length

DATA

keys

and

KEKs.

DES

Tolerated

for

compatibility

reasons.

SYS-ENC

Tolerated

for

compatibility

reasons.

CV

on

the

Link

Specification

(optional)

—

valid

only

for

IMPORTER

and

EXPORTER.

CV-KEK

This

keyword

indicates

marking

the

KEK

as

a

CV

KEK.

The

control

vector

is

applied

to

the

KEK

before

use

in

encrypting

other

keys.

This

is

the

default.

NOCV-KEK

This

keyword

indicates

marking

the

KEK

as

a

NOCV

KEK.

The

control

vector

is

not

applied

to

the

KEK

before

use

in

encrypting

other

keys.

Services

using

NO-CV

keys

must

be

processed

on

the

Cryptographic

Coprocessor

Feature.

CV

(Status

optional)

CV

This

keyword

indicates

to

obtain

the

control

vector

from

the

variable

identified

by

the

control_vector

parameter.

NO-CV

Default.

This

keyword

indicates

that

the

control

vector

is

to

be

supplied

based

on

the

key

type

and

the

control

vector

related

keywords.

Key

Length

Keywords

(optional)

DOUBLE

Double-length

or

16-byte

key.

Synonymous

with

KEYLN16.

Note:

See

Table

33

on

page

123

for

valid

key

types

for

these

key

length

values.

KEYLN8

Single-length

or

8-byte

key.

KEYLN16

Double-length

or

16-byte

key.

KEYLN24

Triple-length,

24-byte

key

valid

only

for

a

DATA

key

type.

MIXED

Double-length

key.

Indicates

that

the

key

can

either

be

a

replicated

single-length

key

or

a

double-length

key

with

two

different

8–byte

values.

SINGLE

Single-length

or

8-byte

key.

Synonymous

with

KEYLN8.

Key

Part

Indicator

(optional)

KEY-PART

This

token

is

to

be

used

as

input

to

the

key

part

import

service.

Control

Vector

Keywords.

Specify

one

or

more

of

the

following

(optional)

See

Table

33

on

page

123

for

the

key-usage

keywords

that

can

be

specified

for

a

given

key

type.

Master

Key

Verification

Pattern

(optional)

Key

Token

Build

(CSNBKTB)

120

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

32.

Keywords

for

Key

Token

Build

Control

Information

(continued)

Keyword

Meaning

MKVP

This

keyword

indicates

that

the

key_value

is

enciphered

under

the

master

key

which

corresponds

to

the

master

key

verification

pattern

specified

in

the

masterkey_verify_parm

parameter.

If

this

keyword

is

not

specified,

the

key

contained

in

the

key_value

field

must

be

enciphered

under

the

current

master

key.

key_value

Direction:

Input

Type:

String

If

you

use

the

KEY

keyword,

this

parameter

is

a

16-byte

string

that

contains

the

encrypted

key

value.

Single-length

keys

must

be

left-justified

in

the

field

and

padded

on

the

right

with

X'00'.

If

you

are

building

a

triple-length

DATA

key,

this

parameter

is

a

24-byte

string

containing

the

encrypted

key

value.

If

you

supply

an

encrypted

key

value

and

also

specify

INTERNAL,

the

service

will

check

for

the

presence

of

the

MKVP

keyword.

If

MKVP

is

present,

the

service

will

assume

the

key_value

is

enciphered

under

the

master

key

which

corresponds

to

the

master

key

verification

pattern

specified

in

the

masterkey_verify_parm

parameter,

and

will

place

the

key

into

the

internal

token

along

with

the

verification

pattern

from

the

masterkey_verify_parm

parameter.

If

MKVP

is

not

specified,

ICSF

assumes

the

key

is

enciphered

under

the

current

host

master

key

and

places

the

key

into

an

internal

token

along

with

the

verification

pattern

for

the

current

master

key.

In

this

case,

the

application

must

ensure

that

the

master

key

has

not

changed

since

the

key

was

generated

or

imported

to

this

system.

Otherwise,

use

of

this

parameter

is

not

recommended.

master_key_version_number

Direction:

Input

Type:

Integer

This

field

is

examined

only

if

the

KEY

keyword

is

specified,

in

which

case,

this

field

must

be

zero.

If

the

KEY

and

INTERNAL

keywords

are

specified

in

rule_array,

the

service

will

check

for

the

existence

of

the

MKVP

rule

array

keyword.

If

MKVP

is

specified,

the

service

will

make

use

of

the

last

parameter

specified

(masterkey_verify_parm).

The

service

assumes

the

key

provided

by

the

key_value

parameter

is

enciphered

under

the

corresponding

master

key

and

will

place

the

key

into

the

internal

token

along

with

the

verification

pattern

from

the

masterkey_verify_parm

parameter.

key_register_number

Direction:

Input

Type:

Integer

This

field

is

ignored.

secure_token

Direction:

Input

Type:

String

This

field

is

ignored.

control_vector

Direction:

Input

Type:

String

Key

Token

Build

(CSNBKTB)

Chapter

4.

Managing

DES

Cryptographic

Keys

121

A

pointer

to

a

16

byte

string

variable.

If

this

parameter

is

specified,

and

you

use

the

CV

rule

array

keyword,

the

variable

is

copied

to

the

control

vector

field

of

the

key

token.

See

“Control

Vector

Table”

on

page

449

for

additional

information.

initialization_vector

Direction:

Input

Type:

String

This

field

is

ignored.

pad_character

Direction:

Input

Type:

Integer

The

only

allowed

value

for

key

types

MAC

and

MACVER

is

0.

This

field

is

ignored

for

all

other

key

types.

cryptographic_period_start

Direction:

Input

Type:

String

This

field

is

ignored.

masterkey_verify_parm

Direction:

Input

Type:

String

A

pointer

to

an

8-byte

string

variable.

The

value

is

inserted

into

the

key

token

when

you

specify

both

the

KEY

and

INTERNAL

keywords

in

rule

array.

Usage

Notes

No

pre-

or

post-processing

or

security

exits

are

enabled

for

this

service.

No

RACF

checking

is

done,

and

no

calls

to

RACF

are

issued

when

this

service

is

used.

You

can

use

this

service

to

create

skeleton

key

tokens

with

the

desired

data

encryption

algorithm

bits

for

use

in

some

key

management

services

to

override

the

default

system

specifications.

v

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature

and

need

to

generate

operational

AKEKs,

use

key_type

of

TOKEN

and

provide

a

skeleton

AKEK

key

token

as

the

generated_key_identifier_1

into

the

key

generate

service.

v

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature,

the

KEY-PART

AKEK

key

token

can

also

be

used

as

input

to

key

part

import

service.

v

To

create

an

internal

token

with

a

specified

KEY

value,

ICSF

needs

to

supply

a

valid

master

key

verification

pattern

(MKVP).

NOCV

keyword

is

only

supported

for

the

standard

IMPORTERs

and

EXPORTERs

with

the

default

CVs.

The

following

illustrates

the

key

type

and

key

usage

keywords

that

can

be

combined

in

the

Control

Vector

Generate

and

Key

Token

Build

callable

services

to

create

a

control

vector.

Key

Token

Build

(CSNBKTB)

122

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

33.

Control

Vector

Generate

and

Key

Token

Build

Control

Vector

Keyword

Combinations

Key

Type

Key

Usage

Default

keys

are

indicated

in

bold.

A

key

usage

keyword

is

required

for

the

KEYGENKY

key

type.

*

All

keywords

in

the

list

are

defaults

unless

one

or

more

keywords

in

the

list

are

specified.

**

The

NOOFFSET

keyword

is

only

valid

if

NO-SPEC,

IBM-PIN,

GBP-PIN,

or

the

default

(NO-SPEC)

is

specified.

Notes:

Default

keys

are

indicated

in

bold.

CLR8-ENC

and/or

UKPT

must

be

specified

for

the

KEYGENKY

key

type

-

SMKEY

or

SMPIN

must

be

specified

for

the

SECMSG

key

type

*

All

keywords

in

the

list

are

defaults

unless

one

or

more

keywords

in

the

list

are

specified.

**

The

NOOFFSET

keyword

is

only

valid

if

NO-SPEC,

IBM-PIN,

GBP-PIN,

or

the

default

(NO-SPEC)

is

specified.

DATA

SINGLE

KEYLN8

MIXED

DOUBLE

KEYLN16

KEYLN24

XPORT-OK

NO-XPORT

KEY-PART

CIPHER

ENCIPHER

DECIPHER

MAC

MACVER

SINGLE

KEYLN8

MIXED

DOUBLE

KEYLN16

XPORT-OK

NO-XPORT

KEY-PART

DATAXLAT

CVARPINE

CVARENC

CVARDEC

CVARXCVL

CVARXCVR

SINGLE

KEYLN8

XPORT-OK

NO-XPORT

KEY-PART

DATAC

DATAM

DATAMV

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

KEYGENKY

CLR8-ENC

UKPT

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

DKYGENKY

DDATA

DMAC

DMV

DIMP

DEXP

DPVR

DMKEY

DMPIN

DALL

DKYL0

DKYL1

DKYL2

DKYL3

DKYL4

DKYL5

DKYL6

DKYL7

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

SECMSG

SMKEY

SMPIN

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

Key

Token

Build

(CSNBKTB)

Chapter

4.

Managing

DES

Cryptographic

Keys

123

|
|

Table

33.

Control

Vector

Generate

and

Key

Token

Build

Control

Vector

Keyword

Combinations

(continued)

Key

Type

Key

Usage

Default

keys

are

indicated

in

bold.

A

key

usage

keyword

is

required

for

the

KEYGENKY

key

type.

*

All

keywords

in

the

list

are

defaults

unless

one

or

more

keywords

in

the

list

are

specified.

**

The

NOOFFSET

keyword

is

only

valid

if

NO-SPEC,

IBM-PIN,

GBP-PIN,

or

the

default

(NO-SPEC)

is

specified.

IKEYXLAT

OKEYXLAT

ANY

NOT-KEK

DATA

PIN

LMTD-KEK

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

IMPORTER

OPIM*

IMEX*

IMIM*

IMPORT*

XLATE

ANY

NOT-KEK

DATA

PIN

LMTD-KEK

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

EXPORTER

OPEX*

IMEX*

EXEX*

EXPORT*

XLATE

ANY

NOT-KEK

DATA

PIN

LMTD-KEK

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

PINVER

NO-SPEC**

IBM-PIN**

GBP-PIN**

IBM-PINO

GBP-PINO

VISA-PVV

INBK-PIN

NOOFFSET

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

PINGEN

CPINGEN*

CPINGENA*

EPINGENA*

EPINGEN*

EPINVER*

NO-SPEC**

IBM-PIN**

GBP-PIN**

IBM-PINO

GBP-PINO

VISA-PVV

INBK-PIN

NOOFFSET

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

IPINENC

CPINGENA*

EPINVER*

REFORMAT*

TRANSLAT*

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

OPINENC

CPINENC*

EPINGEN*

REFORMAT*

TRANSLAT*

DOUBLE

KEYLN16

MIXED

XPORT-OK

NO-XPORT

KEY-PART

Related

Information

Attention:

CDMF

is

no

longer

supported.

The

ICSF

key

token

build

callable

service

provides

a

subset

of

the

parameters

and

keywords

available

with

the

Transaction

Security

System

key

token

build

verb.

The

following

key

types

are

not

supported:

ADATA,

AMAC,

CIPHERXI,

CIPHERXL,

CIPHERXO,

UKPTBASE.

Key

Token

Build

(CSNBKTB)

124

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

following

rule

array

keywords

are

not

supported:

ACTIVE,

ADAPTER,

CARD,

CBC,

CLEAR-IV,

CUSP,

INACTIVE,

IPS,

KEY-REF,

MACLEN4,

MACLEN6,

MACLEN8,

NO-IV,

READER,

X9.2,

X9.9-1.

The

master_key_verification_number

parameter

has

been

replaced

by

the

master_key_version_number

parameter.

The

master_key_version_number

parameter

is

examined

only

if

the

KEY

keyword

is

specified,

and

in

this

case

must

be

zero.

If

KEY

and

INTERNAL

are

both

specified

in

the

rule

array,

the

service

will

check

for

the

existence

of

a

new

optional

rule

array

keyword,

MKVP.

If

MKVP

is

specified,

the

service

will

make

use

of

the

last

parameter

specified.

Currently,

this

is

called

masterkey_verify_parm

and

is

always

ignored.

It

will

now

be

used

to

contain

a

master

key

verification

pattern

if

MKVP

is

specified

in

the

rule_array.

The

service

assumes

the

key

provided

by

the

key_value

parameter

is

enciphered

under

the

corresponding

master

key

and

will

place

the

key

into

the

internal

token

along

with

the

verification

pattern

from

the

masterkey_verify_parm

parameter.

The

key_register_number,

secure_token,

and

initialization_vector

parameters

are

ignored.

The

pad_character

parameter

must

have

a

value

of

zero.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

34.

Key

token

build

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Key

Translate

(CSNBKTR)

The

Key

Translate

callable

service

uses

one

key-encrypting

key

to

decipher

an

input

key

and

then

enciphers

this

key

using

another

key-encrypting

key

within

the

secure

environment.

Note:

All

key

labels

must

be

unique.

Key

Token

Build

(CSNBKTB)

Chapter

4.

Managing

DES

Cryptographic

Keys

125

Format

CALL

CSNBKTR(

return_code,

reason_code,

exit_data_length,

exit_data,

input_key_token,

input_KEK_key_identifier,

output_KEK_key_identifier,

output_key_token

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

input_key_token

Direction:

Input

Type:

String

A

64-byte

string

variable

containing

an

external

key

token.

The

external

key

token

contains

the

key

to

be

re-enciphered

(translated).

input_KEK_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

variable

containing

the

internal

key

token

or

the

key

label

of

an

internal

key

token

record

in

the

CKDS.

The

internal

key

token

contains

the

key-encrypting

key

used

to

decipher

the

key.

The

internal

key

token

must

Key

Translate

(CSNBKTR)

126

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

contain

a

control

vector

that

specifies

an

importer

or

IKEYXLAT

key

type.

The

control

vector

for

an

importer

key

must

have

the

XLATE

bit

set

to

1.

output_KEK_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

variable

containing

the

internal

key

token

or

the

key

label

of

an

internal

key

token

record

in

the

CKDS.

The

internal

key

token

contains

the

key-encrypting

key

used

to

encipher

the

key.

The

internal

key

token

must

contain

a

control

vector

that

specifies

an

exporter

or

OKEYXLAT

key

type.

The

control

vector

for

an

exporter

key

must

have

the

XLATE

bit

set

to

1.

output_key_token

Direction:

Output

Type:

String

A

64-byte

string

variable

containing

an

external

key

token.

The

external

key

token

contains

the

re-enciphered

key.

Restrictions

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

Triple

length

DATA

key

tokens

are

not

supported.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

35.

Key

translate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Multiple

Clear

Key

Import

(CSNBCKM)

Use

the

multiple

clear

key

import

callable

service

to

import

a

clear

single-,

double-,

or

triple-length

DATA

key

that

is

to

be

used

to

encipher

or

decipher

data.

This

callable

service

can

import

only

DATA

keys.

Multiple

clear

key

import

accepts

a

clear

DATA

key,

enciphers

it

under

the

master

key,

and

returns

the

encrypted

DATA

key

in

operational

form

in

an

internal

key

token.

Key

Translate

(CSNBKTR)

Chapter

4.

Managing

DES

Cryptographic

Keys

127

|
|
|
|
|

Format

CALL

CSNBCKM(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

clear_key_length,

clear_key,

key_identifier_length,

key_identifier

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

rule_array_count

parameter

must

be

0

or

1.

rule_array

Direction:

Input

Type:

String

Multiple

Clear

Key

Import

(CSNBCKM)

128

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Zero

or

one

keyword

that

supplies

control

information

to

the

callable

service.

The

keyword

must

be

in

8

bytes

of

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

Refer

to

Table

36

for

a

list

of

keywords.

The

keyword

specifies

the

cryptographic

algorithm.

If

no

algorithm

is

specified,

the

system

default

algorithm

is

used

unless

a

double-

or

triple-length

DATA

key

is

specified

on

a

CDMF

system.

In

this

case,

the

resulting

DATA

token

is

marked

DES.

Table

36.

Keywords

for

Multiple

Clear

Key

Import

Rule

Array

Control

Information

Keyword

Meaning

Algorithm

(optional)

CDMF

The

output

key

identifier

is

to

be

a

CDMF

token.

For

a

DATA

key

of

length

16

or

24,

you

may

not

specify

CDMF.

This

keyword

is

supported

on

CCF

systems

only.

DES

The

output

key

identifier

is

to

be

a

DES

token.

clear_key_length

Direction:

Input

Type:

Integer

The

clear_key_length

specifies

the

length

of

the

clear

key

value

to

import.

This

length

must

be

8,

16,

or

24.

clear_key

Direction:

Input

Type:

String

The

clear_key

specifies

the

clear

key

value

to

import.

key_identifier_length

Direction:

Input/Output

Type:

Integer

The

byte

length

of

the

key_identifier

parameter.

This

must

be

exactly

64

bytes.

key_identifier

Direction:

Output

Type:

String

A

64-byte

string

that

is

to

receive

the

internal

key

token.

Appendix

B,

“Key

Token

Formats,”

on

page

431

describes

the

key

tokens.

Usage

Notes

This

service

produces

an

internal

DATA

token

with

a

control

vector

which

is

usable

on

the

Cryptographic

Coprocessor

Feature.

If

a

valid

internal

token

is

supplied

as

input

to

the

service

in

the

key_identifier

field,

that

token’s

control

vector

will

not

be

used

in

the

encryption

of

the

clear

key

value.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Multiple

Clear

Key

Import

(CSNBCKM)

Chapter

4.

Managing

DES

Cryptographic

Keys

129

|
|

Table

37.

Multiple

clear

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Tokens

are

not

marked

with

the

system

encryption

algorithm.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Tokens

are

not

marked

with

the

system

encryption

algorithm.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

CDMF

keyword

is

not

supported.

Tokens

are

not

marked

with

the

system

encryption

algorithm.

Multiple

Secure

Key

Import

(CSNBSKM)

Use

this

service

to

encipher

a

single-length,

double-length,

or

triple-length

key

under

the

system

master

key

or

an

importer

key-encrypting

key.

The

clear

key

can

then

be

imported

as

any

of

the

possible

key

types.

The

callable

service

can

execute

only

when

ICSF

is

in

special

secure

mode,

which

is

described

in

“Special

Secure

Mode”

on

page

10.

Format

CALL

CSNBSKM(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

clear_key_length,

clear_key,

key_type,

key_form,

key_encrypting_key_identifier,

imported_key_identifier_length,

imported_key_identifier

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

Multiple

Clear

Key

Import

(CSNBCKM)

130

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

rule_array_count

parameter

must

be

0,

1,

or

2.

rule_array

Direction:

Input

Type:

String

Zero

to

two

keywords

that

supply

control

information

to

the

callable

service.

Each

keyword

must

be

in

8

bytes

of

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

The

keywords

are

shown

in

Table

38.

The

first

keyword

is

the

algorithm.

If

no

algorithm

is

specified,

the

system

default

algorithm

is

used.

If

no

algorithm

is

specified

on

a

CDMF

only

system

and

either

a

double-

or

triple-length

DATA

key

is

specified,

the

token

is

marked

DES.

The

algorithm

keyword

applies

only

when

the

desired

output

token

is

of

key

form

OP

and

key

type

IMPORTER,

EXPORTER,

or

DATA.

For

key

form

IM

or

any

other

key

type,

specifying

DES

or

CDMF

causes

an

error.

The

second

keyword

is

optional

and

specifies

that

the

output

key

token

be

marked

as

an

NOCV-KEK.

Table

38.

Keywords

for

Multiple

Secure

Key

Import

Rule

Array

Control

Information

Keyword

Meaning

Algorithm

(optional)

CDMF

The

output

key

identifier

is

to

be

a

CDMF

token.

For

a

DATA

key

of

length

16

or

24,

you

may

not

specify

CDMF.

CDMF

is

only

supported

on

CCF

systems.

DES

The

output

key

identifier

is

to

be

a

DES

token.

NOCV

Choice

(optional)

Multiple

Secure

Key

Import

(CSNBSKM)

Chapter

4.

Managing

DES

Cryptographic

Keys

131

|

Table

38.

Keywords

for

Multiple

Secure

Key

Import

Rule

Array

Control

Information

(continued)

Keyword

Meaning

NOCV-KEK

The

output

token

is

to

be

marked

as

an

NOCV-KEK.

This

keyword

only

applies

if

key

form

is

OP

and

key

type

is

IMPORTER,

EXPORTER

or

IMP-PKA.

For

key

form

IM

or

any

other

key

type,

specifying

NOCV-KEK

causes

an

error.

clear_key_length

Direction:

Input

Type:

Integer

The

clear_key_length

specifies

the

length

of

the

clear

key

value

to

import.

The

length

must

be

8,

16,

or

24,

but

cannot

exceed

the

maximum

length

for

the

specified

key

type.

clear_key

Direction:

Input

Type:

String

The

clear_key

specifies

the

clear

key

value

to

import.

key_type

Direction:

Input

Type:

8

Character

String

The

type

of

key

you

want

to

encipher

under

the

master

key

or

an

importer

key.

Specify

an

8-byte

field

that

must

contain

a

keyword

from

the

list

below

or

the

keyword

TOKEN.

For

types

with

fewer

than

8

characters,

the

type

should

be

padded

on

the

right

with

blanks.

If

the

key

type

is

TOKEN,

ICSF

determines

the

key

type

from

the

control

vector

(CV)

field

in

the

internal

key

token

provided

in

the

imported_key_identifier

parameter.

Key

type

values

for

the

Multiple

Secure

Key

Import

callable

service

are:

CIPHER,

CVARDEC,

CVARENC,

CVARPINE,

CVARXCVL,

CVARXCVR,

DATA,

DATAM,

DATAMV,

DATAXLAT,

DECIPHER,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

IMP-PKA,

IPINENC,

MAC,

MACVER,

OKEYLAT,

OPINENC,

PINGEN

and

PINVER.

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

key_form

Direction:

Input

Type:

4

Character

String

The

key

form

you

want

to

generate.

Enter

a

4-byte

keyword

specifying

whether

the

key

should

be

enciphered

under

the

master

key

(OP)

or

the

importer

key-encrypting

key

(IM).

The

keyword

must

be

left-justified

and

padded

with

blanks.

Valid

keyword

values

are

OP

for

encryption

under

the

master

key

or

IM

for

encryption

under

the

importer

key-encrypting

key.

If

you

specify

IM,

you

must

specify

an

importer

key-encrypting

key

in

the

key_encrypting_key_identifier

parameter.

For

a

key_type

of

IMP-PKA,

this

service

supports

only

the

OP

key_form.

key_encrypting_key_identifier

Direction:

Input/Output

Type:

String

Multiple

Secure

Key

Import

(CSNBSKM)

132

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

A

64-byte

string

internal

key

token

or

key

label

of

an

importer

key-encrypting

key.

imported_key_identifier_length

Direction:

Input/Output

Type:

Integer

The

byte

length

of

the

imported_key_identifier

parameter.

This

must

be

exactly

64

bytes.

imported_key_identifier

Direction:

Output

Type:

String

A

64-byte

string

that

is

to

receive

the

output

key

token.

If

OP

is

specified

in

the

key_form

parameter,

the

service

returns

an

internal

key

token.

If

IM

is

specified

in

the

key_form

parameter,

the

service

returns

an

external

key

token.

Appendix

B,

“Key

Token

Formats,”

on

page

431

describes

the

key

tokens.

Note

that

for

a

DATA

key

of

length

16

or

24,

no

reference

will

be

made

to

the

data

encryption

algorithm

bits

or

to

the

system's

default

algorithm;

the

token

will

be

marked

DES.

Usage

Notes

On

CCF

systems,

to

generate

double-length

DATAM

and

DATAMV

keys

in

the

importable

form,

the

ANSI

system

keys

must

be

installed

in

the

CKDS.

With

a

PCI

X

Cryptographic

Coprocessor,

creation

of

NOCV

key-encrypting

is

only

available

for

standard

IMPORTERs

and

EXPORTERs.

On

an

IBM

Eserver

zSeries

990,

if

key_form

is

IM

and

the

key_encrypting_key_identifier

is

a

NOCV

KEK,

then

the

NOCV

IMPORTER

access

control

point

must

be

enabled

in

the

PCI

X

Cryptographic

Coprocessor

to

use

the

function.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

39.

Multiple

secure

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Only

control

vectors

and

key

types

supported

by

the

Cryptographic

Coprocessor

Feature

will

be

valid

when

importing

a

triple-length

key.

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

of

a

supplied

internal

token

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature,

or

if

the

key

type

is

not

valid

for

the

Cryptographic

Coprocessor

Feature.

DATAC

is

not

supported.

Multiple

Secure

Key

Import

(CSNBSKM)

Chapter

4.

Managing

DES

Cryptographic

Keys

133

Table

39.

Multiple

secure

key

import

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Only

control

vectors

and

key

types

supported

by

the

Cryptographic

Coprocessor

Feature

will

be

valid

when

importing

a

triple-length

key.

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

of

a

supplied

internal

token

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature,

or

if

the

key

type

is

not

valid

for

the

Cryptographic

Coprocessor

Feature.

DATAC

is

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Key_type

DATAXLAT

is

not

supported.

CDMF

keyword

is

not

supported.

DATA

and

KEK

tokens

are

not

marked

with

the

system

encryption

algorithm.

PKA

Decrypt

(CSNDPKD)

Use

this

service

to

decrypt

(unwrap)

a

formatted

key

value.

The

service

unwraps

the

key,

deformats

it,

and

returns

the

deformatted

value

to

the

application

in

the

clear.

PKCS

1.2

and

ZERO-PAD

formatting

is

supported.

For

PKCS

1.2,

the

decrypted

data

is

examined

to

ensure

it

meets

RSA

DSI

PKCS

#1

block

type

2

format

specifications.

ZERO-PAD

is

only

supported

for

external

or

clear

RSA

private

keys.

This

service

allows

the

use

of

clear

or

encrypted

RSA

private

keys.

If

an

external

clear

key

token

is

used,

the

master

keys

are

not

required

to

be

installed

in

any

cryptographic

coprocessor

and

PKA

callable

services

does

not

have

to

be

enabled.

Requests

are

routed

to

a

PCICA

if

available

when

a

clear

key

token

is

used.

Format

CALL

CSNDPKD(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

PKA_enciphered_keyvalue_length,

PKA_enciphered_keyvalue,

data_structure_length,

data_structure,

PKA_key_identifier_length,

PKA_key_identifier,

target_keyvalue_length,

target_keyvalue)

Multiple

Secure

Key

Import

(CSNBSKM)

134

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|
|
|
|

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

This

value

must

be

1.

rule_array

Direction:

Input

Type:

String

The

keyword

that

provides

control

information

to

the

callable

service.

The

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

Table

40.

Keywords

for

PKA

Decrypt

Keyword

Meaning

Recovery

Method

(required)

specifies

the

method

to

use

to

recover

the

key

value.

PKCS-1.2

RSA

DSI

PKCS

#1

block

type

02

will

be

used

to

recover

the

key

value.

PKA

Decrypt

(CSNDPKD)

Chapter

4.

Managing

DES

Cryptographic

Keys

135

Table

40.

Keywords

for

PKA

Decrypt

(continued)

Keyword

Meaning

ZERO-PAD

The

input

PKA_enciphered_keyvalue

is

decrypted

using

the

RSA

private

key.

The

entire

result

(including

leading

zeroes)

will

be

returned

in

the

target_keyvalue

field.

The

PKA_key_identifier

must

be

an

external

RSA

token

or

the

labelname

of

a

external

token.This

keyword

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

a

z890.

This

support

on

the

PCICA

does

not

require

LIC

code

updates.

PKA_enciphered_keyvalue_length

Direction:

Input

Type:

integer

The

length

of

the

PKA_enciphered_keyvalue

parameter

in

bytes.

The

maximum

size

that

you

can

specify

is

256

bytes.

The

length

should

be

the

same

as

the

modulus

length

of

the

PKA_key_identifier.

PKA_enciphered_keyvalue

Direction:

Input

Type:

String

This

field

contains

the

key

value

protected

under

an

RSA

public

key.

This

byte-length

string

is

left-justified

within

the

PKA_enciphered_keyvalue

parameter.

data_structure_length

Direction:

Input

Type:

Integer

The

value

must

be

0.

data_structure

Direction:

Input

Type:

String

This

field

is

currently

ignored.

PKA_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

PKA_key_identifier

parameter.

When

the

PKA_key_identifier

is

a

key

label,

this

field

specifies

the

length

of

the

label.

The

maximum

size

that

you

can

specify

is

2500

bytes.

PKA_key_identifier

Direction:

Input

Type:

String

An

internal

RSA

private

key

token,

the

label

of

an

internal

RSA

private

key

token,

or

an

external

RSA

private

key

token

containing

a

clear

RSA

private

key

in

modulus-exponent

or

Chinese

Remainder

format.

The

corresponding

public

key

was

used

to

wrap

the

key

value.

PKA

Decrypt

(CSNDPKD)

136

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||
|
|
|
|
|
|

|
|
|

|

|||
|

|
|
|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|
|
|

|

|||
|

|
|
|
|

target_keyvalue_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

target_keyvalue

parameter.

The

maximum

size

that

you

can

specify

is

256

bytes.

On

return,

this

field

is

updated

with

the

actual

length

of

target_keyvalue.

If

ZERO-PAD

is

specified,

this

length

will

be

the

same

as

the

PKA_enciphered_keyvalue_length

which

is

equal

to

the

RSA

modulus

byte

length.

target_keyvalue

Direction:

Output

Type:

String

This

field

will

contain

the

decrypted,

deformatted

key

value.

If

ZERO-PAD

is

specified,

the

decrypted

keyvalue,

including

leading

zeros,

will

be

returned.

Restrictions

The

exponent

of

the

RSA

public

key

must

be

odd.

Caller

must

be

in

task

mode

and

must

not

be

in

SRB

mode.

Access

control

checking

will

not

be

performed

in

the

PCI

Cryptographic

Coprocessor

when

a

clear

external

key

token

is

supplied.

Usage

Notes

The

RSA

private

key

must

be

enabled

for

key

management

functions.

The

hardware

configuration

sets

the

limit

on

the

modulus

size

of

keys

for

key

management;

thus,

this

service

will

fail

if

the

RSA

key

modulus

bit

length

exceeds

this

limit.

Routing

of

requests

to

coprocessors

for

systems

with

CCFs

This

service

examines

the

RSA

key

specified

in

the

PKA_key_identifier

parameter

to

determine

how

to

route

the

request.

v

If

the

modulus

bit

length

is

less

than

512

bits,

or

if

the

key

is

a

X’02’

form

modulus-exponent

private

key,

ICSF

routes

the

request

to

the

Cryptographic

Coprocessor

Feature.

v

If

the

key

is

a

X’08’

form

CRT

private

key

or

a

retained

private

key,

the

service

routes

the

request

to

a

PCI

Cryptographic

Coprocessor.

v

In

the

case

of

a

retained

key,

the

service

routes

the

request

to

the

specific

PCI

Cryptographic

Coprocessor

in

which

the

key

is

retained.

v

If

the

key

is

a

modulus-exponent

form

private

key

with

a

private

section

ID

of

X’06’,

then

the

service

routes

the

request

as

follows:

–

Since

the

key

must

be

a

key-management

key,

if

the

KMMK

is

equal

to

the

SMK

on

the

Cryptographic

Coprocessor

Feature,

the

PKA

decrypt

service

uses

load

balancing

to

route

the

request

to

either

a

Cryptographic

Coprocessor

Feature

or

to

an

available

PCI

Cryptographic

Coprocessor.

–

If

the

KMMK

is

not

equal

to

the

SMK

on

the

Cryptographic

Coprocessor

Feature,

the

request

must

be

processed

on

a

PCI

Cryptographic

Coprocessor.

If

there

is

no

PCI

Cryptographic

Coprocessor

online,

the

request

will

fail.

PKA

Decrypt

(CSNDPKD)

Chapter

4.

Managing

DES

Cryptographic

Keys

137

|

|||
|

|
|
|

|
|
|

|
|

v

If

the

key

is

an

external

clear

key,

the

request

is

routed

in

this

order

of

preference.

–

PCICA

–

PCICC

–

CCF

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

41.

PKA

decrypt

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

ICSF

routes

the

request

to

the

Cryptographic

Coprocessor

Feature

if

the

modulus

bit

length

is

less

than

512

bits,

or

if

the

key

is

a

X'02'

form

modulus-exponent

private

key.

The

ZERO-PAD

keyword

is

not

supported.

PCI

Cryptographic

Coprocessor

This

service

routes

the

request

to

the

PCI

Cryptographic

Coprocessor

in

which

the

key

is

retained

if

the

key

is

a

X'08'

form

CRT

private

key

or

a

retained

private

key

The

ZERO-PAD

keyword

is

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

ICSF

routes

the

request

to

the

Cryptographic

Coprocessor

Feature

if

the

modulus

bit

length

is

less

than

512

bits,

or

if

the

key

is

a

X'02'

form

modulus-exponent

private

key.

The

ZERO-PAD

keyword

is

not

supported.

PCI

Cryptographic

Coprocessor

This

service

routes

the

request

to

the

PCI

Cryptographic

Coprocessor

in

which

the

key

is

retained

if

the

key

is

a

X'08'

form

CRT

private

key

or

a

retained

private

key

The

ZERO-PAD

keyword

is

not

supported.

PCI

Cryptographic

Accelerator

Only

clear

RSA

private

keys

are

supported.

The

ZERO-PAD

keyword

is

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Old

RSA

private

tokens

encrypted

under

the

CCF

KMMK

are

not

usable

on

the

PCIXCC

if

the

KMMK

was

not

same

as

the

ASYM-MK.

Use

of

ZERO-PAD

keyword

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

a

z890.

PCI

Cryptographic

Accelerator

Only

clear

RSA

private

keys

are

supported.

PKA

Decrypt

(CSNDPKD)

138

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|

|

|

|

|
|
|
|

|
|
|

PKA

Encrypt

(CSNDPKE)

This

callable

service

encrypts

a

supplied

clear

key

value

under

an

RSA

public

key.

The

rule

array

keyword

specifies

the

format

of

the

key

prior

to

encryption.

On

the

z990

and

if

the

ZERO-PAD

or

MRP

keyword

is

specified,

this

service

is

routed

to

a

PCI

Cryptographic

Accelerator.

Format

CALL

CSNDPKE(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

keyvalue_length,

keyvalue,

data_structure_length,

data_structure,

PKA_key_identifier_length,

PKA_key_identifier,

PKA_enciphered_keyvalue_length,

PKA_enciphered_keyvalue)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

PKA

Encrypt

(CSNDPKE)

Chapter

4.

Managing

DES

Cryptographic

Keys

139

|

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

This

value

must

be

1.

rule_array

Direction:

Input

Type:

String

A

keyword

that

provides

control

information

to

the

callable

service.

The

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

Table

42.

Keywords

for

PKA

Encrypt

Keyword

Meaning

Formatting

Method

(required)

specifies

the

method

to

use

to

format

the

key

value

prior

to

encryption.

PKCS-1.2

RSA

DSI

PKCS

#1

block

type

02

format

will

be

used

to

format

the

supplied

key

value.

ZERO-PAD

The

key

value

will

be

padded

on

the

left

with

binary

zeros

to

the

length

of

the

PKA

key

modulus.

The

exponent

of

the

public

key

must

be

odd.

MRP

The

key

value

will

be

padded

on

the

left

with

binary

zeros

to

the

length

of

the

PKA

key

modulus.

The

RSA

public

key

may

have

an

even

or

odd

exponent.

This

keyword

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

a

z890..

For

PCICAs,

the

LIC

code

update

is

not

required.

keyvalue_length

Direction:

Input

Type:

Integer

The

length

of

the

keyvalue

parameter.

The

maximum

field

size

is

256

bytes.

The

actual

maximum

size

depends

on

the

modulus

length

of

PKA_key_identifier

and

the

formatting

method

you

specify

in

the

rule_array

parameter.

See

Usage

Notes.

keyvalue

Direction:

Input

Type:

String

This

field

contains

the

supplied

clear

key

value

to

be

encrypted

under

the

PKA_key_identifier.

data_structure_length

Direction:

Input

Type:

Integer

This

value

must

be

0.

data_structure

Direction:

Input

Type:

String

PKA

Encrypt

(CSNDPKE)

140

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

||
|
|
|
|

|

This

field

is

currently

ignored.

PKA_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

PKA_key_identifier

parameter.

When

the

PKA_key_identifier

is

a

key

label,

this

field

specifies

the

length

of

the

label.

The

maximum

size

that

you

can

specify

is

2500

bytes.

PKA_key_identifier

Direction:

Input

Type:

String

The

RSA

public

or

private

key

token

or

the

label

of

the

RSA

public

or

private

key

to

be

used

to

encrypt

the

supplied

key

value.

PKA_enciphered_keyvalue_length

Direction:

Input/Output

Type:

integer

The

length

of

the

PKA_enciphered_keyvalue

parameter

in

bytes.

The

maximum

size

that

you

can

specify

is

256

bytes.

On

return,

this

field

is

updated

with

the

actual

length

of

PKA_enciphered_keyvalue.

This

length

should

be

the

same

as

the

modulus

length

of

the

PKA_key_identifier.

PKA_enciphered_keyvalue

Direction:

Output

Type:

String

This

field

contains

the

key

value

protected

under

an

RSA

public

key.

This

byte-length

string

is

left-justified

within

the

PKA_enciphered_keyvalue

parameter.

Restrictions

The

exponent

of

the

RSA

public

key

must

be

odd.

The

caller

must

be

in

task

mode

and

must

not

be

in

SRB

mode.

Usage

Notes

v

For

RSA

DSI

PKCS

#1

formatting,

the

key

value

length

must

be

at

least

11

bytes

less

than

the

modulus

length

of

the

RSA

key.

v

The

hardware

configuration

sets

the

limit

on

the

modulus

size

of

keys

for

key

management;

thus,

this

service

will

fail

if

the

RSA

key

modulus

bit

length

exceeds

this

limit.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

PKA

Encrypt

(CSNDPKE)

Chapter

4.

Managing

DES

Cryptographic

Keys

141

Table

43.

PKA

encrypt

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

The

MRP

keyword

is

not

supported.

PCI

Cryptographic

Coprocessor

If

the

modulus

bit

length

of

the

key

specified

in

the

PKA_key_identifierparameter

is

greater

than

1024,

the

request

is

routed

to

the

PCICC.

The

MRP

keyword

is

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

MRP

keyword

is

not

supported.

PCI

Cryptographic

Coprocessor

If

the

modulus

bit

length

of

the

key

specified

in

the

PKA_key_identifierparameter

is

greater

than

1024,

the

request

is

routed

to

the

PCICC.

The

MRP

keyword

is

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Routed

to

a

PCICA

if

one

is

available

(ZERO-PAD

and

MRP

only).

Use

of

the

MRP

keyword

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

a

z890.

PCI

Cryptographic

Accelerator

PKCS-1.2

keyword

not

supported.

Prohibit

Export

(CSNBPEX)

Use

this

service

to

modify

an

operation

key

so

that

it

cannot

be

exported.

Format

CALL

CSNBPEX(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

PKA

Encrypt

(CSNDPKE)

142

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|

|

|

|

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

variable

containing

the

internal

key

token

to

be

modified.

The

returned

key_identifier

will

be

encrypted

under

the

current

master

key.

Restriction

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

44.

Prohibit

export

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

On

a

PCI

Cryptographic

Coprocessor,

the

Prohibit

Export

service

does

not

support

NOCV

key-encrypting

keys,

or

DATA,

DATAM,

DATAMV,

MAC,

or

MACVER

keys

with

standard

control

vectors

(for

example,

control

vectors

supported

by

the

Cryptographic

Coprocessor

Feature).

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

On

a

PCI

Cryptographic

Coprocessor,

the

Prohibit

Export

service

does

not

support

NOCV

key-encrypting

keys,

or

DATA,

DATAM,

DATAMV,

MAC,

or

MACVER

keys

with

standard

control

vectors

(for

example,

control

vectors

supported

by

the

Cryptographic

Coprocessor

Feature).

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

DATA

keys

are

not

supported.

Old,

internal

DATAM

and

DATAMV

keys

are

not

supported.

Prohibit

Export

(CSNBPEX)

Chapter

4.

Managing

DES

Cryptographic

Keys

143

Prohibit

Export

Extended

(CSNBPEXX)

Use

the

prohibit

export

extended

callable

service

to

change

the

external

token

of

a

cryptographic

key

in

exportable

form

so

that

it

can

be

imported

at

the

receiver

node

and

is

non-exportable

from

that

node.

You

cannot

prohibit

export

of

DATA

keys.

The

inputs

are

an

external

token

of

the

key

to

change

in

the

source_key_token

parameter

and

the

label

or

internal

token

of

the

exporter

key-encrypting

key

in

the

kek_key_identifier

parameter.

CSNBPEXX

is

a

variation

of

the

prohibit

export

service

CSNBPEX,

which

supports

changing

an

internal

token.

Format

CALL

CSNBPEXX(

return_code,

reason_code,

exit_data_length,

exit_data,

source_key_token,

kek_key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

source_key_token

Direction:

Input/Output

Type:

String

Prohibit

Export

Extended

(CSNBPEXX)

144

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

A

64-byte

string

of

an

external

token

of

a

key

to

change.

It

is

in

exportable

form.

kek_key_identifier

Direction:

Input/Output

Type:

Integer

A

64-byte

string

of

an

internal

token

or

label

of

the

exporter

KEK

used

to

encrypt

the

key

contained

in

the

external

token

specified

in

the

previous

parameter.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

45.

Prohibit

export

extended

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

External

MACD

keys

are

not

supported.

Random

Number

Generate

(CSNBRNG)

The

callable

service

uses

the

cryptographic

feature

to

generate

a

random

number.

The

foundation

for

the

random

number

generator

is

a

time

variant

input

with

a

very

low

probability

of

recycling.

Format

CALL

CSNBRNG(

return_code,

reason_code,

exit_data_length,

exit_data,

form,

random_number

)

Prohibit

Export

Extended

(CSNBPEXX)

Chapter

4.

Managing

DES

Cryptographic

Keys

145

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

form

Direction:

Input

Type:

Character

string

The

8-byte

keyword

that

defines

the

characteristics

of

the

random

number

should

be

left-justify

and

pad

on

the

right

with

blanks.

The

keywords

are

listed

in

Table

46.

Table

46.

Keywords

for

the

Form

Parameter

Keyword

Meaning

EVEN

Generate

a

64-bit

random

number

with

even

parity

in

each

byte.

ODD

Generate

a

64-bit

random

number

with

odd

parity

in

each

byte.

RANDOM

Generate

a

64-bit

random

number.

Parity

is

calculated

on

the

7

high-order

bits

in

each

byte

and

is

presented

in

the

low-order

bit

in

the

byte.

random_number

Direction:

Output

Type:

String

The

generated

number

returned

by

the

callable

service

in

an

8-byte

variable.

Prohibit

Export

Extended

(CSNBPEXX)

146

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

47.

Random

number

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Secure

Key

Import

(CSNBSKI)

Use

the

secure

key

import

callable

service

to

encipher

a

single-length

or

double-length

clear

key

under

the

system

master

key

(DES

or

SYM-MK)

or

under

an

importer

key-encrypting

key.

The

clear

key

can

then

be

imported

as

any

of

the

possible

key

types.

This

service

does

not

adjust

key

parity.

The

callable

service

can

execute

only

when

ICSF

is

in

special

secure

mode,

which

is

described

in

“Special

Secure

Mode”

on

page

10.

To

import

double-length

and

triple-length

DATA

keys,

or

double-length

MAC,

MACVER,

CIPHER,

DECIPHER

and

ENCIPHER

keys,

use

the

multiple

secure

key

import

(CSNBSKM)

callable

service.

See

“Multiple

Secure

Key

Import

(CSNBSKM)”

on

page

130.

Format

CALL

CSNBSKI(

return_code,

reason_code,

exit_data_length,

exit_data,

clear_key,

key_type,

key_form,

importer_key_identifier,

key_identifier

)

Prohibit

Export

Extended

(CSNBPEXX)

Chapter

4.

Managing

DES

Cryptographic

Keys

147

|

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

clear_key

Direction:

Input

Type:

String

The

clear

key

to

be

enciphered.

Specify

a

16-byte

string

(clear

key

value).

For

single-length

keys,

the

value

must

be

left-justified

and

padded

with

zeros.

For

effective

single-length

keys,

the

value

of

the

right

half

must

equal

the

value

of

the

left

half.

For

double-length

keys,

specify

the

left

and

right

key

values.

Note:

For

key

types

that

can

be

single

or

double-length,

a

single

length

encrypted

key

will

be

generated

if

a

clear_key

value

of

zeroes

is

supplied.

key_type

Direction:

Input

Type:

Character

string

The

type

of

key

you

want

to

encipher

under

the

master

key

or

an

importer

key.

Specify

an

8-byte

field

that

must

contain

a

keyword

from

the

list

below

or

the

keyword

TOKEN.

If

the

key

type

is

TOKEN,

ICSF

determines

the

key

type

from

the

CV

in

the

key_identifier

parameter.

Key

type

values

for

the

Secure

Key

Import

callable

service

are:

CIPHER,

CVARDEC,

CVARENC,

CVARPINE,

CVARXCVL,

CVARXCVR,

DATA,

DATAXLAT,

DECIPHER,

ENCIPHER,

EXPORTER,

IKEYXLAT,

IMPORTER,

Secure

Key

Import

(CSNBSKI)

148

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|

IMP-PKA,

IPINENC,

MAC,

MACVER,

OKEYLAT,

OPINENC,

PINGEN

and

PINVER.

For

information

on

the

meaning

of

the

key

types,

see

Table

2

on

page

19.

key_form

Direction:

Input

Type:

Character

string

The

key

form

you

want

to

generate.

Enter

a

4-byte

keyword

specifying

whether

the

key

should

be

enciphered

under

the

master

key

(OP)

or

the

importer

key-encrypting

key

(IM).

The

keyword

must

be

left-justified

and

padded

with

blanks.

Valid

keyword

values

are

OP

for

encryption

under

the

master

key

or

IM

for

encryption

under

the

importer

key-encrypting

key.

If

you

specify

IM,

you

must

specify

an

importer

key-encrypting

key

in

the

importer_key_identifier

parameter.

For

a

key_type

of

IMP-PKA,

this

service

supports

only

the

OP

key_form.

importer_key_identifier

Direction:

Input/Output

Type:

String

The

importer

key-encrypting

key

under

which

you

want

to

encrypt

the

clear

key.

Specify

either

a

64-byte

string

of

the

internal

key

format

or

a

key

label.

If

you

specify

IM

for

the

key_form

parameter,

the

importer_key_identifier

parameter

is

required.

key_identifier

Direction:

Input/Output

Type:

String

The

generated

encrypted

key.

The

parameter

is

a

64-byte

string.

The

callable

service

returns

either

an

internal

key

token

if

you

encrypted

the

clear

key

under

the

master

key

(key_form

was

OP);

or

an

external

key

token

if

you

encrypted

the

clear

key

under

the

importer

key-encrypting

key

(key_form

was

IM).

If

the

imported

key_type

is

IMPORTER

or

EXPORTER

and

the

key_form

is

OP,

the

key_identifier

parameter

changes

direction

to

both

input

and

output.

If

the

application

passes

a

valid

internal

key

token

for

an

IMPORTER

or

EXPORTER

key

in

this

parameter,

the

NOCV

bit

is

propagated

to

the

imported

key

token.

Note:

Propagation

of

the

NOCV

bit

is

not

performed

if

the

service

is

processed

on

the

PCI

Cryptographic

Coprocessor.

The

secure

key

import

service

does

not

adjust

key

parity.

Usage

Notes

Systems

with

the

Cryptographic

Coprocessor

Feature

To

generate

double-length

MAC

and

MACVER

keys

in

the

importable

form,

the

ANSI

system

keys

must

be

installed

in

the

CKDS.

This

service

will

mark

DATA,

IMPORTER

and

EXPORTER

key

tokens

with

the

system

encryption

algorithm.

v

This

service

marks

the

imported

DATA

key

token

according

to

the

system’s

default

encryption

algorithm,

unless

token

copying

overrides

this.

v

KEKs

are

marked

SYS-ENC

unless

token

copying

overrides

this.

Secure

Key

Import

(CSNBSKI)

Chapter

4.

Managing

DES

Cryptographic

Keys

149

v

To

override

the

default

mark,

supply

a

valid

internal

token

of

the

same

key

type

in

the

key_identifier

field.

The

service

will

copy

the

marks

of

the

supplied

token

to

the

imported

token.

Systems

with

the

PCI

X

Cryptographic

Coprocessor

If

key_form

is

IM

and

the

importer_key_id

is

NOCV

KEK,

the

NOCV

IMPORTER

access

control

point

must

be

enabled.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

48.

Secure

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Marking

of

data

encryption

algorithm

bits

and

token

copying

are

performed

only

if

the

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

control

vector

of

a

supplied

internal

token

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature,

or

if

the

key

type

is

not

valid

for

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Marking

of

data

encryption

algorithm

bits

and

token

copying

are

performed

only

if

the

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

control

vector

of

a

supplied

internal

token

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature,

or

if

the

key

type

is

not

valid

for

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Key_type

DATAXLAT

is

not

supported.

Symmetric

Key

Export

(CSNDSYX)

Use

the

symmetric

key

export

callable

service

to

transfer

an

application-supplied

symmetric

key

(a

DATA

key)

from

encryption

under

the

DES

host

master

key

on

the

Cryptographic

Coprocessor

Feature

or

the

SYM-MK

on

the

PCI

X

Cryptographic

Coprocessor

to

encryption

under

an

application-supplied

RSA

public

key.

The

application-supplied

DATA

key

must

be

an

ICSF

DES

internal

key

token

or

the

label

of

such

a

token

in

the

CKDS.

The

symmetric

key

import

callable

service

can

import

the

PKA-encrypted

form

at

the

receiving

node.

Secure

Key

Import

(CSNBSKI)

150

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Format

CALL

CSNDSYX(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

DATA_key_identifier_length,

DATA_key_identifier,

RSA_public_key_identifier_length,

RSA_public_key_identifier,

RSA_enciphered_key_length,

RSA_enciphered_key)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

Value

must

be

1.

rule_array

Direction:

Input

Type:

String

Symmetric

Key

Export

(CSNDSYX)

Chapter

4.

Managing

DES

Cryptographic

Keys

151

Keywords

that

provide

control

information

to

the

callable

service.

Table

49

lists

the

keywords.

Each

keyword

is

left-justified

in

8-byte

fields

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

49.

Keywords

for

Symmetric

Key

Export

Control

Information

Keyword

Meaning

Recovery

Method

(required)

PKCSOAEP

Specifies

using

the

method

found

in

RSA

DSI

PKCS

#1V2

OAEP.

PKCS–1.2

Specifies

using

the

method

found

in

RSA

DSI

PKCS

#1

block

type

02

to

recover

the

symmetric

key.

ZERO-PAD

The

clear

key

is

right-justified

in

the

field

provided,

and

the

field

is

padded

to

the

left

with

zeroes

up

to

the

size

of

the

RSA

encryption

block

(which

is

the

modulus

length).

DATA_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

DATA_key_identifier

parameter.

The

minimum

size

is

64

bytes.

The

maximum

size

is

128

bytes.

DATA_key_identifier

Direction:

Input/Output

Type:

Integer

The

label

or

internal

token

of

a

DATA

key

to

export

for

encryption

under

the

supplied

RSA

public

key.

This

service

exports

a

DATA

key

of

the

same

length

as

the

key

specified

in

this

parameter.

RSA_public_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

RSA_public_key_identifier

parameter.

The

maximum

size

is

2500

bytes.

RSA_public_key_identifier

Direction:

Input

Type:

String

A

PKA

public

key

token

or

label

of

the

key

to

protect

the

exported

symmetric

key.

RSA_enciphered_key_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

RSA_enciphered_key

parameter.

This

is

updated

with

the

actual

length

of

the

RSA_enciphered_key

generated.

The

maximum

size

is

256

bytes.

RSA_enciphered_key

Direction:

Output

Type:

String

Symmetric

Key

Export

(CSNDSYX)

152

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

This

field

contains

the

RSA_enciphered

key,

protected

by

the

public

key

specified

in

the

RSA_public_key_identifier

field.

Restrictions

If

you

are

running

with

the

Cryptographic

Coprocessor

Feature,

the

enhanced

system

keys

must

be

present

in

the

CKDS.

Caller

must

be

task

mode

and

not

in

SRB

mode.

Usage

Notes

The

hardware

configuration

sets

the

limit

on

the

modulus

size

of

keys

for

key

management;

thus,

this

service

will

fail

if

the

RSA

key

modulus

bit

length

exceeds

this

limit.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

50.

Symmetric

key

export

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

PCI

Cryptographic

Coprocessor

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if

one

is

available

on

your

server.

This

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

if

the

modulus

bit

length

of

the

RSA

public

key

is

less

than

512

bits.

Use

of

keyword

PKCSOAEP

requires

the

PCI

Cryptographic

Coprocessor.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

PCI

Cryptographic

Coprocessor

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if

one

is

available

on

your

server.

This

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

if

the

modulus

bit

length

of

the

RSA

public

key

is

less

than

512

bits.

Use

of

keyword

PKCSOAEP

requires

the

PCI

Cryptographic

Coprocessor.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Symmetric

Key

Generate

(CSNDSYG)

Use

the

symmetric

key

generate

callable

service

to

generate

a

symmetric

key

(a

DATA

key)

and

return

the

key

in

two

forms:

DES-encrypted

and

encrypted

under

an

RSA

public

key.

There

are

two

types

of

PKA

public

key

tokens:

RSA

and

DSS.

This

callable

service

uses

only

the

RSA

type.

Symmetric

Key

Export

(CSNDSYX)

Chapter

4.

Managing

DES

Cryptographic

Keys

153

The

DES

encryption

may

be

in

the

form

of

an

internal

token

encrypted

under

the

host

DES

master

Key

on

the

Cryptographic

Coprocessor

Feature

or

the

SYM-MK

on

the

PCI

X

Cryptographic

Coprocessor

or

in

the

external

form

encrypted

under

a

key-encrypting

key.

You

can

import

the

PKA-encrypted

form

by

using

the

symmetric

key

import

service

at

the

receiving

node.

Also

use

the

symmetric

key

generate

callable

service

to

generate

any

importer

or

exporter

key-encrypting

key

encrypted

under

a

RSA

public

key

according

to

the

PKA92

formatting

structure.

See

“PKA92

Key

Format

and

Encryption

Process”

on

page

505

for

more

details

about

PKA92

formatting.

Format

CALL

CSNDSYG(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_encrypting_key_identifier,

RSA_public_key_identifier_length,

RSA_public_key_identifier,

DES_enciphered_key_token_length,

DES_enciphered_key_token,

RSA_enciphered_key_length,

RSA_enciphered_key)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

Symmetric

Key

Generate

(CSNDSYG)

154

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

must

be

1,

2,

or

3.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

Table

51

lists

the

keywords.

The

recovery

method

is

the

method

to

use

to

recover

the

symmetric

key.

Each

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

51.

Keywords

for

Symmetric

Key

Generate

Control

Information

Keyword

Meaning

Recovery

Method

(required)

PKA92

Specifies

the

key-encrypting

key

is

to

be

encrypted

under

a

PKA96

RSA

public

key

according

to

the

PKA92

formatting

structure.

PKCSOAEP

Specifies

using

the

method

found

in

RSA

DSI

PKCS

#1V2

OAEP.

PKCS-1.2

Specifies

the

method

found

in

RSA

DSI

PKCS

#1

block

type

02.

ZERO-PAD

The

clear

key

is

right-justified

in

the

field

provided,

and

the

field

is

padded

to

the

left

with

zeroes

up

to

the

size

of

the

RSA

encryption

block

(which

is

the

modulus

length).

Form

of

the

DES_Enciphered_Key_Token

(optional)

not

valid

with

PKA92

EX

The

DES

enciphered

key

is

enciphered

by

an

EXPORTER

key

that

is

provided

through

the

key_encrypting_key_identifier

parameter.

IM

The

DES

enciphered

key

is

enciphered

by

an

IMPORTER

key

that

is

provided

through

the

key_encrypting_key_identifier

parameter.

OP

The

DES

enciphered

key

is

enciphered

by

the

master

key.

The

key_encrypting_key_identifier

parameter

is

ignored.

This

is

the

default.

DES

Key

Length

(optional)

DOUBLE

Generates

a

double-length

DES

key.

KEYLN8

Generates

a

single-length

DES

key.

This

is

the

default.

KEYLN16

Generates

a

double-length

DES

DATA

key.

KEYLN24

Generates

a

triple-length

DES

DATA

key.

SINGLE

Generates

a

single-length

DES

key.

SINGLE-R

Generates

a

key-encrypting

key

that

has

equal

left

and

right

halves

allowing

it

to

perform

as

a

single-length

key.

Valid

only

for

the

recovery

method

of

PKA92.

Symmetric

Key

Generate

(CSNDSYG)

Chapter

4.

Managing

DES

Cryptographic

Keys

155

key_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

label

or

internal

token

of

a

key-encrypting

key.

If

the

rule_array

specifies

IM,

this

DES

key

must

be

an

IMPORTER.

If

the

rule_array

specifies

EX,

this

DES

key

must

be

an

EXPORTER.

RSA_public_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

RSA_public_key_identifier

parameter.

If

the

RSA_public_key_identifier

parameter

is

a

label,

this

parameter

specifies

the

length

of

the

label.

The

maximum

size

is

2500

bytes.

RSA_public_key_identifier

Direction:

Input

Type:

String

The

token,

or

label,

of

the

RSA

public

key

to

be

used

for

protecting

the

generated

symmetric

key.

DES_enciphered_key_token_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

DES_enciphered_key_token.

This

field

is

updated

with

the

actual

length

of

the

DES_enciphered_key_token

that

is

generated.

The

minimum

size

is

64

bytes.

The

maximum

size

is

128

bytes.

DES_enciphered_key_token

Direction:

Input/Output

Type:

String

This

parameter

contains

the

generated

DES-enciphered

DATA

key

in

the

form

of

an

internal

or

external

token,

depending

on

rule_array

specification.

If

you

specify

PKA92,

on

input

specify

an

internal

(operational)

DES

key

token

of

an

Importer

or

Exporter

Key.

RSA_enciphered_key_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

RSA_enciphered_key

parameter.

This

service

updates

this

with

the

actual

length

of

the

RSA_enciphered_key

it

generates.

The

maximum

size

is

256

bytes.

RSA_enciphered_key

Direction:

Input/Output

Type:

String

This

field

contains

the

RSA

enciphered

key,

which

the

public

key

specified

in

the

RSA_public_key_identifier

field

protects.

Restrictions

If

the

service

is

executed

on

the

Cryptographic

Coprocessor

Feature,

and

you

specify

IM

in

the

rule_array,

you

must

enable

Special

Secure

Mode.

Symmetric

Key

Generate

(CSNDSYG)

156

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Use

of

PKA92

or

PKCSOAEP

requires

a

PCICC

or

PCIXCC.

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

Usage

Notes

If

the

service

is

executed

on

the

Cryptographic

Coprocessor

Feature,

the

generated

internal

DATA

key

token

is

marked

according

to

the

system

default

algorithm.

The

hardware

configuration

sets

the

limit

on

the

modulus

size

of

keys

for

key

management;

thus,

this

service

will

fail

if

the

RSA

key

modulus

bit

length

exceeds

this

limit.

Specification

of

PKA92

with

an

input

NOCV

key-encrypting

key

token

is

not

supported.

Use

the

PKA92

key-formatting

method

to

generate

a

key-encrypting

key.

The

service

enciphers

one

key

copy

using

the

key

encipherment

technique

employed

in

the

IBM

Transaction

Security

System

(TSS)

4753,

4755,

and

AS/400

cryptographic

product

PKA92

implementations

(see

“PKA92

Key

Format

and

Encryption

Process”

on

page

505).

The

control

vector

for

the

RSA-enciphered

copy

of

the

key

is

taken

from

an

internal

(operational)

DES

key

token

that

must

be

present

on

input

in

the

RSA_enciphered_key

variable.

Only

key-encrypting

keys

that

conform

to

the

rules

for

an

OPEX

case

under

the

key

generate

service

are

permitted.

The

control

vector

for

the

local

key

is

taken

from

a

DES

key

token

that

must

be

present

on

input

in

the

DES_enciphered_key_token

variable.

The

control

vector

for

one

key

copy

must

be

from

the

EXPORTER

class

while

the

control

vector

for

the

other

key

copy

must

be

from

the

IMPORTER

class.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

52.

Symmetric

key

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if

one

is

available

on

your

server.

This

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

if

the

modulus

bit

length

of

the

RSA

public

key

is

less

than

512

bits.

PCI

Cryptographic

Coprocessor

Use

of

keyword

PKA92

or

PKCSOAEP

requires

the

PCI

Cryptographic

Coprocessor.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if

one

is

available

on

your

server.

This

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

if

the

modulus

bit

length

of

the

RSA

public

key

is

less

than

512

bits.

PCI

Cryptographic

Coprocessor

Use

of

keyword

PKA92

or

PKCSOAEP

requires

the

PCI

Cryptographic

Coprocessor.

Symmetric

Key

Generate

(CSNDSYG)

Chapter

4.

Managing

DES

Cryptographic

Keys

157

Table

52.

Symmetric

key

generate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

The

generated

internal

DATA

key

will

not

have

any

system

encryption

algorithm

markings.

Symmetric

Key

Import

(CSNDSYI)

Use

the

symmetric

key

import

callable

service

to

import

a

symmetric

(DES)

DATA

key

enciphered

under

an

RSA

public

key.

(There

are

two

types

of

PKA

private

key

tokens:

RSA

and

DSS.

This

callable

service

uses

only

the

RSA

type.)

It

returns

the

key

in

operational

form,

enciphered

under

the

master

key.

This

service

also

supports

import

of

a

PKA92-formatted

DES

key-encrypting

key

under

a

PKA96

RSA

public

key.

Format

CALL

CSNDSYI(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

RSA_enciphered_key_length,

RSA_enciphered_key,

RSA_private_key_identifier_length,

RSA_private_key_identifier,

target_key_identifier_length,

target_key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

Symmetric

Key

Generate

(CSNDSYG)

158

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

must

be

1.

rule_array

Direction:

Input

Type:

String

The

keyword

that

provides

control

information

to

the

callable

service.

Table

53

provides

a

list.

The

recovery

method

is

the

method

to

use

to

recover

the

symmetric

key.

The

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

Table

53.

Keywords

for

Symmetric

Key

Import

Control

Information

Keyword

Meaning

Recovery

Method

(required)

PKA92

Specifies

the

key-encrypting

key

is

encrypted

under

a

PKA96

RSA

public

key

according

to

the

PKA92

formatting

structure.

PKCSOAEP

Specifies

using

the

method

found

in

RSA

DSI

PKCS

#1V2

OAEP.

PKCS-1.2

Specifies

the

method

found

in

RSA

DSI

PKCS

#1

block

type

02.

ZERO-PAD

The

clear

key

is

right-justified

in

the

field

provided,

and

the

field

is

padded

to

the

left

with

zeroes

up

to

the

size

of

the

RSA

encryption

block

(which

is

the

modulus

length).

RSA_enciphered_key_length

Direction:

Input

Type:

integer

The

length

of

the

RSA_enciphered_key

parameter.

The

maximum

size

is

256

bytes.

RSA_enciphered_key

Direction:

Input

Type:

String

The

key

to

import,

protected

under

an

RSA

public

key.

The

encrypted

key

is

in

the

low-order

bits

(right-justified)

of

a

string

whose

length

is

the

minimum

Symmetric

Key

Import

(CSNDSYI)

Chapter

4.

Managing

DES

Cryptographic

Keys

159

number

of

bytes

that

can

contain

the

encrypted

key.

This

string

is

left-justified

within

the

RSA_enciphered_key

parameter.

RSA_private_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

RSA_private_key_identifier

parameter.

When

the

RSA_private_key_identifier

parameter

is

a

key

label,

this

field

specifies

the

length

of

the

label.

The

maximum

size

is

2500

bytes.

RSA_private_key_identifier

Direction:

Input

Type:

String

An

internal

RSA

private

key

token

or

label

whose

corresponding

public

key

protects

the

symmetric

key.

target_key_identifier_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

target_key_identifier

parameter.

This

field

is

updated

with

the

actual

length

of

the

target_key_identifier

that

is

generated.

The

size

must

be

64

bytes.

target_key_identifier

Direction:

Input/Output

Type:

String

This

field

contains

the

internal

token

of

the

imported

symmetric

key.

Except

for

PKA92

processing,

this

service

produces

a

DATA

key

token

with

a

key

of

the

same

length

as

that

contained

in

the

imported

token.

Restrictions

The

exponent

of

the

RSA

public

key

must

be

odd.

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

Usage

Notes

If

the

service

is

executed

on

the

Cryptographic

Coprocessor

Feature,

the

generated

internal

DATA

key

token

is

marked

according

to

the

default

system

encryption

algorithm

unless

token

copying

overrides

this.

Token

copying

is

accomplished

by

supplied

a

valid

DATA

token

with

the

desired

algorithm

marks

in

the

target_key_identifier

field.

The

hardware

configuration

sets

the

limit

on

the

modulus

size

of

keys

for

key

management;

thus,

this

service

will

fail

if

the

RSA

key

modulus

bit

length

exceeds

this

limit.

The

service

will

fail

with

return

code

12

and

reason

code

11020.

Specification

of

PKA92

with

an

input

NOCV

key-encrypting

key

token

is

not

supported.

During

initialization

of

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor,

an

Environment

Identification,

or

EID,

of

zero

will

be

set

in

the

coprocessor.

This

will

be

interpreted

by

the

PKA

Symmetric

Key

Import

service

to

Symmetric

Key

Import

(CSNDSYI)

160

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

mean

that

environment

identification

checking

is

to

be

bypassed.

Thus

it

is

possible

on

a

OS/390

system

for

a

key-encrypting

key

RSA-enciphered

at

a

node

(EID)

to

be

imported

at

the

same

node.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

54.

Symmetric

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Request

routed

to

the

CCF

when

-

v

The

RSA_private_key_identifier

is

a

modulus-exponent

form

private

key

with

a

private

section

ID

of

X’02’

v

The

key

modulus

bit

length

is

less

than

512

PCI

Cryptographic

Coprocessor

Request

routed

to

PCICC

when

v

The

RSA_private_key_identifier

is

a

modulus-exponent

form

private

key

with

a

private

section

ID

of

X’06’

v

The

RSA_private_key_identifier

is

a

CRT

form

private

key

with

a

private

section

ID

of

X’08’

v

The

RSA_private_key_identifier

is

a

retained

key

v

PKA92

recovery

method

specified

v

PKCSOAEP

recovery

method

specified

.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

Request

routed

to

the

CCF

when

-

v

The

RSA_private_key_identifier

is

a

modulus-exponent

form

private

key

with

a

private

section

ID

of

X’02’

v

The

key

modulus

bit

length

is

less

than

512

PCI

Cryptographic

Coprocessor

Request

routed

to

PCICC

when

v

The

RSA_private_key_identifier

is

a

modulus-exponent

form

private

key

with

a

private

section

ID

of

X’06’

v

The

RSA_private_key_identifier

is

a

CRT

form

private

key

with

a

private

section

ID

of

X’08’

v

The

RSA_private_key_identifier

is

a

retained

key

v

PKA92

recovery

method

specified

v

PKCSOAEP

recovery

method

specified

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

The

imported

internal

DATA

key

will

not

have

any

system

encryption

markings.

Old

RSA

private

keys

encrypted

under

the

CCF

KMMK

is

not

usable

if

the

KMMK

is

not

the

same

as

the

PCIXCC

ASYM-MK.

Symmetric

Key

Import

(CSNDSYI)

Chapter

4.

Managing

DES

Cryptographic

Keys

161

Transform

CDMF

Key

(CSNBTCK)

This

callable

service

not

supported

on

an

IBM

Eserver

zSeries

990.

Use

the

transform

CDMF

key

callable

service

to

change

a

CDMF

DATA

key

in

an

internal

or

external

token

to

a

transformed

shortened

DES

key.

You

can

also

use

the

key

label

of

a

CKDS

record

as

input.

The

Cryptographic

Coprocessor

Feature

on

IBM

Eserver

zSeries

900,

S/390

Enterprise

Servers

and

S/390

Multiprise

is

configured

as

either

CDMF

or

DES-CDMF.

This

callable

service

ignores

the

input

internal

DATA

token

markings,

and

it

marks

the

output

internal

token

for

use

in

the

DES.

If

the

input

DATA

key

is

in

an

external

token,

the

operational

KEK

must

be

marked

as

DES

or

SYS-ENC.

The

service

fails

for

an

external

DATA

key

encrypted

under

a

KEK

that

is

marked

as

CDMF.

Format

CALL

CSNBTCK(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

source_key_identifier,

kek_key_identifier,

target_key_identifier

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

Transform

CDMF

Key

(CSNBTCK)

162

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

This

number

must

be

0.

rule_array

Direction:

Input

Type:

String

Currently

no

rule_array

keywords

are

defined

for

this

service,

but

you

still

must

specify

this

parameter.

source_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

of

the

internal

token,

external

token

or

key

label

that

contains

the

DATA

key

to

transform.

Token

markings

on

this

key

token

are

ignored.

kek_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

of

the

internal

token

or

a

key

label

of

a

key

encrypting

key

under

which

the

source_key_identifier

is

encrypted.

Note:

If

you

supply

a

label

for

this

parameter,

the

label

must

be

unique

in

the

CKDS.

target_key_identifier

Direction:

Output

Type:

String

A

64-byte

string

where

the

internal

token

or

external

token

of

the

transformed

shortened

DES

key

is

returned.

The

internal

token

is

marked

as

DES.

Restrictions

This

service

is

available

on

S/390

Enterprise

Servers

and

S/390

Multiprise

with

Cryptographic

Coprocessor

Features.

These

systems

may

be

configured

as

either

CDMF

or

DES-CDMF.

Usage

Notes

This

service

transforms

a

CDMF

DATA

key

to

a

transformed

shortened

DES

DATA

key

to

allow

interoperability

to

a

DES-only

capable

system.

The

algorithm

is

described

in

Transform

CDMF

Key

Algorithm.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Transform

CDMF

Key

(CSNBTCK)

Chapter

4.

Managing

DES

Cryptographic

Keys

163

Table

55.

Transform

CDMF

key

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

User

Derived

Key

(CSFUDK)

This

callable

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Diversifed

key

generate

callable

service

can

be

used

to

perform

this

processing.

Use

the

user

derived

key

callable

service

to

generate

a

single-length

or

double-length

MAC

key

or

to

update

an

existing

user

derived

key.

A

single-length

MAC

key

can

be

used

to

compute

a

MAC

following

the

ANSI

X9.9,

ANSI

X9.19,

or

the

Europay,

MasterCard

and

VISA

(EMV)

Specification

MAC

processing

rules.

A

double-length

MAC

key

can

be

used

to

compute

a

MAC

following

either

the

ANSI

X9.19

optional

double

MAC

processing

rule

or

the

EMV

Specification

MAC

processing

rule.

This

service

updates

an

existing

user

derived

key

by

XORing

it

with

data

you

supply

in

the

data_array

parameter.

This

is

called

SESSION

MAC

key

generation

by

VISA.

This

service

adjusts

the

user

derived

key

or

SESSION

MAC

key

to

odd

parity.

The

parity

of

the

supplied

derivation

key

is

not

tested.

Format

CALL

CSFUDK(

return_code,

reason_code,

exit_data_length,

exit_data,

key_type,

rule_array_count,

rule_array,

derivation_key_identifier,

source_key_identifier,

data_array,

generated_key_identifier)

Transform

CDMF

Key

(CSNBTCK)

164

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_type

Direction:

Input

Type:

String

The

8-byte

keyword

of

’MAC

’

or

’MACD

’

that

specifies

the

key

type

to

be

generated.

The

keyword

must

be

left-justified

and

padded

on

the

right

with

blanks.

MAC

specifies

an

8-byte,

single-length

MAC

key

which

is

used

in

the

ANSI

X9.9-1

or

the

ANSI

X9.19

basic

MAC

processing

rules.

MACD

specifies

a

16-byte,

double-length

internal

MAC

key

that

uses

the

single-length

control

vector

for

both

the

left

and

right

half

of

the

key

(MAC

{

MAC).

The

double-length

MAC

key

is

used

in

the

ANSI

X9.19

optional

double-key

MAC

processing

rules.

The

keyword

’TOKEN

’

is

also

accepted.

If

you

specify

TOKEN

with

a

rule_array

of

VISA

or

NOFORMAT,

the

key

type

is

determined

by

the

valid

internal

token

of

the

single-length

or

double-length

MAC

key

in

the

generated_key_identifier

parameter.

If

you

specify

TOKEN

with

a

rule_array

of

SESS-MAC,

the

key

type

is

determined

by

the

valid

internal

token

of

the

single-length

or

double-length

MAC

key

in

the

source_key_identifier.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

specified

in

the

rule_array

parameter.

The

value

must

be

1.

User

Derived

Key

(CSFUDK)

Chapter

4.

Managing

DES

Cryptographic

Keys

165

rule_array

Direction:

Input

Type:

Character

string

The

process

rule

for

the

user

derived

key

in

an

8-byte

field.

The

keywords

must

be

in

8

bytes

of

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

For

example,

’VISA

’

The

keywords

are

shown

in

Table

56.

Table

56.

Keywords

for

User

Derived

Key

Control

Information

Keyword

Meaning

User

Derived

Key

Process

Rules

(required)

NOFORMAT

For

generating

a

user

derived

key

with

no

formatting

done

on

the

array

before

encryption

under

the

derivation_key_identifier.

SESS-MAC

To

update

an

existing

user

derived

key

supplied

in

the

source_key_

identifier

parameter

with

data

provided

in

the

data_array

parameter.

VISA

For

generating

a

user

derived

key

using

the

VISA

algorithm

to

format

the

data

array

input

before

encryption

under

the

derivation_key_identifier.

For

guidance

information

refer

to

the

VISA

Integrated

Circuit

Card

Specification,

V1.3

Aug

31,

1996.

derivation_key_identifier

Direction:

Input/Output

Type:

String

For

a

rule_array

value

of

VISA

or

NOFORMAT,

this

is

a

64-byte

key

label

or

internal

key

token

of

the

derivation

key

used

to

generate

the

user

derived

key.

The

key

must

be

an

EXPORTER

key

type.

For

any

other

keyword,

this

field

must

be

a

null

token.

source_key_identifier

Direction:

Input/Output

Type:

String

For

a

rule_array

value

of

SESS-MAC,

this

is

a

64-byte

internal

token

of

a

single-length

or

double-length

MAC

key.

For

any

other

keyword,

this

field

must

be

a

null

token.

data_array

Direction:

Input

Type:

String

Two

16-byte

data

elements

required

by

the

corresponding

rule_array

and

key_type

parameters.

The

data

array

consists

of

two

16-byte

hexadecimal

character

fields

whose

specification

depends

on

the

process

rule

and

key

type.

VISA

requires

only

one

16-byte

hexadecimal

character

input.

Both

NOFORMAT

and

SESS-MAC

require

one

16-byte

input

for

a

key

type

of

MAC

and

two

16-byte

inputs

for

a

key

type

of

MACD.

If

only

one

16-byte

field

is

required,

then

the

rest

of

the

data

array

is

ignored

by

the

callable

service.

User

Derived

Key

(CSFUDK)

166

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

generated_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

internal

token

of

the

generated

single-length

or

double-length

MAC

key.

This

is

an

input

field

only

if

TOKEN

is

specified

for

key_type.

Usage

Notes

This

service

requires

that

the

ANSI

system

keys

be

installed

in

the

CKDS.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

57.

User

derived

key

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

User

Derived

Key

(CSFUDK)

Chapter

4.

Managing

DES

Cryptographic

Keys

167

User

Derived

Key

(CSFUDK)

168

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

5.

Protecting

Data

Use

ICSF

to

protect

sensitive

data

stored

on

your

system,

sent

between

systems,

or

stored

off

your

system

on

magnetic

tape.

To

protect

data,

encipher

it

under

a

key.

When

you

want

to

read

the

data,

decipher

it

from

ciphertext

to

plaintext

form.

ICSF

provides

encipher

and

decipher

callable

services

to

perform

these

functions.

If

you

use

a

key

to

encipher

data,

you

must

use

the

same

key

to

decipher

the

data.

To

use

clear

keys

directly,

ICSF

provides

symmetric

key

decipher,

symmetric

key

encipher,

encode

and

decode

callable

services.

These

services

encipher

and

decipher

with

clear

keys.

You

can

use

clear

keys

indirectly

by

first

using

the

clear

key

import

callable

service,

and

then

using

the

encipher

and

decipher

callable

services.

This

chapter

describes

the

following

services:

v

“Ciphertext

Translate

(CSNBCTT

and

CSNBCTT1)”

on

page

171

v

“Decipher

(CSNBDEC

and

CSNBDEC1)”

on

page

174

v

“Decode

(CSNBDCO)”

on

page

181

v

“Encipher

(CSNBENC

and

CSNBENC1)”

on

page

183

v

“Encode

(CSNBECO)”

on

page

190

v

“Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)”

on

page

192

v

“Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)”

on

page

199

Modes

of

Operation

To

encipher

or

decipher

data

or

keys,

ICSF

uses

either

the

U.S.

National

Institute

of

Standards

and

Technology

(NIST)

Data

Encryption

Standard

(DES)

algorithm

or

the

Commercial

Data

Masking

Facility

(CDMF).

The

DES

algorithm

is

documented

in

Federal

Information

Processing

Standard

#46.

CDMF

provides

DES

cryptography

using

an

effectively

shortened

DATA

key.

See

“System

Encryption

Algorithm”

on

page

27

for

more

information.

To

encipher

or

decipher

data,

ICSF

also

uses

the

U.S.

National

Institute

of

Standards

and

Technology

(NIST)

Advanced

Encryption

Standard

(AES)

algorithm.

The

AES

algorithm

is

documented

in

Federal

Information

Processing

Standard

197.

ICSF

enciphers

and

deciphers

using

the

following

modes

of

operation:

v

Cipher

block

chaining

(CBC)

v

Electronic

code

book

(ECB)

Cipher

Block

Chaining

(CBC)

Mode

The

CBC

mode

uses

an

initial

chaining

vector

(ICV)

in

its

processing.

The

CBC

mode

only

processes

blocks

of

data

in

exact

multiples

of

eight.

The

ICV

is

exclusive

ORed

with

the

first

8

bytes

of

plaintext

before

the

encryption

step;

the

8-byte

block

of

ciphertext

just

produced

is

exclusive

ORed

with

the

next

8-byte

block

of

plaintext,

and

so

on.

You

must

use

the

same

ICV

to

decipher

the

data.

This

disguises

any

pattern

that

may

exist

in

the

plaintext.

ICSF

uses

the

CBC

encipherment

mode

for

encrypting

and

decrypting

data

using

the

encipher

and

decipher

callable

services.

Electronic

Code

Book

(ECB)

Mode

In

the

ECB

mode,

each

64-bit

block

of

plaintext

is

separately

enciphered

and

each

block

of

the

ciphertext

is

separately

deciphered.

In

other

words,

the

encipherment

©

Copyright

IBM

Corp.

1997,

2004

169

or

decipherment

of

a

block

is

totally

independent

of

other

blocks.

ICSF

uses

the

ECB

encipherment

mode

for

enciphering

and

deciphering

data

with

clear

keys

using

the

encode

and

decode

callable

services.

ICSF

does

not

support

ECB

encipherment

mode

on

CDMF-only

systems.

Triple

DES

Encryption

Triple-DES

encryption

uses

a

triple-length

DATA

key

comprised

of

three

8-byte

DES

keys

to

encipher

8

bytes

of

data

using

the

following

method:

v

Encipher

the

data

using

the

first

key

v

Decipher

the

result

using

the

second

key

v

Encipher

the

second

result

using

the

third

key

The

procedure

is

reversed

to

decipher

data

that

has

been

triple-DES

enciphered:

v

Decipher

the

data

using

the

third

key

v

Encipher

the

result

using

the

second

key

v

Decipher

the

second

result

using

the

first

key

ICSF

uses

the

triple-DES

encryption

in

the

CBC

encipherment

mode.

A

variation

of

the

triple

DES

algorithm

supports

the

use

of

a

double-length

DATA

key

comprised

of

two

8-byte

DATA

keys.

In

this

method,

the

first

8-byte

key

is

reused

in

the

last

encipherment

step.

Triple-DES

encryption

is

available

only

on

the

S/390

G4

Enterprise

Server

(with

LIC

driver

98),

or

above.

Due

to

export

regulations,

triple-DES

encryption

may

not

be

available

on

your

processor.

Processing

Rules

ICSF

handles

this

chaining

for

each

8-byte

block

of

data,

from

the

first

block

until

the

last

complete

8-byte

block

of

data

in

each

encipher

call.

There

are

different

types

of

processing

rules

you

can

choose

for

cipher

block

chaining.

You

choose

the

type

of

processing

rule

that

the

callable

service

should

use

for

CBC

mode:

v

Cipher

block

chaining

(CBC).

In

exact

multiples

of

8

bytes.

v

Cryptographic

Unit

Support

Program

(CUSP).

Not

necessarily

in

exact

multiples

of

8

bytes.

The

ciphertext

is

the

same

length

of

the

plaintext.

v

Information

Protection

System

(IPS).

Not

necessarily

in

exact

multiples

of

8

bytes.

The

ciphertext

is

the

same

length

of

the

plaintext.

v

ANSI

X9.23.

Not

necessarily

in

exact

multiples

of

8

bytes.

This

processing

rule

pads

the

plaintext

so

that

the

ciphertext

produced

is

in

exact

multiples

of

8

bytes.

v

IBM

4700.

Not

necessarily

in

exact

multiples

of

8

bytes.

This

processing

rule

pads

the

plaintext

so

that

the

ciphertext

produced

is

in

exact

multiples

of

8

bytes.

Cipher

Processing

Rules

describes

the

cipher

processing

rules

in

detail.

The

resulting

chaining

value,

after

an

encipher

call,

is

known

as

an

output

chaining

vector

(OCV).

When

there

are

multiple

cipher

requests,

the

application

can

pass

the

output

chaining

vector

from

the

previous

encipher

call

as

the

ICV

in

the

next

encipher

call.

This

produces

chaining

between

successive

calls,

which

is

known

as

record

chaining.

ICSF

provides

the

ICV

selection

keyword

CONTINUE

in

the

rule_array

parameter

that

an

application

can

use

to

select

record

chaining

with

the

CBC,

IPS,

and

CUSP

processing

rules.

170

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

A

chaining

vector

allows

you

to

simulate

CUSP

or

IPS

record

chaining

by

calculating

the

correct

OCV.

To

do

either

the

CUSP

or

IPS

method

of

record

chaining

in

the

encipher

and

decipher

callable

services,

the

OCV

from

one

service

invocation

is

passed

as

the

initialization

vector

to

the

next

invocation.

An

OCV

is

produced

for

all

processing

rules.

The

OCV

is

the

leftmost

8

bytes

of

the

chaining_vector

parameter.

Ciphertext

Translate

(CSNBCTT

and

CSNBCTT1)

This

callable

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

ICSF

provides

a

ciphertext

translate

callable

service

on

DES-capable

systems.

The

callable

service

deciphers

encrypted

data

(ciphertext)

under

one

data

translation

key

and

reenciphers

it

under

another

data

translation

key

without

having

the

data

appear

in

the

clear

outside

the

Integrated

Cryptographic

Feature.

ICSF

uses

the

data

translation

key

as

either

the

input

or

the

output

data

transport

key.

Such

a

function

is

useful

in

a

multiple

node

network,

where

sensitive

data

is

passed

through

multiple

nodes

before

it

reaches

its

final

destination.

“Using

the

Ciphertext

Translate

Callable

Service”

on

page

41

provides

some

tips

on

using

the

callable

service.

Use

the

ciphertext

translate

callable

service

to

decipher

text

under

an

“input”

key

and

then

to

encipher

the

text

under

an

“output”

key.

The

callable

service

uses

the

cipher

block

chaining

(CBC)

mode

of

the

DES.

This

service

is

available

only

on

a

DES-capable

system.

Choosing

Between

CSNBCTT

and

CSNBCTT1

CSNBCTT

and

CSNBCTT1

provide

identical

functions.

When

choosing

the

service

to

use,

consider

the

following:

v

CSNBCTT

requires

the

input

text

and

output

text

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBCTT

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBCTT1

allows

the

input

text

and

output

text

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

allows

you

to

translate

more

data

with

one

call.

However,

a

program

using

CSNBCTT1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBCTT1,

text_id_in

and

text_id_out

are

access

list

entry

token

(ALET)

parameters

of

the

data

spaces

containing

the

input

text

and

output

text.

Format

CALL

CSNBCTT(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier_in,

key_identifier_out,

text_length,

text_in,

initialization_vector_in,

initialization_vector_out,

text_out

)

Chapter

5.

Protecting

Data

171

CALL

CSNBCTT1(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier_in,

key_identifier_out,

text_length,

text_in,

initialization_vector_in,

initialization_vector_out,

text_out,

text_id_in,

text_id_out

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_identifier_in

Direction:

Input/Output

Type:

String

The

64-byte

string

of

the

internal

key

token

containing

the

data

translation

(DATAXLAT)

key,

or

the

label

of

the

CKDS

record

containing

the

DATAXLAT

key

used

to

encipher

the

input

string.

key_identifier_out

Direction:

Input/Output

Type:

String

Ciphertext

Translate

(CSNBCTT

and

CSNBCTT1)

172

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

64-byte

string

of

an

internal

key

token

containing

the

DATAXLAT

key,

or

the

label

of

the

CKDS

record

containing

the

DATAXLAT

key,

used

to

reencipher

the

encrypted

text.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

ciphertext

that

is

to

be

processed.

The

text

length

must

be

a

multiple

of

8

bytes.

The

maximum

length

of

text

is

2,147,836,647

bytes.

Note:

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced.

text_in

Direction:

Input

Type:

String

The

text

that

is

to

be

translated.

The

text

is

enciphered

under

the

data

translation

key

specified

in

the

key_identifier_in

parameter.

initialization_vector_in

Direction:

Input

Type:

String

The

8-byte

initialization

vector

that

is

used

to

decipher

the

input

data.

This

parameter

is

the

initialization

vector

used

at

the

previous

cryptographic

node.

initialization_vector_out

Direction:

Input

Type:

String

The

8-byte

initialization

vector

that

is

used

to

encipher

the

input

data.

This

is

the

new

initialization

vector

used

when

the

callable

service

enciphers

the

plaintext.

text_out

Direction:

Output

Type:

String

The

field

where

the

callable

service

returns

the

translated

text.

text_id_in

Direction:

Input

Type:

Integer

For

CSNBCTT1

only,

the

ALET

of

the

text

to

be

translated.

text_id_out

Direction:

Input

Type:

Integer

For

CSNBCTT1

only,

the

ALET

of

the

text_out

field

that

the

application

supplies.

Ciphertext

Translate

(CSNBCTT

and

CSNBCTT1)

Chapter

5.

Protecting

Data

173

Restrictions

The

input

ciphertext

length

must

be

an

exact

multiple

of

8

bytes.

The

minimum

length

of

the

ciphertext

that

can

be

translated

is

8

bytes.

You

cannot

use

this

service

on

a

CDMF-only

system.

Usage

Notes

The

initialization

vectors

must

have

already

been

established

between

the

communicating

applications

or

must

be

passed

with

the

data.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

58.

Ciphertext

translate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

Decipher

(CSNBDEC

and

CSNBDEC1)

Use

the

decipher

callable

service

to

decipher

data

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

mode.

ICSF

supports

the

following

processing

rules

to

decipher

data.

You

choose

the

type

of

processing

rule

that

the

decipher

callable

service

should

use

for

block

chaining.

Processing

Rule

Purpose

ANSI

X9.23

For

cipher

block

chaining.

The

ciphertext

must

be

an

exact

multiple

of

8

bytes,

but

the

plaintext

will

be

1

to

8

bytes

shorter

than

the

ciphertext.

The

text_length

will

also

be

reduced

to

show

the

original

length

of

the

plaintext.

CBC

For

cipher

block

chaining.

The

ciphertext

must

be

an

exact

multiple

of

8

bytes,

and

the

plaintext

will

have

the

same

length.

CUSP

For

cipher

block

chaining,

but

the

ciphertext

can

be

of

any

length.

The

plaintext

will

be

the

same

length

as

the

ciphertext.

IBM

4700

For

cipher

block

chaining.

The

ciphertext

must

be

Ciphertext

Translate

(CSNBCTT

and

CSNBCTT1)

174

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

an

exact

multiple

of

8

bytes,

but

the

plaintext

will

be

1

to

8

bytes

shorter

than

the

ciphertext.

The

text_length

will

also

be

reduced

to

show

the

original

length

of

the

plaintext.

IPS

For

cipher

block

chaining,

but

the

ciphertext

can

be

of

any

length.

The

plaintext

will

be

the

same

length

as

the

ciphertext.

The

cipher

block

chaining

(CBC)

mode

uses

an

initial

chaining

value

(ICV)

in

its

processing.

The

first

8

bytes

of

ciphertext

is

deciphered

and

then

the

ICV

is

exclusive

ORed

with

the

resulting

8

bytes

of

data

to

form

the

first

8-byte

block

of

plaintext.

Thereafter,

the

8-byte

block

of

ciphertext

is

deciphered

and

exclusive

ORed

with

the

previous

8-byte

block

of

ciphertext

until

all

the

ciphertext

is

deciphered.

The

selection

between

single-DES

decryption

mode

and

triple-DES

decryption

mode

is

controlled

by

the

length

of

the

key

supplied

in

the

key_identifier

parameter.

If

a

single-length

key

is

supplied,

single-DES

decryption

is

performed.

If

a

double-length

or

triple-length

key

is

supplied,

triple-DES

decryption

is

performed.

A

different

ICV

may

be

passed

on

each

call

to

the

decipher

callable

service.

However,

the

same

ICV

that

was

used

in

the

corresponding

encipher

callable

service

must

be

passed.

Short

blocks

are

text

lengths

of

1

to

7

bytes.

A

short

block

can

be

the

only

block.

Trailing

short

blocks

are

blocks

of

1

to

7

bytes

that

follow

an

exact

multiple

of

8

bytes.

For

example,

if

the

text

length

is

21,

there

are

two

8-byte

blocks

and

a

trailing

short

block

of

5

bytes.

Because

the

DES

and

CDMF

process

only

text

in

exact

multiples

of

8

bytes,

some

special

processing

is

required

to

decipher

such

short

blocks.

Short

blocks

and

trailing

short

blocks

of

1

to

7

bytes

of

data

are

processed

according

to

the

Cryptographic

Unit

Support

Program

(CUSP)

rules,

or

by

the

record

chaining

scheme

devised

by

and

used

in

the

Information

Protection

System

(IPS)

in

the

IPS/CMS

product.

These

methods

of

treating

short

blocks

and

trailing

short

blocks

do

not

increase

the

length

of

the

ciphertext

over

the

plaintext.

If

the

plaintext

was

padded

during

encipherment,

the

length

of

the

ciphertext

will

always

be

an

exact

multiple

of

8

bytes.

ICSF

supports

the

following

padding

schemes:

v

ANSI

X9.23

v

4700-PAD

Choosing

Between

CSNBDEC

and

CSNBDEC1

CSNBDEC

and

CSNBDEC1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBDEC

requires

the

ciphertext

and

plaintext

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBDEC

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBDEC1

allows

the

ciphertext

and

plaintext

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

decipher

more

data

with

one

call.

However,

a

program

using

CSNBDEC1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Decipher

(CSNBDEC

and

CSNBDEC1)

Chapter

5.

Protecting

Data

175

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBDEC1,

cipher_text_id

and

clear_text_id

are

access

list

entry

token

(ALET)

parameters

of

the

data

spaces

containing

the

ciphertext

and

plaintext.

Format

CALL

CSNBDEC(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

cipher_text,

initialization_vector,

rule_array_count,

rule_array,

chaining_vector,

clear_text

)

CALL

CSNBDEC1(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

cipher_text,

initialization_vector,

rule_array_count,

rule_array,

chaining_vector,

clear_text,

cipher_text_id,

clear_text_id

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

Decipher

(CSNBDEC

and

CSNBDEC1)

176

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

that

is

the

internal

key

token

containing

the

data-encrypting

key,

or

the

label

of

a

CKDS

record

containing

a

data-encrypting

key,

to

be

used

for

deciphering

the

data.

If

the

key

token

or

key

label

contains

a

single-length

key,

single-DES

decryption

is

performed.

If

the

key

token

or

key

label

contains

a

double-length

or

triple-length

key,

triple-DES

decryption

is

performed.

On

the

IBM

Eserver

zSeries

990,

single

and

double

length

CIPHER

and

DECIPHER

keys

are

also

supported.

text_length

Direction:

Input/Output

Type:

Integer

On

entry,

you

supply

the

length

of

the

ciphertext.

The

maximum

length

of

text

is

2,147,836,647

bytes.

A

zero

value

for

the

text_length

parameter

is

not

valid.

If

the

returned

deciphered

text

(clear_text

parameter)

is

a

different

length

because

of

the

removal

of

padding

bytes,

the

value

is

updated

to

the

length

of

the

plaintext.

Note:

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced.

The

application

program

passes

the

length

of

the

ciphertext

to

the

callable

service.

The

callable

service

returns

the

length

of

the

plaintext

to

your

application

program.

cipher_text

Direction:

Input

Type:

String

The

text

to

be

deciphered.

initialization_vector

Direction:

Input

Type:

String

The

8-byte

supplied

string

for

the

cipher

block

chaining.

The

first

block

of

the

ciphertext

is

deciphered

and

exclusive

ORed

with

the

initial

chaining

vector

(ICV)

to

get

the

first

block

of

cleartext.

The

input

block

is

the

next

ICV.

To

decipher

the

data,

you

must

use

the

same

ICV

used

when

you

enciphered

the

data.

rule_array_count

Direction:

Input

Type:

Integer

Decipher

(CSNBDEC

and

CSNBDEC1)

Chapter

5.

Protecting

Data

177

The

number

of

keywords

you

supply

in

the

rule_array

parameter.

The

value

must

be

1,

2,

or

3.

rule_array

Direction:

Input

Type:

Character

string

An

array

of

8-byte

keywords

providing

the

processing

control

information.

The

array

is

positional.

See

the

keywords

in

Table

59.

The

first

keyword

in

the

array

is

the

processing

rule.

You

choose

the

processing

rule

you

want

the

callable

service

to

use

for

deciphering

the

data.

The

second

keyword

is

the

ICV

selection

keyword.

The

third

keyword

(or

the

second

if

the

ICV

selection

keyword

is

allowed

to

default)

is

the

encryption

algorithm

to

use.

The

service

will

fail

if

keyword

DES

is

specified

in

the

rule_array

in

a

CDMF-only

system.

The

service

will

likewise

fail

if

keyword

CDMF

is

specified

in

the

rule_array

in

a

DES-only

system.

Table

59.

Keywords

for

the

Decipher

Rule

Array

Control

Information

Keyword

Meaning

Processing

Rule

(required)

CBC

Performs

ANSI

X3.102

cipher

block

chaining.

The

data

must

be

a

multiple

of

8

bytes.

An

OCV

is

produced

and

placed

in

the

chaining_vector

parameter.

If

the

ICV

selection

keyword

CONTINUE

is

specified,

the

CBC

OCV

from

the

previous

call

is

used

as

the

ICV

for

this

call.

CUSP

Performs

deciphering

that

is

compatible

with

IBM’s

CUSP

and

PCF

products.

The

data

can

be

of

any

length

and

does

not

need

to

be

in

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

The

CUSP/PCF

OCV

is

placed

in

the

chaining_vector

parameter.

If

the

ICV

selection

keyword

CONTINUE

is

specified,

the

CUSP/PCF

OCV

from

the

previous

call

is

used

as

the

ICV

for

this

call.

IPS

Performs

deciphering

that

is

compatible

with

IBM’s

IPS

product.

The

data

can

be

of

any

length

and

does

not

need

to

be

in

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

The

IPS

OCV

is

placed

in

the

chaining_vector

parameter.

If

the

ICV

selection

keyword

CONTINUE

is

specified,

the

IPS

OCV

from

the

previous

call

is

used

as

the

ICV

for

this

call.

X9.23

Deciphers

with

cipher

block

chaining

and

text

length

reduced

to

the

original

value.

This

is

compatible

with

the

requirements

in

ANSI

standard

X9.23.

The

ciphertext

length

must

be

an

exact

multiple

of

8

bytes.

Padding

is

removed

from

the

plaintext.

4700-PAD

Deciphers

with

cipher

block

chaining

and

text

length

reduced

to

the

original

value.

The

ciphertext

length

must

be

an

exact

multiple

of

8

bytes.

Padding

is

removed

from

the

plaintext.

ICV

Selection

(optional)

Decipher

(CSNBDEC

and

CSNBDEC1)

178

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

59.

Keywords

for

the

Decipher

Rule

Array

Control

Information

(continued)

Keyword

Meaning

CONTINUE

This

specifies

taking

the

initialization

vector

from

the

output

chaining

vector

(OCV)

contained

in

the

work

area

to

which

the

chaining_vector

parameter

points.

CONTINUE

is

valid

only

for

processing

rules

CBC,

IPS,

and

CUSP.

INITIAL

This

specifies

taking

the

initialization

vector

from

the

initialization_vector

parameter.

INITIAL

is

the

default

value.

Encryption

Algorithm

(optional)

CDMF

This

specifies

using

the

Commercial

Data

Masking

Facility

and

ignoring

the

token

marking.

You

cannot

use

double-

or

triple-length

keys

with

CDMF.

The

CDMF

keyword,

or

tokens

marked

as

CDMF,

are

not

supported

on

an

IBM

Eserver

zSeries

990.

DES

This

specifies

using

the

data

encryption

standard

and

ignoring

the

token

marking.

TOKEN

This

specifies

using

the

data

encryption

algorithm

in

the

DATA

key

token.

This

is

the

default.

“Cipher

Processing

Rules”

on

page

496

describes

the

cipher

processing

rules

in

detail.

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

field

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

holds

the

output

chaining

vector

(OCV)

from

the

caller.

The

OCV

is

the

first

8

bytes

in

the

18-byte

string.

The

direction

is

output

if

the

ICV

selection

keyword

of

the

rule_array

parameter

is

INITIAL.

The

direction

is

input/output

if

the

ICV

selection

keyword

of

the

rule_array

parameter

is

CONTINUE.

clear_text

Direction:

Output

Type:

String

The

field

where

the

callable

service

returns

the

deciphered

text.

cipher_text_id

Direction:

Input

Type:

Integer

For

CSNBDEC1

only,

the

ALET

of

the

ciphertext

to

be

deciphered.

clear_text_id

Direction:

Input

Type:

Integer

For

CSNBDEC1

only,

the

ALET

of

the

clear

text

supplied

by

the

application.

Decipher

(CSNBDEC

and

CSNBDEC1)

Chapter

5.

Protecting

Data

179

Restrictions

The

service

will

fail

under

the

following

conditions:

v

If

the

keyword

DES

is

specified

in

the

rule_array

parameter

in

a

CDMF-only

system

v

If

the

keyword

CDMF

is

specified

in

the

rule_array

parameter

in

a

DES-only

system

v

If

the

key

token

contains

double

or

triple-length

keys

and

triple-DES

is

not

enabled.

v

If

the

keyword

CDMF

is

specified

on

a

PCI

X

Cryptographic

Coprocessor.

v

If

a

token

is

marked

CDMF

on

a

PCI

X

Cryptographic

Coprocessor.

Usage

Notes

On

a

CCF

system,

only

a

DATA

key

token

or

DATA

key

label

can

be

used

in

this

service.

Single

and

double

length

CIPHER

and

DECIPHER

keys

are

supported

on

a

PCI

X

Cryptographic

Coprocessor.

Related

Information

You

cannot

overlap

the

plaintext

and

ciphertext

fields.

For

example:

pppppp

cccccc

is

not

supported.

cccccc

pppppp

is

not

supported.

ppppppcccccc

is

supported.

P

represents

the

plaintext

and

c

represents

the

ciphertext.

On

z990

systems,

the

PCIXCC

will

support

non

destructive

overlap.

For

example:

pppppp

cccccc

is

supported.

Cipher

Processing

Rules

discusses

the

cipher

processing

rules.

The

encipher

callable

services

(CSNBENC

and

CSNBENC1)

are

described

under

“Encipher

(CSNBENC

and

CSNBENC1)”

on

page

183.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

60.

Decipher

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Decipher

(CSNBDEC

and

CSNBDEC1)

180

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Table

60.

Decipher

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

If

keyword

CDMF

is

specified

or

if

the

token

is

marked

as

CDMF,

the

service

fails.

Decode

(CSNBDCO)

Use

the

decode

callable

service

(CSNBDCO)

to

decipher

an

8-byte

string

using

a

clear

key.

The

callable

service

uses

the

electronic

code

book

(ECB)

mode

of

the

DES.

(This

service

is

available

only

on

a

DES-capable

system.)

Considerations

If

you

have

only

a

clear

key,

you

are

not

limited

to

using

only

the

encode

and

decode

callable

services.

v

You

can

pass

your

clear

key

to

the

clear

key

import

service,

and

get

back

a

token

that

will

allow

you

to

use

the

encipher

and

decipher

callable

services.

v

On

an

IBM

Eserver

zSeries

990,

consider

using

the

Symmetric

Key

Decipher

service

(“Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)”

on

page

192).

Format

CALL

CSNBDCO(

return_code,

reason_code,

exit_data_length,

exit_data,

clear_key,

cipher_text,

clear_text)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

Decipher

(CSNBDEC

and

CSNBDEC1)

Chapter

5.

Protecting

Data

181

|
|

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

clear_key

Direction:

Input

Type:

String

The

8-byte

clear

key

value

that

is

used

to

decode

the

data.

cipher_text

Direction:

Input

Type:

String

The

ciphertext

that

is

to

be

decoded.

Specify

8

bytes

of

text.

clear_text

Direction:

Output

Type:

String

The

8-byte

field

where

the

plaintext

is

returned

by

the

callable

service.

Restriction

You

cannot

use

this

service

on

a

CDMF-only

system.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

61.

Decode

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Decode

(CSNBDCO)

182

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

61.

Decode

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

CP

Assist

for

Cryptographic

Functions

Encipher

(CSNBENC

and

CSNBENC1)

Use

the

encipher

callable

service

to

encipher

data

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

mode.

ICSF

supports

the

following

processing

rules

to

encipher

data.

You

choose

the

type

of

processing

rule

that

the

encipher

callable

service

should

use

for

the

block

chaining.

Processing

Rule

Purpose

ANSI

X9.23

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

This

process

rule

pads

the

plaintext

so

that

ciphertext

produced

is

an

exact

multiple

of

8

bytes.

CBC

For

block

chaining

in

exact

multiples

of

8

bytes.

CUSP

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

IBM

4700

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

This

process

rule

pads

the

plaintext

so

that

the

ciphertext

produced

is

an

exact

multiple

of

8

bytes.

IPS

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

For

more

information

about

the

processing

rules,

see

Table

62

on

page

187

and

Cipher

Processing

Rules.

The

cipher

block

chaining

(CBC)

mode

of

operation

uses

an

initial

chaining

vector

(ICV)

in

its

processing.

The

ICV

is

exclusive

ORed

with

the

first

8

bytes

of

plaintext

before

the

encryption

step,

and

thereafter,

the

8-byte

block

of

ciphertext

just

produced

is

exclusive

ORed

with

the

next

8-byte

block

of

plaintext,

and

so

on.

This

disguises

any

pattern

that

may

exist

in

the

plaintext.

The

selection

between

single-DES

encryption

mode

and

triple-DES

encryption

mode

is

controlled

by

the

length

of

the

key

supplied

in

the

key_identifier

parameter.

If

a

single-length

key

is

supplied,

single-DES

encryption

is

performed.

If

a

double-length

or

triple-length

key

is

supplied,

triple-DES

encryption

is

performed.

To

nullify

the

CBC

effect

on

the

first

8-byte

block,

supply

8

bytes

of

zero.

However,

the

ICV

may

require

zeros.

Decode

(CSNBDCO)

Chapter

5.

Protecting

Data

183

|
|

Cipher

block

chaining

also

produces

a

resulting

chaining

value

called

the

output

chaining

vector

(OCV).

The

application

can

pass

the

OCV

as

the

ICV

in

the

next

encipher

call.

This

results

in

record

chaining.

Note

that

the

OCV

that

results

is

the

same,

whether

an

encipher

or

a

decipher

callable

service

was

invoked,

assuming

the

same

text,

ICV,

and

key

were

used.

Short

blocks

are

text

lengths

of

1

to

7

bytes.

A

short

block

can

be

the

only

block.

Trailing

short

blocks

are

blocks

of

1

to

7

bytes

that

follow

an

exact

multiple

of

8

bytes.

For

example,

if

the

text

length

is

21,

there

are

two

8-byte

blocks,

and

a

trailing

short

block

of

5

bytes.

Short

blocks

and

trailing

short

blocks

of

1

to

7

bytes

of

data

are

processed

according

to

the

Cryptographic

Unit

Support

Program

(CUSP)

rules,

or

by

the

record

chaining

scheme

devised

by

and

used

by

the

Information

Protection

System

(IPS)

in

the

IPS/CMS

program

product.

These

methods

of

treating

short

blocks

and

trailing

short

blocks

do

not

increase

the

length

of

the

ciphertext

over

the

plaintext.

An

alternative

method

is

to

pad

the

plaintext

and

produce

a

ciphertext

that

is

longer

than

the

plaintext.

The

plaintext

can

be

padded

with

up

to

8

bytes

using

one

of

several

padding

schemes.

This

padding

produces

a

ciphertext

that

is

an

exact

multiple

of

8

bytes

long.

If

the

ciphertext

is

to

be

transmitted

over

a

network,

where

one

or

more

intermediate

nodes

will

use

the

ciphertext

translate

callable

service,

the

ciphertext

must

be

produced

using

one

of

the

following

methods

of

padding:

v

ANSI

X9.23

v

4700

If

the

cleartext

is

already

a

multiple

of

8,

the

ciphertext

can

be

created

using

any

processing

rule.

Because

of

padding,

the

returned

ciphertext

length

is

longer

than

the

provided

plaintext;

the

text_length

parameter

will

have

been

modified.

The

returned

ciphertext

field

should

be

8

bytes

longer

than

the

length

of

the

plaintext

to

accommodate

the

maximum

amount

of

padding.

You

should

provide

this

extension

in

your

installation’s

storage

because

ICSF

cannot

detect

whether

the

extension

was

done.

The

minimum

length

of

data

that

can

be

enciphered

is

one

byte.

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced

(2147483647).

Attention:

If

you

lose

the

data-encrypting

key

under

which

the

data

(plaintext)

is

enciphered,

the

data

enciphered

under

that

key

(ciphertext)

cannot

be

recovered.

Choosing

between

CSNBENC

and

CSNBENC1

CSNBENC

and

CSNBENC1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBENC

requires

the

cleartext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBENC

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBENC1

allows

the

cleartext

and

ciphertext

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

encipher

more

data

with

one

call.

However,

a

program

using

CSNBENC1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Encipher

(CSNBENC

and

CSNBENC1)

184

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBENC1,

clear_text_id

and

cipher_text_id

are

access

list

entry

token

(ALET)

parameters

of

the

data

spaces

containing

the

cleartext

and

ciphertext.

Format

CALL

CSNBENC(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

clear_text,

initialization_vector,

rule_array_count,

rule_array,

pad_character,

chaining_vector,

cipher_text

)

CALL

CSNBENC1(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

clear_text,

initialization_vector,

rule_array_count,

rule_array,

pad_character,

chaining_vector,

cipher_text,

clear_text_id,

cipher_text_id

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

Encipher

(CSNBENC

and

CSNBENC1)

Chapter

5.

Protecting

Data

185

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

that

is

the

internal

key

token

containing

the

data-encrypting

key,

or

the

label

of

a

CKDS

record

containing

the

data-encrypting

key,

to

be

used

for

encrypting

the

data.

If

the

key

token

or

key

label

contains

a

single-length

key,

single-DES

encryption

is

performed.

If

the

key

token

or

key

label

contains

a

double-length

or

triple-length

key,

triple-DES

encryption

is

performed.

On

an

IBM

Eserver

zSeries

990,

single

and

double

length

CIPHER

and

ENCIPHER

keys

are

also

supported.

text_length

Direction:

Input/Output

Type:

Integer

On

entry,

the

length

of

the

plaintext

(clear_text

parameter)

you

supply.

The

maximum

length

of

text

is

2,147,836,647

bytes.

A

zero

value

for

the

text_length

parameter

is

not

valid.

If

the

returned

enciphered

text

(cipher_text

parameter)

is

a

different

length

because

of

the

addition

of

padding

bytes,

the

value

is

updated

to

the

length

of

the

ciphertext.

Note:

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced

(2147483647).

The

application

program

passes

the

length

of

the

plaintext

to

the

callable

service.

The

callable

service

returns

the

length

of

the

ciphertext

to

the

application

program.

clear_text

Direction:

Input

Type:

String

The

text

that

is

to

be

enciphered.

initialization_vector

Direction:

Input

Type:

String

The

8-byte

supplied

string

for

the

cipher

block

chaining.

The

first

8

bytes

(or

less)

block

of

the

data

is

exclusive

ORed

with

the

ICV

and

then

enciphered.

The

input

block

is

enciphered

and

the

next

ICV

is

created.

You

must

use

the

same

ICV

to

decipher

the

data.

Encipher

(CSNBENC

and

CSNBENC1)

186

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supply

in

the

rule_array

parameter.

The

value

must

be

1,

2,

or

3.

rule_array

Direction:

Input

Type:

Character

string

An

array

of

8-byte

keywords

providing

the

processing

control

information.

The

array

is

positional.

See

the

keywords

in

Table

62.

The

first

keyword

in

the

array

is

the

processing

rule.

You

choose

the

processing

rule

you

want

the

callable

service

to

use

for

enciphering

the

data.

The

second

keyword

is

the

ICV

selection

keyword.

The

third

keyword

(or

the

second

if

the

ICV

selection

keyword

is

allowed

to

default

to

INITIAL)

is

the

encryption

algorithm

to

use.

The

service

will

fail

if

keyword

DES

is

specified

in

the

rule_array

in

a

CDMF-only

system.

The

service

will

likewise

fail

if

the

keyword

CDMF

is

specified

in

the

rule_array

in

a

DES-only

system.

Table

62.

Keywords

for

the

Encipher

Rule

Array

Control

Information

Keyword

Meaning

Processing

Rule

(required)

CBC

Performs

ANSI

X3.102

cipher

block

chaining.

The

data

must

be

a

multiple

of

8

bytes.

An

OCV

is

produced

and

placed

in

the

chaining_vector

parameter.

If

the

ICV

selection

keyword

CONTINUE

is

specified,

the

CBC

OCV

from

the

previous

call

is

used

as

the

ICV

for

this

call.

CUSP

Performs

ciphering

that

is

compatible

with

IBM’s

CUSP

and

PCF

products.

The

data

can

be

of

any

length

and

does

not

need

to

be

in

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

The

CUSP/PCF

OCV

is

placed

in

the

chaining_vector

parameter.

If

the

ICV

selection

keyword

CONTINUE

is

specified,

the

CUSP/PCF

OCV

from

the

previous

call

is

used

as

the

ICV

for

this

call.

IPS

Performs

ciphering

that

is

compatible

with

IBM’s

IPS

product.

The

data

may

be

of

any

length

and

does

not

need

to

be

in

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

The

IPS

OCV

is

placed

in

the

chaining_vector

parameter.

If

the

ICV

selection

keyword

CONTINUE

is

specified,

the

IPS

OCV

from

the

previous

call

is

used

as

the

ICV

for

this

call.

X9.23

Performs

cipher

block

chaining

with

1

to

8

bytes

of

padding.

This

is

compatible

with

the

requirements

in

ANSI

standard

X9.23.

If

the

data

is

not

in

exact

multiples

of

8

bytes,

X9.23

pads

the

plaintext

so

that

the

ciphertext

produced

is

an

exact

multiple

of

8

bytes.

The

plaintext

is

padded

to

the

next

multiple

8

bytes,

even

if

this

adds

8

bytes.

An

OCV

is

produced.

4700-PAD

Performs

padding

by

extending

the

user’s

plaintext

with

the

caller’s

specified

pad

character,

followed

by

a

one-byte

binary

count

field

that

contains

the

total

number

of

bytes

added

to

the

message.

4700-PAD

pads

the

plaintext

so

that

the

ciphertext

produced

is

an

exact

multiple

of

8

bytes.

An

OCV

is

produced.

Encipher

(CSNBENC

and

CSNBENC1)

Chapter

5.

Protecting

Data

187

Table

62.

Keywords

for

the

Encipher

Rule

Array

Control

Information

(continued)

Keyword

Meaning

ICV

Selection

(optional)

CONTINUE

This

specifies

taking

the

initialization

vector

from

the

output

chaining

vector

(OCV)

contained

in

the

work

area

to

which

the

chaining_vector

parameter

points.

CONTINUE

is

valid

only

for

processing

rules

CBC,

IPS,

and

CUSP.

INITIAL

This

specifies

taking

the

initialization

vector

from

the

initialization_vector

parameter.

INITIAL

is

the

default

value.

Encryption

Algorithm

(optional)

CDMF

This

specifies

using

the

Commercial

Data

Masking

Facility

and

ignoring

the

token

marking.

You

cannot

use

double-length

or

triple-length

keys

with

CDMF.

The

CDMF

keyword,

or

tokens

marked

as

CDMF,

are

not

supported

on

an

IBM

Eserver

zSeries

990.

DES

This

specifies

using

the

data

encryption

standard

and

ignoring

the

token

marking.

TOKEN

This

specifies

using

the

data

encryption

algorithm

in

the

DATA

key

token.

TOKEN

is

the

default.

The

following

recommendations

help

the

caller

determine

which

encipher

processing

rule

to

use:

v

If

you

are

exchanging

enciphered

data

with

a

specific

implementation,

for

example,

CUSP

or

ANSI

X9.23,

use

that

processing

rule.

v

If

the

ciphertext

translate

callable

service

is

to

be

invoked

on

the

enciphered

data

at

an

intermediate

node,

ensure

that

the

ciphertext

is

a

multiple

of

8

bytes.

Use

CBC,

X9.23,

or

4700-PAD

to

prevent

the

creation

of

ciphertext

that

is

not

a

multiple

of

8

bytes

and

that

cannot

be

processed

by

the

ciphertext

translate

callable

service.

v

If

the

ciphertext

length

must

be

equal

to

the

plaintext

length

and

the

plaintext

length

cannot

be

a

multiple

of

8

bytes,

use

either

the

IPS

or

CUSP

processing

rule.

“Cipher

Processing

Rules”

on

page

496

describes

the

cipher

processing

rules

in

detail.

pad_character

Direction:

Input

Type:

Integer

An

integer,

0

to

255,

that

is

used

as

a

padding

character

for

the

4700-PAD

process

rule

(rule_array

parameter).

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

field

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

holds

the

output

chaining

vector

(OCV)

from

the

caller.

The

OCV

is

the

first

8

bytes

in

the

18-byte

string.

The

direction

is

output

if

the

ICV

selection

keyword

of

the

rule_array

parameter

is

INITIAL.

Encipher

(CSNBENC

and

CSNBENC1)

188

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

direction

is

input/output

if

the

ICV

selection

keyword

of

the

rule_array

parameter

is

CONTINUE.

cipher_text

Direction:

Output

Type:

String

The

enciphered

text

the

callable

service

returns.

The

length

of

the

ciphertext

is

returned

in

the

text_length

parameter.

The

cipher_text

may

be

8

bytes

longer

than

the

length

of

the

clear_text

field

because

of

the

padding

that

is

required

for

some

processing

rules.

clear_text_id

Direction:

Input

Type:

Integer

For

CSNBENC1

only,

the

ALET

of

the

clear

text

to

be

enciphered.

cipher_text_id

Direction:

Input

Type:

Integer

For

CSNBENC1

only,

the

ALET

of

the

ciphertext

that

the

application

supplied.

Restrictions

The

service

will

fail

under

the

following

conditions:

v

If

the

keyword

DES

is

specified

in

the

rule_array

parameter

in

a

CDMF-only

system

v

If

the

keyword

CDMF

is

specified

in

the

rule_array

parameter

in

a

DES-only

system

v

If

the

key

token

contains

double-

or

triple-length

keys

and

triple-DES

is

not

enabled.

v

If

the

keyword

CDMF

is

specified

on

a

PCI

X

Cryptographic

Coprocessor.

v

If

a

token

is

marked

CDMF

on

a

PCI

X

Cryptographic

Coprocessor.

Usage

Notes

On

a

CCF

system,

only

a

DATA

key

token

or

DATA

key

label

can

be

used

in

this

service.

Single

and

double

length

CIPHER

and

ENCIPHER

keys

are

supported

on

a

PCI

X

Cryptographic

Coprocessor.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

63.

Encipher

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

Encipher

(CSNBENC

and

CSNBENC1)

Chapter

5.

Protecting

Data

189

|
|

Table

63.

Encipher

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

If

keyword

CDMF

is

specified

or

if

the

token

is

marked

as

CDMF,

the

service

fails.

Related

Information

You

cannot

overlap

the

plaintext

and

ciphertext

fields.

For

example:

pppppp

cccccc

is

not

supported.

cccccc

pppppp

is

not

supported.

ppppppcccccc

is

supported.

P

represents

the

plaintext

and

c

represents

the

ciphertext.

On

z990

systems,

the

PCIXCC

will

support

non

destructive

overlap.

For

example:

cccccc

pppppp

is

supported.

The

method

used

to

produce

the

OCV

is

the

same

with

the

CBC,

4700-PAD,

and

X9.23

processing

rules.

However,

that

method

is

different

from

the

method

used

by

the

CUSP

and

IPS

processing

rules.

Cipher

Processing

Rules

discusses

the

cipher

processing

rules.

The

decipher

callable

services

(CSNBDEC

and

CSNBDEC1)

are

described

under

“Decipher

(CSNBDEC

and

CSNBDEC1)”

on

page

174.

Encode

(CSNBECO)

Use

the

encode

callable

service

(CSNBECO)

to

encipher

an

8-byte

string

using

a

clear

key.

The

callable

service

uses

the

electronic

code

book

(ECB)

mode

of

the

DES.

(This

service

is

available

only

on

a

DES-capable

system.)

Considerations

If

you

have

only

a

clear

key,

you

are

not

limited

to

using

just

the

encode

and

decode

callable

services.

v

You

can

pass

your

clear

key

to

the

clear

key

import

service,

and

get

back

a

token

that

will

allow

you

to

use

the

encipher

and

decipher

callable

services.

v

On

an

IBM

Eserver

zSeries

990,

consider

using

the

Symmetric

Key

Encipher

service

(“Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)”

on

page

199).

Encipher

(CSNBENC

and

CSNBENC1)

190

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Format

CALL

CSNBECO(

return_code,

reason_code,

exit_data_length,

exit_data,

clear_key,

clear_text,

cipher_text)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

clear_key

Direction:

Input

Type:

String

The

8-byte

clear

key

value

that

is

used

to

encode

the

data.

clear_text

Direction:

Input

Type:

String

The

plaintext

that

is

to

be

encoded.

Specify

8

bytes

of

text.

cipher_text

Direction:

Output

Type:

String

Encode

(CSNBECO)

Chapter

5.

Protecting

Data

191

The

8-byte

field

where

the

ciphertext

is

returned

by

the

callable

service.

Restriction

You

cannot

use

this

service

on

a

CDMF-only

system.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

64.

Encode

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

CP

Assist

for

Cryptographic

Functions

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

Use

the

symmetric

key

decipher

callable

service

to

decipher

data

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

or

electronic

code

book

modes.

ICSF

supports

the

following

processing

rules

to

decipher

data.

You

choose

the

type

of

processing

rule

that

the

decipher

callable

service

should

use

for

block

chaining.

Processing

Rule

Purpose

ANSI

X9.23

For

cipher

block

chaining.

The

ciphertext

must

be

an

exact

multiple

of

8

bytes,

but

the

plaintext

will

be

1

to

8

bytes

shorter

than

the

ciphertext.

CBC

For

cipher

block

chaining.

The

ciphertext

must

be

an

exact

multiple

of

8

bytes,

and

the

plaintext

will

have

the

same

length.

CUSP

For

cipher

block

chaining,

but

the

ciphertext

can

be

of

any

length.

The

plaintext

will

be

the

same

length

as

the

ciphertext.

ECB

Performs

electronic

code

book

encryption.

The

text

length

must

be

a

multiple

of

the

block

size

for

the

specified

algorithm.

IPS

For

cipher

block

chaining,

but

the

ciphertext

can

be

of

any

length.

The

plaintext

will

be

the

same

length

as

the

ciphertext.

Encode

(CSNBECO)

192

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

The

Advanced

Encryption

Standard

(AES)

and

DES

(Data

Encryption

Standard)

are

supported.

AES

encryption

uses

a

128-,

192-,

or

256-bit

key.

The

CBC

and

ECB

modes

are

supported.

Due

to

export

regulations,

AES

encryption

may

not

be

available

on

your

system.

This

service

supports

both

electronic

code

book

(ECB)

and

cipher

block

chaining

(CBC)

modes.

The

CBC

mode

of

operation

uses

an

initial

chaining

vector

(ICV)

in

its

processing.

The

ICV

is

exclusive

ORed

with

the

first

block

of

plaintext

after

the

decryption

step,

and

thereafter,

each

block

of

ciphertext

is

exclusive

ORed

with

the

next

block

of

plaintext

after

decryption,

and

so

on.

Cipher

block

chaining

also

produces

a

resulting

chaining

value

called

the

output

chaining

vector

(OCV).

The

application

can

pass

the

OCV

as

the

ICV

in

the

next

encipher

call.

This

results

in

record

chaining.

The

electronic

code

book

mode

does

not

use

the

initial

chaining

vector.

The

selection

between

single-DES

decryption

mode

and

triple-DES

decryption

mode

is

controlled

by

the

length

of

the

key

supplied

in

the

key_identifier

parameter.

If

a

single-length

key

is

supplied,

single-DES

decryption

is

performed.

If

a

double-length

or

triple-length

key

is

supplied,

triple-DES

decryption

is

performed.

Choosing

Between

CSNBSYD

and

CSNBSYD1

CSNBSYD

and

CSNBSYD1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBSYD

requires

the

ciphertext

and

plaintext

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBSYD

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBSYD1

allows

the

ciphertext

and

plaintext

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

decipher

more

data

with

one

call.

However,

a

program

using

CSNBSYD1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBSYD1,

cipher_text_id

and

clear_text_id

are

access

list

entry

token

(ALET)

parameters

of

the

data

spaces

containing

the

ciphertext

and

plaintext.

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

Chapter

5.

Protecting

Data

193

Format

CALL

CSNBSYD(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_length,

key_identifier,

key_parms_length,

key_parms,

block_size,

initialization_vector_length,

initialization_vector,

chain_data_length,

chain_data,

cipher_text_length,

cipher_text,

clear_text_length,

clear_text,

optional_data_length,

optional_data)

CALL

CSNBSYD1(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_length,

key_identifier,

key_parms_length,

key_parms,

block_size,

initialization_vector_length,

initialization_vector,

chain_data_length,

chain_data,

cipher_text_length,

cipher_text,

clear_text_length,

clear_text,

optional_data_length,

optional_data

cipher_text_id

clear_text_id)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

194

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Ignored

Type:

String

Reserved

field.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

may

be

1,

2,

3

or

4.

rule_array

Direction:

Input

Type:

String

An

array

of

8-byte

keywords

providing

the

processing

control

information.

The

keywords

must

be

in

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

Table

65.

Symmetric

Key

Decipher

Rule

Array

Keywords

Keyword

Meaning

Algorithm

(required)

AES

Specifies

that

the

Advanced

Encryption

Standard

(AES)

algorithm

is

to

be

used.

The

block

size

is

16

bytes.

The

key

length

may

be

16,

24,

or

32

bytes.

The

chain_data

field

must

be

at

least

32

bytes

in

length.

The

OCV

is

the

first

16

bytes

in

the

chain_data.

The

supported

processing

rules

for

AES

are

CBC

and

ECB.

DES

Specifies

that

the

Data

Encryption

Standard

(DES)

algorithm

is

to

be

used.

The

algorithm,

DES

or

TDES,

will

be

determined

from

the

length

of

the

key

supplied.

The

key

length

may

be

8,

16,

or

24.

The

block

size

is

8

bytes.

The

chain_data

field

must

be

at

least

16

bytes

in

length.

The

OCV

is

the

first

eight

bytes

in

the

chain_data.

The

processing

rules

supported

for

DES

are

CBC,

ECB,

X9.23,

CUSP

and

IPS.

Processing

Rule

(optional)

CBC

Performs

cipher

block

chaining.

The

text

length

must

be

a

multiple

of

the

block

size

for

the

specified

algorithm.

CBC

is

the

default

value.

CUSP

CBC

mode

(cipher

block

chaining)

that

is

compatible

with

IBM’s

CUSP

and

PCF

products.

Input

text

may

be

any

length.

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

Chapter

5.

Protecting

Data

195

Table

65.

Symmetric

Key

Decipher

Rule

Array

Keywords

(continued)

Keyword

Meaning

ECB

Performs

electronic

code

book

encryption.

The

text

length

must

be

a

multiple

of

the

block

size

for

the

specified

algorithm.

IPS

CBC

mode

(cipher

block

chaining)

that

is

compatible

with

IBM’s

IPS

product.

Input

text

may

be

any

length.

X9.23

CBC

mode

(cipher

block

chaining)

for

1

to

8

bytes

of

padding

dropped

from

the

output

clear

text.

Key

Rule

(optional)

KEY-CLR

This

specifies

that

the

key

parameter

contains

a

clear

key

value.

KEY-CLR

is

the

default

value.

ICV

Selection

(optional)

INITIAL

This

specifies

taking

the

initialization

vector

from

the

initialization_vector

parameter.

INITIAL

is

the

default

value.

CONTINUE

This

specifies

taking

the

initialization

vector

from

the

output

chaining

vector

contained

in

the

work

area

to

which

the

chain_data

parameter

points.

CONTINUE

is

valid

for

processing

rules

CBC,

IPS,

and

CUSP

only.

key_length

Direction:

Input

Type:

Integer

The

length

of

the

key

parameter.

For

clear

keys,

the

length

is

in

bytes

and

includes

only

the

value

of

the

key.

The

maximum

size

is

256

bytes.

key_identifier

Direction:

Input

Type:

String

The

cipher

key.

The

parameter

must

be

left

justified.

key_parms_length

Direction:

Ignored

Type:

Integer

The

length

of

the

key_parms

parameter.

The

maximum

size

is

256

bytes.

key_parms

Direction:

Ignored

Type:

String

This

parameter

contains

key-related

parameters

specific

to

the

encryption

algorithm.

block_size

Direction:

Input

Type:

Integer

This

parameter

contains

the

processing

size

of

the

text

block

in

bytes.

This

value

will

be

algorithm

specific.

Be

sure

to

specify

the

same

block

size

as

used

to

encipher

the

text.

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

196

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

initialization_vector_length

Direction:

Input

Type:

Integer

The

length

of

the

initialization_vector

parameter.

The

length

should

be

equal

to

the

block

length

for

the

algorithm

specified.

initialization_vector

Direction:

Input

Type:

String

This

initialization

chaining

value

for

CBC

encryption.

You

must

use

the

same

ICV

that

was

used

to

encipher

the

data.

chain_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

chain_data

parameter.

On

output,

the

actual

length

of

the

chaining

vector

will

be

stored

in

the

parameter.

chain_data

Direction:

Input/Output

Type:

String

This

field

is

used

as

a

system

work

area

for

the

chaining

vector.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

holds

the

output

chaining

vector

from

the

caller.

The

direction

is

output

if

the

ICV

selection

keyword

is

INITIAL.

The

mapping

of

the

chain_data

depends

on

the

algorithm

specified.

For

AES,

the

chain_data

field

must

be

at

least

32

bytes

in

length.

The

OCV

is

in

the

first

16

bytes

in

the

chain_data.

For

DES,

chain_data

field

must

be

at

least

16

bytes

in

length.

cipher_text_length

Direction:

Input

Type:

Integer

The

length

of

the

cipher

text.

A

zero

value

in

the

clear_text_length

parameter

is

not

valid.

The

length

must

be

a

multiple

of

the

algorithm

block

size.

cipher_text

Direction:

Input

Type:

String

The

text

to

be

deciphered.

clear_text_length

Direction:

Input/Output

Type:

Integer

On

input,

this

parameter

specifies

the

size

of

the

storage

pointed

to

by

the

clear_text

parameter.

On

output,

this

parameter

has

the

actual

length

of

the

text

stored

in

the

clear_text

parameter.

clear_text

Direction:

Output

Type:

String

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

Chapter

5.

Protecting

Data

197

The

deciphered

text

the

service

returns.

optional_data_length

Direction:

Ignored

Type:

Integer

The

length

of

the

optional_data

parameter.

optional_data

Direction:

Ignored

Type:

String

Optional

data

required

by

a

specified

algorithm.

cipher_text_id

Direction:

Input

Type:

Integer

For

CSNBSYD1

only,

the

ALET

of

the

ciphertext

to

be

deciphered.

clear_text_id

Direction:

Input

Type:

Integer

For

CSNBSYD1

only,

the

ALET

of

the

clear

text

supplied

by

the

application.

Usage

Notes

v

No

pre-

or

post-processing

exits

are

enabled

for

this

service.

v

No

SAF

authorization

check

is

made.

v

The

master

keys

need

not

be

loaded

to

use

this

service.

v

The

AES

algorithm

is

implemented

in

the

software.

v

AES

has

the

same

availability

restrictions

as

triple-DES.

v

This

service

will

fail

if

execution

would

cause

destructive

overlay

of

the

cipher_text

field.

Table

66.

Symmetric

Key

Decipher

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

DES

keyword

is

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

DES

keyword

is

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

CP

Assist

for

Cryptographic

Functions

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

198

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Related

Information

You

cannot

overlap

the

plaintext

and

ciphertext

fields.

For

example:

pppppp

cccccc

is

not

supported.

cccccc

pppppp

is

not

supported.

ppppppcccccc

is

supported.

P

represents

the

plaintext

and

c

represents

the

ciphertext.

On

z990

systems,

the

PCIXCC

will

support

non

destructive

overlap.

For

example:

pppppp

cccccc

is

supported.

“Cipher

Processing

Rules”

on

page

496

discusses

the

cipher

processing

rules.

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

Use

the

symmetric

key

encipher

callable

service

to

encipher

data

in

an

address

space

or

a

data

space

using

the

cipher

block

chaining

or

electronic

code

book

modes.

ICSF

supports

the

following

processing

rules

to

encipher

data.

You

choose

the

type

of

processing

rule

that

the

encipher

callable

service

should

use

for

the

block

chaining.

Processing

Rule

Purpose

ANSI

X9.23

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

This

process

rule

pads

the

plaintext

so

that

ciphertext

produced

is

an

exact

multiple

of

8

bytes.

CBC

For

block

chaining

in

exact

multiples

of

8

bytes.

CUSP

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

ECB

Performs

electronic

code

book

encryption.

The

text

length

must

be

a

multiple

of

the

block

size

for

the

specified

algorithm.

IPS

For

block

chaining

not

necessarily

in

exact

multiples

of

8

bytes.

The

ciphertext

will

be

the

same

length

as

the

plaintext.

The

Advanced

Encryption

Standard

(AES)

and

DES

(Data

Encryption

Standard)

are

supported.

AES

encryption

uses

a

128-,

192-,

or

256-bit

key.

The

CBC

and

ECB

modes

are

supported.

Due

to

export

regulations,

AES

encryption

may

not

be

available

on

your

system.

This

service

supports

both

electronic

code

book

(ECB)

and

cipher

block

chaining

(CBC)

modes.

The

CBC

mode

of

operation

uses

an

initial

chaining

vector

(ICV)

in

its

processing.

The

ICV

is

exclusive

ORed

with

the

first

block

of

plaintext

before

the

encryption

step,

and

thereafter,

the

block

of

ciphertext

just

produced

is

exclusive

ORed

with

the

next

block

of

plaintext,

and

so

on.

This

disguises

any

pattern

that

may

exist

in

the

plaintext.

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

Chapter

5.

Protecting

Data

199

Cipher

block

chaining

also

produces

a

resulting

chaining

value

called

the

output

chaining

vector

(OCV).

The

application

can

pass

the

OCV

as

the

ICV

in

the

next

encipher

call.

This

results

in

record

chaining.

The

electronic

code

book

mode

does

not

use

the

initial

chaining

vector.

The

selection

between

single-DES

decryption

mode

and

triple-DES

decryption

mode

is

controlled

by

the

length

of

the

key

supplied

in

the

key_identifier

parameter.

If

a

single-length

key

is

supplied,

single-DES

decryption

is

performed.

If

a

double-length

or

triple-length

key

is

supplied,

triple-DES

decryption

is

performed.

Choosing

between

CSNBSYE

and

CSNBSYE1

CSNBSYE

and

CSNBSYE1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBSYE

requires

the

cleartext

and

ciphertext

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBSYE

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBSYE1

allows

the

cleartext

and

ciphertext

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

encipher

more

data

with

one

call.

However,

a

program

using

CSNBSYE1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBSYE1,

clear_text_id

and

cipher_text_id

are

access

list

entry

token

(ALET)

parameters

of

the

data

spaces

containing

the

cleartext

and

ciphertext.

Format

CALL

CSNBSYE(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_length,

key_identifier,

key_parms_length,

key_parms,

block_size,

initialization_vector_length,

initialization_vector,

chain_data_length,

chain_data,

clear_text_length,

clear_text,

cipher_text_length,

cipher_text,

optional_data_length,

optional_data)

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

200

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

CALL

CSNBSYE1(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_length,

key_identifier,

key_parms_length,

key_parms,

block_size,

initialization_vector_length,

initialization_vector,

chain_data_length,

chain_data,

clear_text_length,

clear_text,

cipher_text_length,

cipher_text,

optional_data_length,

optional_data

clear_text_id

cipher_text_id)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Ignored

Type:

String

Reserved

field.

rule_array_count

Direction:

Input

Type:

Integer

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

Chapter

5.

Protecting

Data

201

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

may

be

1,

2,

3

or

4.

rule_array

Direction:

Input

Type:

String

An

array

of

8-byte

keywords

providing

the

processing

control

information.

The

keywords

must

be

in

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

Table

67.

Symmetric

Key

Encipher

Rule

Array

Keywords

Keyword

Meaning

Algorithm

(required)

AES

Specifies

that

the

Advanced

Encryption

Standard

(AES)

algorithm

is

to

be

used.

On

systems

that

contain

a

Cryptographic

Coprocessor

Feature,

AES

is

the

only

algorithm

that

is

supported.

The

block

size

is

16

bytes.

The

key

length

may

be

16,

24,

or

32

bytes.

The

chain_data

field

must

be

at

least

32

bytes

in

length.

The

OCV

is

the

first

16

bytes

in

the

chain_data.The

supported

processing

rules

for

AES

are

CBC

and

ECB.

DES

Specifies

that

the

Data

Encryption

Standard

(DES)

algorithm

is

to

be

used.

The

algorithm,

DES

or

TDES,

will

be

determined

from

the

length

of

the

key

supplied.

The

key

length

may

be

8,

16,

or

24.

The

block

size

is

8

bytes.

The

chain_data

field

must

be

at

least

16

bytes

in

length.

The

OCV

is

the

first

eight

bytes

in

the

chain_data.

The

processing

rules

supported

for

DES

are

CBC,

ECB,

X9.23,

CUSP

and

IPS.

Processing

Rule

(optional)

CBC

Performs

cipher

block

chaining.

The

text

length

must

be

a

multiple

of

the

block

size

for

the

specified

algorithm.

CBC

is

the

default

value.

CUSP

CBC

mode

(cipher

block

chaining)

that

is

compatible

with

IBM’s

CUSP

and

PCF

products.

Input

text

may

be

any

length.

ECB

Performs

electronic

code

book

encryption.

The

text

length

must

be

a

multiple

of

the

block

size

for

the

specified

algorithm.

IPS

CBC

mode

(cipher

block

chaining)

that

is

compatible

with

IBM’s

IPS

product.

Input

text

may

be

any

length.

X9.23

CBC

mode

(cipher

block

chaining)

for

1

to

8

bytes

of

padding

added

according

to

ANSI

X9.23.

Input

text

may

be

any

length.

Key

Rule

(optional)

KEY-CLR

This

specifies

that

the

key

parameter

contains

a

clear

key

value.

KEY-CLR

is

the

default.

ICV

Selection

(optional)

INITIAL

This

specifies

taking

the

initialization

vector

from

the

initialization_vector

parameter.

INITIAL

is

the

default

value.

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

202

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

67.

Symmetric

Key

Encipher

Rule

Array

Keywords

(continued)

Keyword

Meaning

CONTINUE

This

specifies

taking

the

initialization

vector

from

the

output

chaining

vector

contained

in

the

work

area

to

which

the

chain_data

parameter

points.

CONTINUE

is

valid

for

processing

rules

CBC,

IPS,

and

CUSP

only.

key_length

Direction:

Input

Type:

Integer

The

length

of

the

key

parameter.

For

clear

keys,

the

length

is

in

bytes

and

includes

only

the

value

of

the

key.

key_identifier

Direction:

Input

Type:

String

The

cipher

key.

The

parameter

must

be

left

justified.

key_parms_length

Direction:

Ignored

Type:

Integer

The

length

of

the

key_parms

parameter.

key_parms

Direction:

Ignored

Type:

String

This

parameter

contains

key-related

parameters

specific

to

the

encryption

algorithm.

block_size

Direction:

Input

Type:

Integer

This

parameter

contains

the

processing

size

of

the

text

block

in

bytes.

This

value

will

be

algorithm

specific.

initialization_vector_length

Direction:

Input

Type:

Integer

The

length

of

the

initialization_vector

parameter.

The

length

should

be

equal

to

the

block

length

for

the

algorithm

specified.

initialization_vector

Direction:

Input

Type:

String

This

initialization

chaining

value

for

CBC

encryption.

You

must

use

the

same

ICV

to

decipher

the

data.

chain_data_length

Direction:

Input/Output

Type:

Integer

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

Chapter

5.

Protecting

Data

203

The

length

of

the

chain_data

parameter.

On

output,

the

actual

length

of

the

chaining

vector

will

be

stored

in

the

parameter.

chain_data

Direction:

Input/Output

Type:

String

This

field

is

used

as

a

system

work

area

for

the

chaining

vector.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

holds

the

output

chaining

vector

from

the

caller.

The

direction

is

output

if

the

ICV

selection

keyword

is

INITIAL.

The

mapping

of

the

chain_data

depends

on

the

algorithm

specified.

For

AES,

the

chain_data

field

must

be

at

least

32

bytes

in

length.

The

OCV

is

in

the

first

16

bytes

in

the

chain_data.

For

DES,

the

chain_data

field

must

be

at

least

16

bytes

in

length.

clear_text_length

Direction:

Input

Type:

Integer

The

length

of

the

clear

text.

A

zero

value

in

the

clear_text_length

parameter

is

not

valid.

The

length

must

be

a

multiple

of

the

algorithm

block

size.

clear_text

Direction:

Input

Type:

String

The

text

to

be

enciphered.

cipher_text_length

Direction:

Input/Output

Type:

Integer

On

input,

this

parameter

specifies

the

size

of

the

storage

pointed

to

by

the

cipher_text

parameter.

On

output,

this

parameter

has

the

actual

length

of

the

text

stored

in

the

buffer

addressed

by

the

cipher_text

parameter.

cipher_text

Direction:

Output

Type:

String

The

enciphered

text

the

service

returns.

optional_data_length

Direction:

Ignored

Type:

Integer

The

length

of

the

optional_data

parameter.

optional_data

Direction:

Ignored

Type:

String

Optional

data

required

by

a

specified

algorithm.

clear_text_id

Direction:

Input

Type:

Integer

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

204

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

For

CSNBSYE1

only,

the

ALET

of

the

clear

text

to

be

enciphered.

cipher_text_id

Direction:

Input

Type:

Integer

For

CSNBSYE1

only,

the

ALET

of

the

ciphertext

that

the

application

supplied.

Usage

Notes

v

No

pre-

or

post-processing

exits

are

enabled

for

this

service.

v

No

SAF

authorization

check

is

made.

v

The

master

keys

need

not

be

loaded

to

use

this

service.

v

The

AES

algorithm

is

implemented

in

the

software.

v

AES

has

the

same

availability

restrictions

as

triple-DES.

v

This

service

will

fail

if

execution

would

cause

destructive

overlay

of

the

clear_text

field.

Table

68.

Symmetric

Key

Encipher

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

DES

keyword

is

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

DES

keyword

is

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

CP

Assist

for

Cryptographic

Functions

Related

Information

You

cannot

overlap

the

plaintext

and

ciphertext

fields.

For

example:

pppppp

cccccc

is

not

supported.

cccccc

pppppp

is

not

supported.

ppppppcccccc

is

supported.

P

represents

the

plaintext

and

c

represents

the

ciphertext.

On

z990

systems,

the

PCIXCC

will

support

non

destructive

overlap.

For

example:

cccccc

pppppp

is

supported.

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

Chapter

5.

Protecting

Data

205

The

method

used

to

produce

the

OCV

is

the

same

with

the

CBC

and

X9.23

processing

rules.

However,

that

method

is

different

from

the

method

used

by

the

CUSP

and

IPS

processing

rules.

“Cipher

Processing

Rules”

on

page

496

discusses

the

cipher

processing

rules.

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

206

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

ICSF

provides

several

methods

to

verify

the

integrity

of

transmitted

messages

and

stored

data:

v

Message

authentication

code

(MAC)

v

Hash

functions,

including

modification

detection

code

(MDC)

processing

and

one-way

hash

generation

Note:

You

can

also

use

digital

signatures

(see

Chapter

8,

“Using

Digital

Signatures,”

on

page

303)

to

authenticate

messages.

The

choice

of

callable

service

depends

on

the

security

requirements

of

the

environment

in

which

you

are

operating.

If

you

need

to

ensure

the

authenticity

of

the

sender

as

well

as

the

integrity

of

the

data,

and

both

the

sender

and

receiver

can

share

a

secret

key,

consider

message

authentication

code

processing.

If

you

need

to

ensure

the

integrity

of

transmitted

data

in

an

environment

where

it

is

not

possible

for

the

sender

and

the

receiver

to

share

a

secret

cryptographic

key,

consider

hashing

functions,

such

as

the

modification

detection

code

process.

The

callable

services

are

described

in

the

following

topics:

v

“MAC

Generate

(CSNBMGN

and

CSNBMGN1)”

on

page

209

v

“MAC

Verify

(CSNBMVR

and

CSNBMVR1)”

on

page

214

v

“MDC

Generate

(CSNBMDG

and

CSNBMDG1)”

on

page

219

v

“One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)”

on

page

224

How

MACs

are

Used

When

a

message

is

sent,

an

application

program

can

generate

an

authentication

code

for

it

using

the

MAC

generation

callable

service.

ICSF

supports

the

ANSI

X9.9-1

basic

procedure

and

both

the

ANSI

X9.19

basic

procedure

and

optional

double

key

MAC

procedure.

The

service

computes

the

text

of

the

message

authentication

code

using

the

algorithm

and

a

key.

The

ANSI

X9.9-1

or

ANSI

X9.19

basic

procedures

accept

either

a

single-length

MAC

generation

(MAC)

key

or

a

data-encrypting

(DATA)

key,

and

the

message

text.

The

ANSI

X9.19

optional

double

key

MAC

procedure

accepts

a

double-length

MAC

key

and

the

message

text.

The

message

text

may

be

in

clear

or

encrypted

form.

The

originator

of

the

message

sends

the

MAC

with

the

message

text.

When

the

receiver

gets

the

message,

an

application

program

calls

the

MAC

verification

callable

service.

The

callable

service

generates

a

MAC

using

the

same

algorithm

as

the

sender

and

either

the

single-length

or

double-length

MAC

verification

key,

the

single-length

or

double-length

MAC

generation

key,

or

DATA

key,

and

the

message

text.

The

MACVER

callable

service

compares

the

MAC

it

generates

with

the

one

sent

with

the

message

and

issues

a

return

code

that

indicates

whether

the

MACs

match.

If

the

return

code

indicates

that

the

MACs

match,

the

receiver

can

accept

the

message

as

genuine

and

unaltered.

If

the

return

code

indicates

that

the

MACs

do

not

match,

the

receiver

can

assume

that

the

message

is

either

bogus

or

has

been

altered.

The

newly

computed

MAC

is

not

revealed

outside

the

cryptographic

feature.

In

a

similar

manner,

MACs

can

be

used

to

ensure

the

integrity

of

data

stored

on

the

system

or

on

removable

media,

such

as

tape.

©

Copyright

IBM

Corp.

1997,

2004

207

Secure

use

of

the

MAC

generation

and

MAC

verification

services

requires

the

use

of

MAC

and

MACVER

keys

in

these

services,

respectively.

To

accomplish

this,

the

originator

of

the

message

generates

a

MAC/MACVER

key

pair,

uses

the

MAC

key

in

the

MAC

generation

service,

and

exports

the

MACVER

key

to

the

receiver.

The

originator

of

the

message

enforces

key

separation

on

the

link

by

encrypting

the

MACVER

key

under

a

transport

key

that

is

not

an

NOCV

key

before

exporting

the

key

to

the

receiver.

With

this

type

of

key

separation

enforced,

the

receiver

can

only

receive

a

MACVER

key

and

can

use

only

this

key

in

the

MAC

verification

service.

This

ensures

that

the

receiver

cannot

alter

the

message

and

produce

a

valid

MAC

with

the

altered

message.

These

security

features

are

not

present

if

DATA

keys

are

used

in

the

MAC

generation

service,

or

if

DATA

or

MAC

keys

are

used

in

the

MAC

verification

service.

By

using

MACs,

you

get

the

following

benefits:

v

For

data

transmitted

over

a

network,

you

can

validate

the

authenticity

of

the

message

as

well

as

ensure

that

the

data

has

not

been

altered

during

transmission.

For

example,

an

active

eavesdropper

can

tap

into

a

transmission

line,

and

interject

bogus

messages

or

alter

sensitive

data

being

transmitted.

If

the

data

is

accompanied

by

a

MAC,

the

recipient

can

use

a

callable

service

to

detect

whether

the

data

has

been

altered.

Since

both

the

sender

and

receiver

share

a

secret

key,

the

receiver

can

use

a

callable

service

that

calculates

a

MAC

on

the

received

message

and

compares

it

to

the

MAC

transmitted

with

the

message.

If

the

comparison

is

equal,

the

message

may

be

accepted

as

unaltered.

Furthermore,

since

the

shared

key

is

secret,

when

a

MAC

is

verified

it

can

be

assumed

that

the

sender

was,

in

fact,

the

other

person

who

knew

the

secret

key.

v

For

data

stored

on

tape

or

DASD,

you

can

ensure

that

the

data

read

back

onto

the

system

was

the

same

as

the

data

written

onto

the

tape

or

DASD.

For

example,

someone

might

be

able

to

bypass

access

controls.

Such

an

access

might

escape

the

notice

of

auditors.

However,

if

a

MAC

is

stored

with

the

data,

and

verified

when

the

data

is

read,

you

can

detect

alterations

to

the

data.

How

Hashing

Functions

Are

Used

Hashing

functions

include

the

MDC

and

one-way

hash.

You

need

to

hash

text

before

submitting

it

to

digital

signature

services

(see

Chapter

8,

“Using

Digital

Signatures,”

on

page

303).

How

MDCs

Are

Used

When

a

message

is

sent,

an

application

program

can

generate

a

modification

detection

code

for

it

using

the

MDC

generation

callable

service.

The

service

computes

the

modification

detection

code,

a

128-bit

value,

using

a

one-way

cryptographic

function

and

the

message

text

(which

itself

may

be

in

clear

or

encrypted

form).

The

originator

of

the

message

ensures

that

the

MDC

is

transmitted

with

integrity

to

the

intended

receiver

of

the

message.

For

example,

the

MDC

could

be

published

in

a

reliable

source

of

public

information.

When

the

receiver

gets

the

message,

an

application

program

calls

the

MDC

callable

service.

The

callable

service

generates

an

MDC

by

using

the

same

one-way

cryptographic

function

and

the

message

text.

The

application

program

can

compare

the

new

MDC

with

the

one

generated

by

the

originator

of

the

message.

If

the

MDCs

match,

the

receiver

knows

that

the

message

was

not

altered.

In

a

similar

manner,

MDCs

can

be

used

to

ensure

the

integrity

of

data

stored

on

the

system

or

on

removable

media,

such

as

tape.

208

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

By

using

MDCs,

you

get

the

following

benefits:

v

For

data

transmitted

over

a

network

between

locations

that

do

not

share

a

secret

key,

you

can

ensure

that

the

data

has

not

been

altered

during

transmission.

It

is

easy

to

compute

an

MDC

for

specific

data,

yet

hard

to

find

data

that

will

result

in

a

given

MDC.

In

effect,

the

problem

of

ensuring

the

integrity

of

a

large

file

is

reduced

to

ensuring

the

integrity

of

a

128-bit

value.

v

For

data

stored

on

tape

or

DASD,

you

can

ensure

that

the

data

read

back

onto

the

system

was

the

same

as

the

data

written

onto

the

tape

or

DASD.

Once

an

MDC

has

been

established

for

a

file,

the

MDC

generation

callable

service

can

be

run

at

any

later

time

on

the

file.

The

resulting

MDC

can

be

compared

with

the

stored

MDC

to

detect

deliberate

or

inadvertent

modification.

SHA-1

is

a

FIPS

standard

required

for

DSS.

MD5

is

a

hashing

algorithm

used

to

derive

Message

Digests

in

Digital

Signature

applications.

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

Use

the

MAC

generate

callable

service

to

generate

a

4-,

6-,

or

8-byte

message

authentication

code

(MAC)

for

an

application-supplied

text

string.

You

can

specify

that

the

callable

service

uses

either

the

ANSI

X9.9-1

procedure

or

the

ANSI

X9.19

optional

double

key

MAC

procedure

to

compute

the

MAC.

For

the

ANSI

X9.9-1

procedure

you

identify

either

a

MAC

generate

key

or

a

DATA

key,

and

the

message

text.

For

the

ANSI

X9.19

optional

double

key

MAC

procedure,

you

identify

a

double-length

MAC

key

and

the

message

text.

The

MAC

generate

callable

service

also

supports

the

padding

rules

specified

in

the

EMV

Specification.

Choosing

Between

CSNBMGN

and

CSNBMGN1

CSNBMGN

and

CSNBMGN1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBMGN

requires

the

application-supplied

text

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBMGN

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBMGN1

allows

the

application-supplied

text

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

process

more

data

with

one

call.

However,

a

program

using

CSNBMGN1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBMGN1,

text_id_in

is

an

access

list

entry

token

(ALET)

parameter

of

the

data

space

containing

the

application-supplied

text.

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

209

Format

CALL

CSNBMGN(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

text,

rule_array_count,

rule_array,

chaining_vector,

mac

)

CALL

CSNBMGN1(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

text,

rule_array_count,

rule_array,

chaining_vector,

mac,

text_id_in

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

210

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

key

label

or

internal

key

token

that

identifies

a

single-length

or

double-length

MAC

generate

key

or

a

single-length

DATA

or

DATAM

key.

The

type

of

key

depends

on

the

MAC

process

rule

in

the

rule_array

parameter.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

text

you

supply

in

the

text

parameter.

The

maximum

length

of

text

is

2,147,836,647

bytes.

If

the

text_length

is

not

a

multiple

of

8

bytes

and

if

the

ONLY

or

LAST

keyword

of

the

rule_array

parameter

is

called,

the

text

is

padded

in

accordance

with

the

processing

rule

specified.

.

Note:

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced.

text

Direction:

Input

Type:

String

The

application-supplied

text

for

which

the

MAC

is

generated.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

specified

in

the

rule_array

parameter.

The

value

can

be

0,

1,

2,

or

3.

rule_array

Direction:

Input

Type:

Character

string

Zero

to

three

keywords

that

provide

control

information

to

the

callable

service.

The

keywords

are

shown

in

Table

69.

The

keywords

must

be

in

24

bytes

of

contiguous

storage

with

each

of

the

keywords

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

For

example,

’X9.9-1

MIDDLE

MACLEN4

’

The

order

of

the

rule_array

keywords

is

not

fixed.

You

can

specify

one

of

the

MAC

processing

rules

and

then

choose

one

of

the

segmenting

control

keywords

and

one

of

the

MAC

length

keywords.

Table

69.

Keywords

for

MAC

generate

Control

Information

Keyword

Meaning

MAC

Process

Rules

(optional)

EMVMAC

EMV

padding

rule

with

a

single-length

MAC

key.

The

key_identifier

parameter

must

identify

a

single-length

MAC

or

a

single-length

DATA

key.

The

text

is

always

padded

with

1

to

8

bytes

so

that

the

resulting

text

length

is

a

multiple

of

8

bytes.

The

first

pad

character

is

X'80'.

The

remaining

0

to

7

pad

characters

are

X'00'.

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

211

Table

69.

Keywords

for

MAC

generate

Control

Information

(continued)

Keyword

Meaning

EMVMACD

EMV

padding

rule

with

a

double-length

MAC

key.

The

key_identifier

parameter

must

identify

a

double-length

MAC

key.

The

padding

rules

are

the

same

as

for

EMVMAC.

X9.19OPT

ANSI

X9.19

optional

double

key

MAC

procedure.

The

key_identifier

parameter

must

identify

a

double-length

MAC

key.

The

padding

rules

are

the

same

as

for

X9.9-1.

X9.9-1

ANSI

X9.9-1

and

X9.19

basic

procedure.

The

key_identifier

parameter

must

identify

a

single-length

MAC

or

a

single-length

DATA

key.

X9.9-1

causes

the

MAC

to

be

computed

from

all

of

the

data.

The

text

is

padded

only

if

the

text

length

is

not

a

multiple

of

8

bytes.

If

padding

is

required,

the

pad

character

X'00'

is

used.

This

is

the

default

value.

Segmenting

Control

(optional)

FIRST

First

call,

this

is

the

first

segment

of

data

from

the

application

program.

LAST

Last

call;

this

is

the

last

data

segment.

MIDDLE

Middle

call;

this

is

an

intermediate

data

segment.

ONLY

Only

call;

segmenting

is

not

employed

by

the

application

program.

This

is

the

default

value.

MAC

Length

and

Presentation

(optional)

HEX-8

Generates

a

4-byte

MAC

value

and

presents

it

as

8

hexadecimal

characters.

HEX-9

Generates

a

4-byte

MAC

value

and

presents

it

as

2

groups

of

4

hexadecimal

characters

with

a

space

between

the

groups.

MACLEN4

Generates

a

4-byte

MAC

value.

This

is

the

default

value.

MACLEN6

Generates

a

6-byte

MAC

value.

MACLEN8

Generates

an

8-byte

MAC

value.

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

string

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

permits

data

to

be

chained

from

one

invocation

call

to

another.

On

the

first

call,

initialize

this

parameter

as

binary

zeros.

mac

Direction:

Output

Type:

String

The

8-byte

or

9-byte

field

in

which

the

callable

service

returns

the

MAC

value

if

the

segmenting

rule

is

ONLY

or

LAST.

Allocate

an

8-byte

field

for

MAC

values

of

4

bytes,

6

bytes,

8

bytes,

or

HEX-8.

Allocate

a

9-byte

MAC

field

if

you

specify

HEX-9

in

the

rule_array

parameter.

text_id_in

Direction:

Input

Type:

Integer

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

212

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

For

CSNBMGN1

only,

the

ALET

of

the

text

for

which

the

MAC

is

generated.

Usage

Notes

CCF

Systems:

To

use

a

DATA

key,

the

NOCV-enablement

keys

must

be

present

in

the

CKDS.

Using

a

DATA

key

instead

of

a

MAC

generate

key

in

this

service

substantially

increases

the

path

length

for

generating

the

MAC.

To

calculate

a

MAC

in

one

call,

specify

the

ONLY

keyword

for

segmenting

control

for

the

rule_array

parameter.

For

two

or

more

calls,

specify

the

FIRST

keyword

for

the

first

input

block,

the

MIDDLE

keyword

for

intermediate

blocks

(if

any),

and

the

LAST

keyword

for

the

last

block.

For

a

given

text

string,

the

resulting

MAC

is

the

same

whether

the

text

is

segmented

or

not.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

70.

MAC

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

in

the

supplied

key

identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

If

no

PCI

Cryptographic

Coprocessor

is

online

in

this

case,

the

request

fails.

The

request

must

meet

the

following

restrictions:

v

The

MAC

Process

Rule

is

X9.19OPT

or

EMVMACD.

v

The

MAC

key

is

a

valid

double-length

MAC

generate

key.

v

The

text_length

must

be

less

than

or

equal

to

4K

bytes

for

the

FIRST

and

MIDDLE

keywords,

and

the

text

length

must

be

a

multiple

of

8

bytes.

v

The

text_length

on

the

final

call

(ONLY

or

LAST)

can

not

be

greater

than

4K

including

padding.

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

213

Table

70.

MAC

generate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

in

the

supplied

key

identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

If

no

PCI

Cryptographic

Coprocessor

is

online

in

this

case,

the

request

fails.

The

request

must

meet

the

following

restrictions:

v

The

MAC

Process

Rule

is

X9.19OPT

or

EMVMACD.

v

The

MAC

key

is

a

valid

double-length

MAC

generate

key.

v

The

text_length

must

be

less

than

or

equal

to

4K

bytes

for

the

FIRST

and

MIDDLE

keywords,

and

the

text

length

must

be

a

multiple

of

8

bytes.

v

The

text_length

on

the

final

call

(ONLY

or

LAST)

can

not

be

greater

than

4K

including

padding.

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Related

Information

For

more

information

about

MAC

processing

rules

and

segmenting

control,

refer

to

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface

Reference.

The

MAC

verification

callable

service

is

described

in

“MAC

Verify

(CSNBMVR

and

CSNBMVR1).”

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

Use

the

MAC

verify

callable

service

to

verify

a

4-,

6-,

or

8-byte

message

authentication

code

(MAC)

for

an

application-supplied

text

string.

You

can

specify

that

the

callable

service

uses

either

the

ANSI

X9.9-1

procedure

or

the

ANSI

X9.19

optional

double

key

MAC

procedure

to

compute

the

MAC.

For

the

ANSI

X9.9-1

procedure

you

identify

either

a

MAC

verify

key,

a

MAC

generation

key,

or

a

DATA

key,

and

the

message

text.

For

the

ANSI

X9.19

optional

double

key

MAC

procedure,

you

identify

either

a

double-length

MAC

verify

key

or

a

double-length

MAC

generation

key

and

the

message

text.

The

cryptographic

feature

compares

the

generated

MAC

with

the

one

sent

with

the

message.

A

return

code

indicates

whether

the

MACs

are

the

same.

If

the

MACs

are

the

same,

the

receiver

knows

the

message

was

not

altered.

The

generated

MAC

never

appears

in

storage

is

not

revealed

outside

the

cryptographic

feature.

The

MAC

verify

callable

service

also

supports

the

padding

rules

specified

in

the

EMV

Specification.

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

214

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Choosing

Between

CSNBMVR

and

CSNBMVR1

CSNBMVR

and

CSNBMVR1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBMVR

requires

the

application-supplied

text

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBMVR

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBMVR1

allows

the

application-supplied

text

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

verify

more

data

with

one

call.

However,

a

program

using

CSNBMVR1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface,

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBMVR1,

text_id_in

is

an

access

list

entry

token

(ALET)

parameter

of

the

data

space

containing

the

application-supplied

text.

Format

CALL

CSNBMVR(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

text,

rule_array_count,

rule_array,

chaining_vector,

mac

)

CALL

CSNBMVR1(

return_code,

reason_code,

exit_data_length,

exit_data,

key_identifier,

text_length,

text,

rule_array_count,

rule_array,

chaining_vector,

mac,

text_id_in

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

215

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

key_identifier

Direction:

Input/Output

The

64-byte

key

label

or

internal

key

token

that

identifies

a

single-length

or

double-length

MAC

verify

key,

a

single-length

or

double-length

MAC

generation

key

or

a

single-length

DATA

key.

The

type

of

key

depends

on

the

MAC

process

rule

in

the

rule_array

parameter.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

clear

text

you

supply

in

the

text

parameter.

The

maximum

length

of

text

is

2,147,836,647

bytes.

If

the

text_length

parameter

is

not

a

multiple

of

8

bytes

and

if

the

ONLY

or

LAST

keyword

of

the

rule_array

parameter

is

called,

the

text

is

padded

in

accordance

with

the

processing

rule

specified.

.

Note:

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced

(2147483647).

text

Direction:

Input

Type:

String

The

application-supplied

text

for

which

the

MAC

is

verified.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

specified

in

the

rule_array

parameter.

The

value

can

be

0,

1,

2,

or

3.

rule_array

Direction:

Input

Type:

Character

string

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

216

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Zero

to

three

keywords

that

provide

control

information

to

the

callable

service.

The

keywords

are

shown

in

Table

71.

The

keywords

must

be

in

24

bytes

of

contiguous

storage

with

each

of

the

keywords

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

For

example,

’X9.9-1

MIDDLE

MACLEN4

’

The

order

of

the

rule_array

keywords

is

not

fixed.

You

can

specify

one

of

the

MAC

processing

rules

and

then

choose

one

of

the

segmenting

control

keywords

and

one

of

the

MAC

length

keywords.

Table

71.

Keywords

for

MAC

verify

Control

Information

Keyword

Meaning

MAC

Process

Rules

(optional)

EMVMAC

EMV

padding

rule

with

a

single-length

MAC

key.

The

key_identifier

parameter

must

identify

a

single-length

MAC,

MACVER,

or

DATA

key.

The

text

is

always

padded

with

1

to

8

bytes

so

that

the

resulting

text

length

is

a

multiple

of

8

bytes.

The

first

pad

character

is

X'80'.

The

remaining

0

to

7

pad

characters

are

X'00'.

EMVMACD

EMV

padding

rule

with

a

double-length

MAC

key.

The

key_identifier

parameter

must

identify

a

double-length

MAC

or

MACVER

key.

The

padding

rules

are

the

same

as

for

EMVMAC.

X9.9-1

ANSI

X9.9-1

and

X9.19

basic

procedure.

The

key_identifier

parameter

must

identify

a

single-length

MAC,

MACVER,

or

DATA

key.

X9.9-1

causes

the

MAC

to

be

computed

from

all

of

the

data.

The

text

is

padded

only

if

the

text

length

is

not

a

multiple

of

8

bytes.

If

padding

is

required,

the

pad

character

X'00'

is

used.

This

is

the

default

value.

X9.19OPT

ANSI

X9.19

optional

double-length

MAC

procedure.

The

key_identifier

parameter

must

identify

a

double-length

MAC

or

MACVER

key.

The

padding

rules

are

the

same

as

for

X9.9-1.

Segmenting

Control

(optional)

FIRST

First

call;

this

is

the

first

segment

of

data

from

the

application

program.

LAST

Last

call;

this

is

the

last

data

segment.

MIDDLE

Middle

call;

this

is

an

intermediate

data

segment.

ONLY

Only

call;

the

application

program

does

not

employ

segmenting.

This

is

the

default

value.

MAC

Length

and

Presentation

(optional)

HEX-8

Verifies

a

4-byte

MAC

value

that

is

represented

as

8

hexadecimal

characters.

HEX-9

Verifies

a

4-byte

MAC

value

that

is

represented

as

2

groups

of

4

hexadecimal

characters

with

a

space

character

between

the

groups.

MACLEN4

Verifies

a

4-byte

MAC

value.

This

is

the

default

value.

MACLEN6

Verifies

a

6-byte

MAC

value.

MACLEN8

Verifies

an

8-byte

MAC

value.

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

217

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

string

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

permits

data

to

be

chained

from

one

invocation

call

to

another.

On

the

first

call,

initialize

this

parameter

to

binary

zeros.

mac

Direction:

Input

Type:

String

The

8-

or

9-byte

field

that

contains

the

MAC

value

you

want

to

verify.

The

value

in

the

field

must

be

left-justified

and

padded

with

zeros.

If

you

specified

the

HEX-9

keyword

in

the

rule_array

parameter,

the

input

MAC

is

9

bytes.

text_id_in

Direction:

Input

Type:

Integer

For

CSNBMVR1

only,

the

ALET

of

the

text

for

which

the

MAC

is

to

be

verified.

Usage

Notes

To

verify

a

MAC

in

one

call,

specify

the

ONLY

keyword

on

the

segmenting

rule

keyword

for

the

rule_array

parameter.

For

two

or

more

calls,

specify

the

FIRST

keyword

for

the

first

input

block,

MIDDLE

for

intermediate

blocks

(if

any),

and

LAST

for

the

last

block.

For

a

given

text

string,

the

MAC

resulting

from

the

verification

process

is

the

same

regardless

of

how

the

text

is

segmented,

or

how

it

was

segmented

when

the

original

MAC

was

generated.

CCF

Systems

only:

To

use

a

MAC

generation

key

or

a

DATA

key,

the

NOCV

enablement

keys

must

be

present

in

the

CKDS.

Using

either

a

MAC

generation

key

or

a

DATA

key

instead

of

a

MAC

verify

key

in

this

service

substantially

increases

the

path

length

for

verifying

the

MAC.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

218

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

72.

MAC

verify

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

in

the

supplied

key

identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

The

request

must

meet

the

following

restrictions:

v

The

MAC

Process

Rule

is

X9.19OPT

or

EMVMACD.

v

The

MAC

key

is

a

valid

double-length

MAC

generate

key.

v

The

text_length

on

the

final

call

(ONLY

or

LAST)

can

not

be

greater

than

4K

including

padding.

v

The

text_length

must

be

less

than

or

equal

to

4K

bytes

for

the

FIRST

and

MIDDLE

keywords,

and

the

text

length

must

be

a

multiple

of

8

bytes.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

in

the

supplied

key

identifier

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

The

request

must

meet

the

following

restrictions:

v

The

MAC

Process

Rule

is

X9.19OPT

or

EMVMACD.

v

The

MAC

key

is

a

valid

double-length

MAC

generate

key.

v

The

text_length

on

the

final

call

(ONLY

or

LAST)

can

not

be

greater

than

4K

including

padding.

v

The

text_length

must

be

less

than

or

equal

to

4K

bytes

for

the

FIRST

and

MIDDLE

keywords,

and

the

text

length

must

be

a

multiple

of

8

bytes.

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Related

Information

For

more

information

about

MAC

processing

rules

and

segmenting

control,

refer

to

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface

Reference.

The

MAC

generation

callable

service

is

described

in

“MAC

Generate

(CSNBMGN

and

CSNBMGN1)”

on

page

209.

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

A

modification

detection

code

(MDC)

can

be

used

to

provide

a

form

of

support

for

data

integrity.

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

219

|
|

Use

the

MDC

generate

callable

service

to

generate

a

128-bit

modification

detection

code

(MDC)

for

an

application-supplied

text

string.

The

returned

MDC

value

should

be

securely

stored

and/or

sent

to

another

user.

To

validate

the

integrity

of

the

text

string

at

a

later

time,

the

MDC

generate

callable

service

is

again

used

to

generate

a

128-bit

MDC.

The

new

MDC

value

is

compared

with

the

original

MDC

value.

If

the

values

are

equal,

the

text

is

accepted

as

unchanged.

Choosing

Between

CSNBMDG

and

CSNBMDG1

CSNBMDG

and

CSNBMDG1

provide

identical

functions.

When

choosing

which

service

to

use,

consider

the

following:

v

CSNBMDG

requires

the

application-supplied

text

to

reside

in

the

caller’s

primary

address

space.

Also,

a

program

using

CSNBMDG

adheres

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface.

v

CSNBMDG1

allows

the

application-supplied

text

to

reside

either

in

the

caller’s

primary

address

space

or

in

a

data

space.

This

can

allow

you

to

process

more

data

with

one

call.

However,

a

program

using

CSNBMDG1

does

not

adhere

to

the

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface

and

may

need

to

be

modified

before

it

can

run

with

other

cryptographic

products

that

follow

this

programming

interface.

For

CSNBMDG1,

text_id_in

parameter

specifies

the

access

list

entry

token

(ALET)

for

the

data

space

containing

the

application-supplied

text.

Format

CALL

CSNBMDG(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

text,

rule_array_count,

rule_array,

chaining_vector,

mdc

)

CALL

CSNBMDG1(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

text,

rule_array_count,

rule_array,

chaining_vector,

mdc,

text_id_in

)

Parameters

return_code

Direction:

Output

Type:

Integer

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

220

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

text

you

supply

in

the

text

parameter.

The

maximum

length

of

text

is

2,147,836,647

bytes.

Note:

Beginning

in

z/OS

V1

R2,

the

MAXLEN

value

may

still

be

specified

in

the

options

data

set,

but

only

the

maximum

value

limit

will

be

enforced

(2147483647).

Additional

restrictions

on

length

of

the

text

depend

on

whether

padding

of

the

text

is

requested,

and

on

the

segmenting

control

used.

v

When

padding

is

requested

(by

specifying

a

process

rule

of

PADMDC-2

or

PADMDC-4

in

the

rule_array

parameter),

a

text

length

of

0

is

valid

for

any

segment

control

specified

in

the

rule_array

parameter

(FIRST,

MIDDLE,

LAST,

or

ONLY).

When

LAST

or

ONLY

is

specified,

the

supplied

text

will

be

padded

with

X’FF’s

and

a

padding

count

in

the

last

byte

to

bring

the

total

text

length

to

the

next

multiple

of

8

that

is

greater

than

or

equal

to

16,

v

When

no

padding

is

requested

(by

specifying

a

process

rule

of

MDC-2

or

MDC-4),

the

total

length

of

the

text

provided

(over

a

single

or

segmented

calls)

must

be

at

least

16

bytes,

and

a

multiple

of

8.

For

segmented

calls

with

no

padding,

text

length

of

0

is

valid

on

any

of

the

calls

provided

the

total

length

over

the

segmented

calls

is

at

least

16

and

a

multiple

of

8.

For

a

single

call

(that

is,

segment

control

is

ONLY)

with

no

padding,

the

length

the

text

provided

must

be

at

least

16,

and

a

multiple

of

8.

text

Direction:

Input

Type:

String

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

221

The

application-supplied

text

for

which

the

MDC

is

generated.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

specified

in

the

rule_array

parameter.

This

value

must

be

2.

rule_array

Direction:

Input

Type:

Character

string

The

two

keywords

that

provide

control

information

to

the

callable

service

are

shown

in

Table

73.

The

two

keywords

must

be

in

16

bytes

of

contiguous

storage

with

each

of

the

two

keywords

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

For

example,

’MDC-2

FIRST

’

Choose

one

of

the

MDC

process

rule

control

keywords

and

one

of

the

segmenting

control

keywords

from

the

following

table.

Table

73.

Keywords

for

MDC

Generate

Control

Information

Keyword

Meaning

MDC

Process

Rules

(required)

MDC-2

MDC-2

specifies

two

encipherments

per

8

bytes

of

input

text

and

no

padding

of

the

input

text.

MDC-4

MDC-4

specifies

four

encipherments

per

8

bytes

of

input

text

and

no

padding

of

the

input

text.

PADMDC-2

PADMDC-2

specifies

two

encipherments

per

8

bytes

of

input

text

and

padding

of

the

input

text.

When

the

segment

rule

specifies

ONLY

or

LAST,

the

input

text

is

padded

with

X'FF's

and

a

padding

count

in

the

last

byte

to

bring

the

total

text

length

to

the

next

even

multiple

of

8

that

is

greater

than,

or

equal

to,

16.

PADMDC-4

PADMDC-4

specifies

four

encipherments

per

8

bytes

of

input

text

and

padding

of

the

input

text.

When

the

segment

rule

specifies

ONLY

or

LAST,

the

input

text

is

padded

with

X'FF's

and

a

padding

count

in

the

last

byte

to

bring

the

total

text

length

to

the

next

even

multiple

of

8

that

is

greater

than,

or

equal

to,

16.

Segmenting

Control

(required)

FIRST

First

call;

this

is

the

first

segment

of

data

from

the

application

program.

LAST

Last

call;

this

is

the

last

data

segment.

MIDDLE

Middle

call;

this

is

an

intermediate

data

segment.

ONLY

Only

call;

segmenting

is

not

employed

by

the

application

program.

chaining_vector

Direction:

Input/Output

Type:

String

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

222

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

An

18-byte

string

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

The

chaining

vector

permits

data

to

be

chained

from

one

invocation

call

to

another.

On

the

first

call,

initialize

this

parameter

as

binary

zeros.

mdc

Direction:

Input/Output

Type:

String

A

16-byte

field

in

which

the

callable

service

returns

the

MDC

value

when

the

segmenting

rule

is

ONLY

or

LAST.

When

the

segmenting

rule

is

FIRST

or

MIDDLE,

the

value

returned

in

this

field

is

an

intermediate

MDC

value

that

will

be

used

as

input

for

a

subsequent

call

and

must

not

be

changed

by

the

application

program.

text_id_in

Direction:

Input

Type:

Integer

For

CSNBMDG1

only,

the

ALET

for

the

data

space

containing

the

text

for

which

the

MDC

is

to

be

generated.

Usage

Notes

To

calculate

an

MDC

in

one

call,

specify

the

ONLY

keyword

for

segmenting

control

in

the

rule_array

parameter.

For

more

than

one

call,

specify

the

FIRST

keyword

for

the

first

input

block,

the

MIDDLE

keyword

for

any

intermediate

blocks,

and

the

LAST

keyword

for

the

last

block.

For

a

given

text

string,

the

resulting

MDC

is

the

same

whether

the

text

is

segmented

or

not.

The

two

versions

of

MDC

calculation

(with

two

or

four

encipherments

per

8

bytes

of

input

text)

allow

the

caller

to

trade

a

performance

improvement

for

a

decrease

in

security.

Since

2

encipherments

create

results

different

from

the

results

of

4

encipherments,

ensure

that

you

use

the

same

number

of

encipherments

to

verify

the

MDC

value.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

74.

MDC

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

CP

Assist

for

Cryptographic

Functions

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

223

|
|

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

Use

the

one-way

hash

generate

callable

service

to

generate

a

one-way

hash

on

specified

text.

This

service

supports

the

following

methods:

v

MD5

-

software

only

v

SHA-1

v

RIPEMD-160

-

software

only

Format

CALL

CSNBOWH(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

text_length,

text,

chaining_vector_length,

chaining_vector,

hash_length,

hash)

CALL

CSNBOWH1(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

text_length,

text,

chaining_vector_length,

chaining_vector,

hash_length,

hash,

text_id_in)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

224

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

1

or

2.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service

are

listed

in

Table

75.

The

optional

chaining

flag

keyword

indicates

whether

calls

to

this

service

are

chained

together

logically

to

overcome

buffer

size

limitations.

Each

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

75.

Keywords

for

One-Way

Hash

Generate

Rule

Array

Control

Information

Keyword

Meaning

Hash

Method

(required)

MD5

Hash

algorithm

is

MD5

algorithm.

Use

this

hash

method

for

PKCS-1.0

and

PKCS-1.1.

Length

of

hash

generated

is

16

bytes.

RPMD-160

Hash

algorithm

is

RIPEMD-160.

Length

of

hash

generated

is

20

bytes.

SHA-1

Hash

algorithm

is

SHA-1

algorithm.

Use

this

hash

method

for

DSS.

Length

of

hash

generated

is

20

bytes.

Chaining

Flag

(optional)

FIRST

Specifies

this

is

the

first

call

in

a

series

of

chained

calls.

Intermediate

results

are

stored

in

the

hash

field.

LAST

Specifies

this

is

the

last

call

in

a

series

of

chained

calls.

MIDDLE

Specifies

this

is

a

middle

call

in

a

series

of

chained

calls.

Intermediate

results

are

stored

in

the

hash

field.

ONLY

Specifies

this

is

the

only

call

and

the

call

is

not

chained.

This

is

the

default.

text_length

Direction:

Input

Type:

Integer

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

225

The

length

of

the

text

parameter

in

bytes.

Note:

If

you

specify

the

FIRST

or

MIDDLE

keyword,

then

the

text

length

must

be

a

multiple

of

the

blocksize

of

the

hash

method.

For

MD5,

RPMD-160

and

SHA-1,

this

is

a

multiple

of

64

bytes.

For

ONLY

and

LAST,

this

service

performs

the

required

padding

according

to

the

algorithm

specified.

text

Direction:

Input

Type:

String

The

application-supplied

text

on

which

this

service

performs

the

hash.

chaining_vector_length

Direction:

Input

Type:

Integer

The

byte

length

of

the

chaining_vector

parameter.

This

must

be

128

bytes.

chaining_vector

Direction:

Input/Output

Type:

String

This

field

is

a

128-byte

work

area.

Your

application

must

not

change

the

data

in

this

string.

The

chaining

vector

permits

chaining

data

from

one

call

to

another.

hash_length

Direction:

Input

Type:

Integer

The

length

of

the

supplied

hash

field

in

bytes.

Note:

For

SHA-1

and

RPMD-160

this

must

be

at

least

20

bytes;

for

MD5

this

must

be

at

least

16

bytes.

hash

Direction:

Input/Output

Type:

String

This

field

contains

the

hash,

left-justified.

The

processing

of

the

rest

of

the

field

depends

on

the

implementation.

If

you

specify

the

FIRST

or

MIDDLE

keyword,

this

field

contains

the

intermediate

hash

value.

Your

application

must

not

change

the

data

in

this

field

between

the

sequence

of

FIRST,

MIDDLE,

and

LAST

calls

for

a

specific

message.

text_id_in

Direction:

Input

Type:

Integer

For

CSNBOWH1

only,

the

ALET

for

the

data

space

containing

the

text

for

which

to

generate

the

hash.

Usage

Notes

Although

MD5

and

SHA-1

allow

it,

bit

length

text

is

not

supported

for

any

hashing

method.

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

226

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

76.

One-way

hash

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

CP

Assist

for

Cryptographic

Functions

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

Chapter

6.

Verifying

Data

Integrity

and

Authenticating

Messages

227

|
|

One-Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

228

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

7.

Financial

Services

The

process

of

validating

personal

identities

in

a

financial

transaction

system

is

called

personal

authentication.

The

personal

identification

number

(PIN)

is

the

basis

for

verifying

the

identity

of

a

customer

across

financial

industry

networks.

ICSF

provides

callable

services

to

translate,

verify,

and

generate

PINs.

You

can

use

the

callable

services

to

prevent

unauthorized

disclosures

when

organizations

handle

PINs.

The

following

callable

services

are

described

in

the

following

topics:

v

“Clear

PIN

Encrypt

(CSNBCPE)”

on

page

236

v

“Clear

PIN

Generate

(CSNBPGN)”

on

page

239

v

“Clear

PIN

Generate

Alternate

(CSNBCPA)”

on

page

243

v

“Encrypted

PIN

Generate

(CSNBEPG)”

on

page

248

v

“Encrypted

PIN

Translate

(CSNBPTR)”

on

page

253

v

“Encrypted

PIN

Verify

(CSNBPVR)”

on

page

260

v

“PIN

Change/Unblock

(CSNBPCU)”

on

page

267

v

“Secure

Messaging

for

Keys

(CSNBSKY)”

on

page

273

v

“Secure

Messaging

for

PINs

(CSNBSPN)”

on

page

276

v

“SET

Block

Compose

(CSNDSBC)”

on

page

280

v

“SET

Block

Decompose

(CSNDSBD)”

on

page

285

v

“Transaction

Validation

(CSNBTRV)”

on

page

291

v

“VISA

CVV

Service

Generate

(CSNBCSG)”

on

page

295

v

“VISA

CVV

Service

Verify

(CSNBCSV)”

on

page

298

How

Personal

Identification

Numbers

(PINs)

are

Used

Many

people

are

familiar

with

PINs,

which

allow

them

to

use

an

automated

teller

machine

(ATM).

From

the

system

point

of

view,

PINs

are

used

primarily

in

financial

networks

to

authenticate

users

—

typically,

a

user

is

assigned

a

PIN,

and

enters

the

PIN

at

automated

teller

machines

(ATMs)

to

gain

access

to

his

or

her

accounts.

It

is

extremely

important

that

the

PIN

be

kept

private,

so

that

no

one

other

than

the

account

owner

can

use

it.

ICSF

allows

your

applications

to

generate

PINs,

to

verify

supplied

PINs,

and

to

translate

PINs

from

one

format

to

another.

How

VISA

Card

Verification

Values

Are

Used

The

Visa

International

Service

Association

(VISA)

and

MasterCard

International,

Incorporated

have

specified

a

cryptographic

method

to

calculate

a

value

that

relates

to

the

personal

account

number

(PAN),

the

card

expiration

date,

and

the

service

code.

The

VISA

card-verification

value

(CVV)

and

the

MasterCard

card-verification

code

(CVC)

can

be

encoded

on

either

track

1

or

track

2

of

a

magnetic

striped

card

and

are

used

to

detect

forged

cards.

Because

most

online

transactions

use

track-2,

the

ICSF

callable

services

generate

and

verify

the

CVV5

by

the

track-2

method.

The

VISA

CVV

service

generate

callable

service

calculates

a

1-

to

5-byte

value

through

the

DES-encryption

of

the

PAN,

the

card

expiration

date,

and

the

service

code

using

two

data-encrypting

keys

or

two

MAC

keys.

The

VISA

CVV

service

verify

callable

service

calculates

the

CVV

by

the

same

method,

compares

it

to

the

CVV

supplied

by

the

application

(which

reads

the

credit

card’s

magnetic

stripe)

in

the

CVV_value,

and

issues

a

return

code

that

indicates

whether

the

card

is

authentic.

5. The

VISA

CVV

and

the

MasterCard

CVC

refer

to

the

same

value.

CVV

is

used

here

to

mean

both

CVV

and

CVC.

©

Copyright

IBM

Corp.

1997,

2004

229

|

|

Translating

Data

and

PINs

in

Networks

More

and

more

data

is

being

transmitted

across

networks

where,

for

various

reasons,

the

keys

used

on

one

network

cannot

be

used

on

another

network.

Encrypted

data

and

PINs

that

are

transmitted

across

these

boundaries

must

be

“translated”

securely

from

encryption

under

one

key

to

encryption

under

another

key.

For

example,

a

traveler

visiting

a

foreign

city

might

wish

to

use

an

ATM

to

access

an

account

at

home.

The

PIN

entered

at

the

ATM

might

need

to

be

encrypted

at

the

ATM

and

sent

over

one

or

more

financial

networks

to

the

traveler’s

home

bank.

At

the

home

bank,

the

PIN

must

be

verified

before

access

is

allowed.

On

intermediate

systems

(between

networks),

applications

can

use

the

Encrypted

PIN

translate

callable

service

to

re-encrypt

a

PIN

block

from

one

key

to

another.

Running

on

ICSF,

such

applications

can

ensure

that

PINs

never

appear

in

the

clear

and

that

the

PIN-encrypting

keys

are

isolated

on

their

own

networks.

PIN

Callable

Services

You

use

the

PIN

callable

services

to

generate,

verify,

and

translate

PINs.

This

section

discusses

the

PIN

callable

services,

as

well

as

the

various

PIN

algorithms

and

PIN

block

formats

supported

by

ICSF.

It

also

explains

the

use

of

PIN-encrypting

keys.

Generating

a

PIN

To

generate

personal

identification

numbers,

call

the

Clear

PIN

Generate

or

Encrypted

PIN

Generate

callable

service.

Using

a

PIN

generation

algorithm,

data

used

in

the

algorithm,

and

the

PIN

generation

key,

the

Clear

PIN

generate

callable

service

generates

a

clear

PIN

and

a

PIN

verification

value,

or

offset.

The

Clear

PIN

Generate

callable

service

can

only

execute

in

special

secure

mode.

For

a

description

of

this

mode,

see

“Special

Secure

Mode”

on

page

10.

Using

a

PIN

generation

algorithm,

data

used

in

the

algorithm,

the

PIN

generation

key,

and

an

outbound

PIN

encrypting

key,

the

encrypted

PIN

generate

callable

service

generates

and

formats

a

PIN

and

encrypts

the

PIN

block.

Encrypting

a

PIN

To

format

a

PIN

into

a

supported

PIN

block

format

and

encrypt

the

PIN

block,

call

the

Clear

PIN

encrypt

callable

service.

Generating

a

PIN

Validation

Value

from

an

Encrypted

PIN

Block

To

generate

a

clear

VISA

PIN

validation

value

(PVV)

from

an

encrypted

PIN

block,

call

the

clear

PIN

generate

alternate

callable

service.

The

PIN

block

can

be

encrypted

under

an

input

PIN-encrypting

key

(IPINENC)

or

an

output

PIN

encrypting

key

(OPINENC).

Using

an

IPINENC

key

requires

that

NOCV

keys

are

enabled

in

the

CKDS.

Verifying

a

PIN

To

verify

a

supplied

PIN,

call

the

Encrypted

PIN

verify

callable

service.

You

supply

the

enciphered

PIN,

the

PIN-encrypting

key

that

enciphers

the

PIN,

and

other

data.

You

must

also

specify

the

PIN

verification

key

and

PIN

verification

algorithm.

The

callable

service

generates

a

verification

PIN.

The

service

compares

the

two

personal

identification

numbers

and

if

they

are

the

same,

it

verifies

the

supplied

PIN.

230

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Translating

a

PIN

To

translate

a

PIN

block

format

from

one

PIN-encrypting

key

to

another

or

from

one

PIN

block

format

to

another,

call

the

Encrypted

PIN

translate

callable

service.

You

must

identify

the

input

PIN-encrypting

key

that

originally

enciphered

the

PIN.

You

also

need

to

specify

the

output

PIN-encrypting

key

that

you

want

the

callable

service

to

use

to

encipher

the

PIN.

If

you

want

to

change

the

PIN

block

format,

specify

a

different

output

PIN

block

format

from

the

input

PIN

block

format.

Algorithms

for

Generating

and

Verifying

a

PIN

ICSF

supports

the

following

algorithms

for

generating

and

verifying

personal

identification

numbers:

v

IBM

3624

institution-assigned

PIN

v

IBM

3624

customer-selected

PIN

(through

a

PIN

offset)

v

IBM

German

Bank

Pool

PIN

(verify

through

an

institution

key)

v

IBM

German

Bank

Pool

PIN

(verify

through

a

pool

key

and

a

PIN

offset).

This

algorithm

is

supported

when

the

service

using

the

PIN

is

processed

on

the

Cryptographic

Coprocessor

Feature.

Restriction:

This

algorithm

is

not

supported

on

a

z990

or

z890.

v

VISA

PIN

through

a

VISA

PIN

validation

value

v

Interbank

PIN

The

algorithms

are

discussed

in

detail

in

“PIN

Formats

and

Algorithms”

on

page

485.

Using

PINs

on

Different

Systems

ICSF

allows

you

to

translate

different

PIN

block

formats,

which

lets

you

use

personal

identification

numbers

on

different

systems.

ICSF

supports

the

following

formats:

v

IBM

3624

v

IBM

3621

(same

as

IBM

5906)

v

IBM

4704

encrypting

PINPAD

format

v

ISO

0

(same

as

ANSI

9.8,

VISA

1,

and

ECI

1)

v

ISO

1

(same

as

ECI

4)

v

ISO

2

v

VISA

2

v

VISA

3

v

VISA

4

v

ECI

2

v

ECI

3

The

formats

are

discussed

in

“PIN

Formats

and

Algorithms”

on

page

485.

PIN-Encrypting

Keys

A

unique

master

key

variant

enciphers

each

type

of

key.

For

further

key

separation,

an

installation

can

choose

to

have

each

PIN

block

format

enciphered

under

a

different

PIN-encrypting

key.

The

PIN-encrypting

keys

can

have

a

16-byte

PIN

block

variant

constant

exclusive

ORed

on

them

before

they

are

used

to

translate

or

verify

PIN

blocks.

This

is

specified

in

the

format

control

field

in

the

Encrypted

PIN

translate

and

Encrypted

PIN

verify

callable

services.

You

should

only

use

PIN

block

variant

constants

when

you

are

communicating

with

another

host

processor

with

the

Integrated

Cryptographic

Service

Facility.

Chapter

7.

Financial

Services

231

|

Derived

Unique

Key

Per

Transaction

Algorithms

ICSF

supports

ANSI

X9.24

derived

unique

key

per

transaction

algorithms

to

generate

PIN-encrypting

keys

from

user

data.

ICSF

supports

both

single-

and

double-length

key

generation.

Keywords

for

single-

and

double-length

key

generation

can

not

be

mixed.

A

PCICC

or

PCIXCC

is

required

for

this

support.

Double-length

key

generation

is

only

supported

on

z990

with

the

May

2004

LIC.

Encrypted

PIN

Translate

The

UKPTIPIN,

IPKTOPIN

and

UKPTBOTH

keywords

will

cause

the

service

to

generate

single-length

keys.

DUKPT-IP,

DKPT-OP

and

DUKPT-BH

are

the

respective

keywords

to

generate

double-length

keys.

The

input_PIN_profile

and

output_PIN_profile

must

supply

the

current

key

serial

number

when

these

keywords

are

specified.

Encrypted

PIN

Verify

The

UKPTIPIN

keyword

will

cause

the

service

to

generate

single-length

keys.

DUKPT-IP

is

the

keyword

for

double-length

key

generation.

The

input_PIN_profile

must

supply

the

current

key

serial

number

when

these

keywords

are

specified.

For

more

information

about

PIN-encrypting

keys,

see

z/OS

Cryptographic

Services

ICSF

Administrator’s

Guide.

The

PIN

Profile

The

PIN

profile

consists

of

the

following:

v

PIN

block

format

(see

“PIN

Block

Format”)

v

Format

control

(see

“Format

Control”

on

page

234)

v

Pad

digit

(see

“Pad

Digit”

on

page

235)

v

Current

Key

Serial

Number

(for

UKPT

and

DUKPT

–

see

“Current

Key

Serial

Number”

on

page

235)

Table

77

shows

the

format

of

a

PIN

profile.

Table

77.

Format

of

a

PIN

Profile

Bytes

Description

0–7

PIN

block

format

8–15

Format

control

16–23

Pad

digit

24–47

Current

Key

Serial

Number

(for

UKPT

and

DUKPT

)

PIN

Block

Format

This

keyword

specifies

the

format

of

the

PIN

block.

The

8-byte

value

must

be

left-justified

and

padded

with

blanks.

Refer

to

Table

78

for

a

list

of

valid

values.

Table

78.

Format

Values

of

PIN

Blocks

Format

Value

Description

ECI-2

Eurocheque

International

format

2

ECI-3

Eurocheque

International

format

3

ISO-0

ISO

format

0,

ANSI

X9.8,

VISA

1,

and

ECI

1

ISO-1

ISO

format

1

and

ECI

4

ISO-2

ISO

format

2

232

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

Table

78.

Format

Values

of

PIN

Blocks

(continued)

Format

Value

Description

VISA-2

VISA

format

2

VISA-3

VISA

format

3

VISA-4

VISA

format

4

3621

IBM

3621

and

5906

3624

IBM

3624

4704-EPP

IBM

4704

with

encrypting

PIN

pad

PIN

Block

Format

and

PIN

Extraction

Method

Keywords

In

the

Clear

PIN

Generate

Alternate,

Encrypted

PIN

Translate

and

Encrypted

PIN

Verify

callable

services,

you

may

specify

a

PIN

extraction

keyword

for

a

given

PIN

block

format.

In

the

table

below,

the

allowable

PIN

extraction

methods

are

listed

for

each

PIN

block

format.

The

first

PIN

extraction

method

keyword

listed

for

a

PIN

block

format

is

the

default.

If

you

specify

a

PIN

extraction

method

keyword

that

is

not

the

default,

the

request

will

be

routed

to

the

PCI

Cryptographic

Coprocessor.

Table

79.

PIN

Block

Format

and

PIN

Extraction

Method

Keywords

PIN

Block

Format

PIN

Extraction

Method

Keywords

Description

ECI-2

PINLEN04

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINLEN04

format.

ECI-3

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

ISO-0

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

ISO-1

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

ISO-2

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

VISA-2

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

VISA-3

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

VISA-4

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

Chapter

7.

Financial

Services

233

Table

79.

PIN

Block

Format

and

PIN

Extraction

Method

Keywords

(continued)

PIN

Block

Format

PIN

Extraction

Method

Keywords

Description

3621

PADDIGIT,

HEXDIGIT,

PINLEN04

to

PINLEN12,

PADEXIST

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

an

IBM

3621

PIN

block

format.

The

first

keyword,

PADDIGIT,

is

the

default

PIN

extraction

method

for

the

PIN

block

format.

3624

PADDIGIT,

HEXDIGIT,

PINLEN04

to

PINLEN16,

PADEXIST

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

an

IBM

3624

PIN

block

format.

The

first

keyword,

PADDIGIT,

is

the

default

PIN

extraction

method

for

the

PIN

block

format.

4704-EPP

PINBLOCK

The

PIN

extraction

method

keywords

specify

a

PIN

extraction

method

for

a

PINBLOCK

format.

Format

Control

This

keyword

specifies

whether

there

is

any

control

on

the

user-supplied

PIN

format.

The

8-byte

value

must

be

left-justified

and

padded

with

blanks.

Specify

one

of

the

following

values:

NONE

No

format

control.

PBVC

A

PIN

block

variant

constant

(PBVC)

enforces

format

control.

Use

the

PBVC

value

only

if

you

have

coded

PBVC

in

the

encrypted

PIN

translate

callable

service.

For

the

PBVC,

the

clear

PIN

key-encrypting

key

has

been

exclusive

ORed

with

one

of

the

PIN

block

formats.

The

cryptographic

feature

removes

the

pattern

from

the

clear

PIN

key-encrypting

key

before

it

decrypts

the

PIN

block.

Restriction:

PBVC

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Notes:

1.

Only

control

vectors

and

extraction

methods

valid

for

the

Cryptographic

Coprocessor

Feature

may

be

used

if

the

PBVC

format

control

is

desired.

2.

PBVC

is

supported

for

compatibility

with

prior

releases

of

OS/390

ICSF

and

existing

ICSF

applications.

It

is

recommended

that

a

format

control

of

NONE

be

specified

for

maximum

flexibility

to

run

on

PCI

Cryptographic

Coprocessors.

If

you

do

not

specify

a

value

for

the

format

control

parameter,

ICSF

uses

hexadecimal

zeros.

Table

93

on

page

247

lists

the

PIN

block

variant

constants.

234

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Pad

Digit

Some

PIN

formats

require

this

parameter.

If

the

PIN

format

does

not

need

a

pad

digit,

the

callable

service

ignores

this

parameter.

Table

80

shows

the

format

of

a

pad

digit.

The

PIN

profile

pad

digit

must

be

specified

in

upper

case.

Table

80.

Format

of

a

Pad

Digit

Bytes

Description

16–22

Seven

space

characters

23

Character

representation

of

a

hexadecimal

pad

digit

or

a

space

if

a

pad

digit

is

not

needed.

Characters

must

be

one

of

the

following:

0–9,

A–F,

or

a

blank.

Each

PIN

format

supports

only

a

pad

digit

in

a

certain

range.

The

table

below

lists

the

valid

pad

digits

for

each

PIN

block

format.

Table

81.

Pad

Digits

for

PIN

Block

Formats

PIN

Block

Format

Output

PIN

Profile

Input

PIN

Profile

ECI-2

Pad

digit

is

not

used

Pad

digit

is

not

used

ECI-3

Pad

digit

is

not

used

Pad

digit

is

not

used

ISO-0

F

Pad

digit

is

not

used

ISO-1

Pad

digit

is

not

used

Pad

digit

is

not

used

ISO-2

Pad

digit

is

not

used

Pad

digit

is

not

used

VISA-2

0

through

9

Pad

digit

is

not

used

VISA-3

0

through

F

Pad

digit

is

not

used

VISA-4

F

Pad

digit

is

not

used

3621

0

through

F

0

through

F

3624

0

through

F

0

through

F

4704-EPP

F

Pad

digit

is

not

used

Recommendations

for

the

Pad

Digit

IBM

recommends

that

you

use

a

nondecimal

pad

digit

in

the

range

of

A

through

F

when

processing

IBM

3624

and

IBM

3621

PIN

blocks.

If

you

use

a

decimal

pad

digit,

the

creator

of

the

PIN

block

must

ensure

that

the

calculated

PIN

does

not

contain

the

pad

digit,

or

unpredictable

results

may

occur.

For

example,

you

can

exclude

a

specific

decimal

digit

from

being

in

any

calculated

PIN

by

using

the

IBM

3624

calculation

procedure

and

by

specifying

a

decimalization

table

that

does

not

contain

the

desired

decimal

pad

digit.

Current

Key

Serial

Number

The

current

key

serial

number

is

the

concatenation

of

the

initial

key

serial

number

(a

59-bit

value)

and

the

encryption

counter

(a

21-bit

value).

The

concatenation

is

an

80-bit

(10-byte)

value.

Table

82

on

page

236

shows

the

format

of

the

current

key

serial

number.

When

UKPT

or

DUKPT

is

specified,

the

PIN

profile

parameter

is

extended

to

a

48-byte

field

and

must

contain

the

current

key

serial

number.

Chapter

7.

Financial

Services

235

|
|

Table

82.

Format

of

the

Current

Key

Serial

Number

Field

Bytes

Description

24–47

Character

representation

of

the

current

key

serial

number

used

to

derive

the

initial

PIN

encrypting

key.

It

is

left

justified

and

padded

with

4

blanks.

Clear

PIN

Encrypt

(CSNBCPE)

The

Clear

PIN

Encrypt

callable

service

formats

a

PIN

into

one

of

the

following

PIN

block

formats

and

encrypts

the

results.

You

can

use

this

service

to

create

an

encrypted

PIN

block

for

transmission.

With

the

RANDOM

keyword,

you

can

have

the

service

generate

random

PIN

numbers.

Note:

A

clear

PIN

is

a

sensitive

piece

of

information.

Ensure

that

your

application

program

and

system

design

provide

adequate

protection

for

any

clear

PIN

value.

v

IBM

3621

format

v

IBM

3624

format

v

ISO-0

format

(same

as

the

ANSI

X9.8,

VISA-1,

and

ECI

formats)

v

ISO-1

format

(same

as

the

ECI-4

format)

v

ISO-2

format

v

IBM

4704

encrypting

PINPAD

(4704-EPP)

format

v

VISA

2

format

v

VISA

3

format

v

VISA

4

format

v

ECI2

format

v

ECI3

format

Format

CALL

CSNBCPE(

return_code,

reason_code,

exit_data_length,

exit_data,

PIN_encrypting_key_identifier,

rule_array_count,

rule_array,

clear_PIN,

PIN_profile,

PAN_data,

sequence_number

encrypted_PIN_block

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

236

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFFFF'

(2

gigabytes).

The

data

is

defined

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

PIN_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

string

containing

an

internal

key

token

or

a

key

label

of

an

internal

key

token.

The

internal

key

token

contains

the

key

that

encrypts

the

PIN

block.

The

control

vector

in

the

internal

key

token

must

specify

an

OPINENC

key

type

and

have

the

CPINENC

usage

bit

set

to

1.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

Valid

values

are

0,

1

and

2.

rule_array

Direction:

Input

Type:

Character

string

Keywords

that

provide

control

information

to

the

callable

service.

The

keyword

is

left-justified

in

an

8-byte

field,

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

The

rule

array

keywords

are

shown

as

follows:

Table

83.

Process

Rules

for

the

Clear

PIN

Encryption

Callable

Service

Process

Rule

Description

ENCRYPT

This

is

the

default.

Use

of

this

keyword

is

optional.

RANDOM

Causes

the

service

to

generate

a

random

PIN

value.

The

length

of

the

PIN

is

based

on

the

value

in

the

clear_PIN

variable.

Set

the

value

of

the

clear

PIN

to

zero

and

use

as

many

digits

as

the

desired

random

PIN;

pad

the

remainder

of

the

clear

PIN

variable

with

space

characters.

Clear

PIN

Encrypt

(CSNBCPE)

Chapter

7.

Financial

Services

237

clear_PIN

Direction:

Input

Type:

String

A

16-character

string

with

the

clear

PIN.

The

value

in

this

variable

must

be

left-justified

and

padded

on

the

right

with

space

characters.

PIN_profile

Direction:

Input

Type:

String

A

24-byte

string

containing

three

8-byte

elements

with

a

PIN

block

format

keyword,

the

format

control

keyword,

NONE,

and

a

pad

digit

as

required

by

certain

formats.See

“The

PIN

Profile”

on

page

232

for

additional

information.

PAN_data

Direction:

Input

Type:

String

A

12-byte

PAN

in

character

format.

The

service

uses

this

parameter

if

the

PIN

profile

specifies

the

ISO-0

or

VISA-4

keyword

for

the

PIN

block

format.

Otherwise,

ensure

that

this

parameter

is

a

12-byte

variable

in

application

storage.

The

information

in

this

variable

will

be

ignored,

but

the

variable

must

be

specified.

Note:

When

using

the

ISO-0

keyword,

use

the

12

rightmost

digits

of

the

PAN

data,

excluding

the

check

digit.

When

using

the

VISA-4

keyword,

use

the

12

leftmost

digits

of

the

PAN

data,

excluding

the

check

digit.

sequence_number

Direction:

Input

Type:

Integer

The

4-byte

character

integer.

The

service

currently

ignores

the

value

in

this

variable.

For

future

compatibility,

the

suggested

value

is

99999.

encrypted_PIN_block

Direction:

Output

Type:

String

The

field

that

receives

the

8-byte

encrypted

PIN

block.

Restrictions

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

The

format

control

specified

in

the

PIN

profile

must

be

NONE.

If

PBVC

is

specified

as

the

format

control,

the

service

will

fail.

Usage

Notes

SAF

will

be

invoked

to

check

authorization

to

use

the

Clear

PIN

encrypt

service

and

the

label

of

the

PIN_encrypting_key_identifier.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Clear

PIN

Encrypt

(CSNBCPE)

238

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

84.

Clear

PIN

encrypt

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Clear

PIN

Generate

(CSNBPGN)

Use

the

Clear

PIN

generate

callable

service

to

generate

a

clear

PIN,

a

PIN

validation

value

(PVV),

or

an

offset

according

to

an

algorithm.

You

supply

the

algorithm

or

process

rule

using

the

rule_array

parameter.

v

IBM

3624

(IBM-PIN

or

IBM-PINO)

v

IBM

German

Bank

Pool

(GBP-PIN

or

GBP-PINO)

-

not

supported

on

an

IBM

Eserver

zSeries

990.

v

VISA

PIN

validation

value

(VISA-PVV)

v

Interbank

PIN

(INBK-PIN)

The

callable

service

can

execute

only

when

ICSF

is

in

special

secure

mode.

This

mode

is

described

in

“Special

Secure

Mode”

on

page

10.

For

guidance

information

about

VISA,

see

their

appropriate

publications.

The

Interbank

PIN

algorithm

is

available

only

on

S/390

Enterprise

Servers,

the

S/390

Multiprise,

and

the

IBM

Eserver

Zseries.

Format

CALL

CSNBPGN(

return_code,

reason_code,

exit_data_length,

exit_data,

PIN_generating_key_identifier,

rule_array_count,

rule_array,

PIN_length,

PIN_check_length,

data_array,

returned_result

)

Clear

PIN

Encrypt

(CSNBCPE)

Chapter

7.

Financial

Services

239

|
|

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFFFF'

(2

gigabytes).

The

data

is

defined

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

PIN_generating_key_identifier

Direction:

Input/Output

Type:

Character

string

The

64-byte

key

label

or

internal

key

token

that

identifies

the

PIN

generation

(PINGEN)

key.

If

the

PIN_generating_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

generation

key

control

vector,

the

request

will

be

routed

to

a

PCI

Cryptographic

Coprocessor.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

process

rules

specified

in

the

rule_array

parameter.

The

value

must

be

1.

rule_array

Direction:

Input

Type:

Character

string

The

process

rule

provides

control

information

to

the

callable

service.

Specify

one

of

the

values

in

Table

85

on

page

241.

The

keyword

is

left-justified

in

an

8-byte

field,

and

padded

on

the

right

with

blanks.

Clear

PIN

Generate

(CSNBPGN)

240

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

85.

Process

Rules

for

the

Clear

PIN

Generate

Callable

Service

Process

Rule

Description

GBP-PIN

The

IBM

German

Bank

Pool

PIN,

which

uses

the

institution

PINGEN

key

to

generate

an

institution

PIN

(IPIN).

GBP-PINO

The

IBM

German

Bank

Pool

PIN

offset,

which

uses

the

pool

PINGEN

key

to

generate

a

pool

PIN

(PPIN).

It

uses

the

institution

PIN

(IPIN)

as

input

and

calculates

the

PIN

offset,

which

is

the

output.

GBP-PINO

is

not

supported

on

an

IBM

Eserver

zSeries

990.

IBM-PIN

The

IBM

3624

PIN,

which

is

an

institution-assigned

PIN.

It

does

not

calculate

the

PIN

offset.

IBM-PINO

The

IBM

3624

PIN

offset,

which

is

a

customer-selected

PIN

and

calculates

the

PIN

offset

(the

output).

INBK-PIN

The

Interbank

PIN

is

generated.

VISA-PVV

The

VISA

PIN

validation

value.

Input

is

the

customer

PIN.

PIN_length

Direction:

Input

Type:

Integer

The

length

of

the

PIN

used

for

the

IBM

algorithms

only,

IBM-PIN

or

IBM-PINO.

Otherwise,

this

parameter

is

ignored.

Specify

an

integer

from

4

through

16.

If

the

length

is

greater

than

12,

the

request

will

be

routed

to

the

PCI

Cryptographic

Coprocessor.

PIN_check_length

Direction:

Input

Type:

Integer

The

length

of

the

PIN

offset

used

for

the

IBM-PINO

process

rule

only.

Otherwise,

this

parameter

is

ignored.

Specify

an

integer

from

4

through

16.

Note:

The

PIN

check

length

must

be

less

than

or

equal

to

the

integer

specified

in

the

PIN_length

parameter.

data_array

Direction:

Input

Type:

String

Three

16-byte

data

elements

required

by

the

corresponding

rule_array

parameter.

The

data

array

consists

of

three

16-byte

fields

or

elements

whose

specification

depends

on

the

process

rule.

If

a

process

rule

only

requires

one

or

two

16-byte

fields,

then

the

rest

of

the

data

array

is

ignored

by

the

callable

service.

Table

86

describes

the

array

elements.

Table

86.

Array

Elements

for

the

Clear

PIN

Generate

Callable

Service

Array

Element

Description

Clear_PIN

Clear

user

selected

PIN

of

4

to

12

digits

of

0

through

9.

Left-justified

and

padded

with

spaces.

For

IBM-PINO,

this

is

the

clear

customer

PIN

(CSPIN).

For

GBP-PINO,

this

is

the

institution

PIN.

For

IBM-PIN

and

GBP-PIN,

this

field

is

ignored.

Clear

PIN

Generate

(CSNBPGN)

Chapter

7.

Financial

Services

241

Table

86.

Array

Elements

for

the

Clear

PIN

Generate

Callable

Service

(continued)

Array

Element

Description

Decimalization_table

Decimalization

table

for

IBM

and

GBP

only.

Sixteen

digits

of

0

through

9.

Trans_sec_parm

For

VISA

only,

the

leftmost

sixteen

digits.

Eleven

digits

of

the

personal

account

number

(PAN).

One

digit

key

index.

Four

digits

of

customer

selected

PIN.

For

Interbank

only,

sixteen

digits.

Eleven

right-most

digits

of

the

personal

account

number

(PAN).

A

constant

of

6.

One

digit

key

selector

index.

Three

digits

of

PIN

validation

data.

Validation_data

Validation

data

for

IBM

and

IBM

German

Bank

Pool

padded

to

16

bytes.

One

to

sixteen

characters

of

hexadecimal

account

data

left-justified

and

padded

on

the

right

with

blanks.

Table

87

lists

the

data

array

elements

required

by

the

process

rule

(rule_array

parameter).

The

numbers

refer

to

the

process

rule’s

position

within

the

array.

Table

87.

Array

Elements

Required

by

the

Process

Rule

Process

Rule

IBM-PIN

IBM-PINO

GBP-PIN

GBP-PINO

VISA-PVV

INBK-PIN

Decimalization_table

1

1

1

1

Validation_data

2

2

2

2

Clear_PIN

3

3

Trans_sec_parm

1

1

Note:

Generate

offset

for

GBP

algorithm

is

equivalent

to

IBM

offset

generation

with

PIN_check_length

of

4

and

PIN_length

of

6.

returned_result

Direction:

Output

Type:

Character

string

The

16-byte

generated

output,

left-justified

and

padded

on

the

right

with

blanks.

Restriction

PIN

lengths

of

13-16

require

the

optional

PCI

Cryptographic

Coprocessor.

Usage

Notes

If

you

are

using

the

IBM

3624

PIN

and

IBM

German

Bank

Pool

PIN

algorithms,

you

can

supply

an

unencrypted

customer

selected

PIN

to

generate

a

PIN

offset.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Clear

PIN

Generate

(CSNBPGN)

242

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

88.

Clear

PIN

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

of

the

PIN

generating

key

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if

the

control

vector

of

the

PIN

generating

key

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Rule_array

keyword

GBP-PINO

is

not

supported.

Related

Information

PIN

algorithms

are

shown

in

PIN

Formats

and

Algorithms.

Clear

PIN

Generate

Alternate

(CSNBCPA)

Use

the

clear

PIN

generate

alternate

service

to

generate

a

clear

VISA

PVV

(PIN

validation

value)

from

an

input

encrypted

PIN

block,

or

to

produce

a

3624

offset

from

a

customer-selected

encrypted

PIN.

The

PIN

block

can

be

encrypted

under

either

an

input

PIN-encrypting

key

(IPINENC)

or

an

output

PIN-encrypting

key

(OPINENC).

Format

CALL

CSNBCPA(

return_code,

reason_code,

exit_data_length,

exit_data,

PIN_encryption_key_identifier,

PIN_generation_key_identifier,

PIN_profile,

PAN_data,

encrypted_PIN_block,

rule_array_count,

rule_array,

PIN_check_length,

data_array,

returned_PVV)

Parameters

return_code

Direction:

Output

Type:

Integer

Clear

PIN

Generate

(CSNBPGN)

Chapter

7.

Financial

Services

243

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

PIN_encryption_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

consisting

of

an

internal

token

that

contains

an

IPINENC

or

OPINENC

key

or

the

label

of

an

IPINENC

or

OPINENC

key

that

is

used

to

encrypt

the

PIN

block.

If

you

specify

a

label,

it

must

resolve

uniquely

to

either

an

IPINENC

or

OPINENC

key.

If

the

PIN_encryption_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

encrypting

control

vector

(either

IPINENC

or

OPINENC),

the

request

will

be

routed

to

the

PCI

Cryptographic

Coprocessor

for

processing.

PIN_generation_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

string

that

consists

of

an

internal

token

that

contains

a

PIN

generation

(PINGEN)

key

or

the

label

of

a

PINGEN

key.

If

the

PIN_generation_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

generating

control

vector,

the

request

will

be

routed

to

the

PCI

Cryptographic

Coprocessor

for

processing.

PIN_profile

Direction:

Input

Type:

Character

string

The

three

8-byte

character

elements

that

contain

information

necessary

to

extract

a

PIN

from

a

formatted

PIN

block.

The

pad

digit

is

needed

to

extract

the

PIN

from

a

3624

or

3621

PIN

block

in

the

clear

PIN

generate

alternate

service.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

Clear

PIN

Generate

Alternate

(CSNBCPA)

244

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

PAN_data

Direction:

Input

Type:

String

A

12-byte

field

that

contains

12

characters

of

PAN

data.

The

personal

account

number

recovers

the

PIN

from

the

PIN

block

if

the

PIN

profile

specifies

ISO-0

or

VISA-4

block

formats.

Otherwise

it

is

ignored,

but

you

must

specify

this

parameter.

For

ISO-0,

use

the

rightmost

12

digits

of

the

PAN,

excluding

the

check

digit.

For

VISA-4,

use

the

leftmost

12

digits

of

the

PAN,

excluding

the

check

digit.

encrypted_PIN_block

Direction:

Input

Type:

String

An

8-byte

field

that

contains

the

encrypted

PIN

that

is

input

to

the

VISA

PVV

generation

algorithm.

The

service

uses

the

IPINENC

or

OPINENC

key

that

is

specified

in

the

PIN_encryption_key_identifier

parameter

to

encrypt

the

block.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

process

rules

specified

in

the

rule_array

parameter.

The

value

may

be

1

or

2.

If

the

default

extraction

method

for

a

PIN

block

format

is

desired,

you

may

code

the

rule

array

count

value

as

1.

rule_array

Direction:

Input

Type:

Character

string

The

process

rule

for

the

PIN

generation

algorithm.

Specify

IBM-PINO

or

“VISA-PVV”

(the

VISA

PIN

verification

value)

in

an

8-byte

field,

left-justified,

and

padded

with

blanks.

The

rule_array

points

to

an

array

of

one

or

two

8-byte

elements

as

follows:

Table

89.

Rule

Array

Elements

for

the

Clear

PIN

Generate

Alternate

Service

Rule

Array

Element

Function

of

Rule

Array

keyword

1

PIN

calculation

method

2

PIN

extraction

method

The

first

element

in

the

rule

array

must

specify

one

of

the

keywords

that

indicate

the

PIN

calculation

method

as

shown

below:

Table

90.

Rule

Array

Keywords

(First

Element)

for

the

Clear

PIN

Generate

Alternate

Service

PIN

Calculation

Method

Keyword

Meaning

IBM-PINO

This

keyword

specifies

use

of

the

IBM

3624

PIN

Offset

calculation

method.

VISA-PVV

This

keyword

specifies

use

of

the

VISA

PVV

calculation

method.

If

the

second

element

in

the

rule

array

is

provided,

one

of

the

PIN

extraction

method

keywords

shown

in

Table

79

on

page

233

may

be

specified

for

the

Clear

PIN

Generate

Alternate

(CSNBCPA)

Chapter

7.

Financial

Services

245

given

PIN

block

format.

See

“PIN

Block

Format

and

PIN

Extraction

Method

Keywords”

on

page

233

for

additional

information.

If

the

default

extraction

method

for

a

PIN

block

format

is

desired,

you

may

code

the

rule

array

count

value

as

1.

The

PIN

extraction

methods

operate

as

follows:

PINBLOCK

Specifies

that

the

service

use

one

of

the

following:

v

the

PIN

length,

if

the

PIN

block

contains

a

PIN

length

field

v

the

PIN

delimiter

character,

if

the

PIN

block

contains

a

PIN

delimiter

character.

PADDIGIT

Specifies

that

the

service

use

the

pad

value

in

the

PIN

profile

to

identify

the

end

of

the

PIN.

HEXDIGIT

Specifies

that

the

service

use

the

first

occurrence

of

a

digit

in

the

range

from

X'A'

to

X'F'

as

the

pad

value

to

determine

the

PIN

length.

PINLENxx

Specifies

that

the

service

use

the

length

specified

in

the

keyword,

where

xx

can

range

from

4

to

16

digits,

to

identify

the

PIN.

PADEXIST

Specifies

that

the

service

use

the

character

in

the

16th

position

of

the

PIN

block

as

the

value

of

the

pad

value.

PIN_check_length

Direction:

Input

Type:

Integer

The

length

of

the

PIN

offset

used

for

the

IBM-PINO

process

rule

only.

Otherwise,

this

parameter

is

ignored.

Specify

an

integer

from

4

through

16.

Note:

The

PIN

check

length

must

be

less

than

or

equal

to

the

integer

specified

in

the

PIN_length

parameter.

data_array

Direction:

Input

Type:

String

Three

16-byte

elements.

Table

91

describes

the

format

when

IBM-PINO

is

specified.

Table

92

on

page

247

describes

the

format

when

VISA-PVV

is

specified.

Table

91.

Data

Array

Elements

for

the

Clear

PIN

Generate

Alternate

Service

(IBM-PINO)

Array

Element

Description

decimalization_table

This

element

contains

the

decimalization

table

of

16

characters

(0

to

9)

that

are

used

to

convert

hexadecimal

digits

(X'0'

to

X'F')

of

the

enciphered

validation

data

to

the

decimal

digits

X'0'

to

X'9').

validation_data

This

element

contains

one

to

16

characters

of

account

data.

The

data

must

be

left

justified

and

padded

on

the

right

with

space

characters.

Reserved-3

This

field

is

ignored,

but

you

must

specify

it.

Clear

PIN

Generate

Alternate

(CSNBCPA)

246

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

92.

Data

Array

Elements

for

the

Clear

PIN

Generate

Alternate

Service

(VISA-PVV)

Array

Element

Description

Trans_sec_parm

For

VISA-PVV

only,

the

leftmost

twelve

digits.

Eleven

digits

of

the

personal

account

number

(PAN).

One

digit

key

index.

The

rest

of

the

field

is

ignored.

Reserved-2

This

field

is

ignored,

but

you

must

specify

it.

Reserved-3

This

field

is

ignored,

but

you

must

specify

it.

returned_PVV

Direction:

Output

Type:

Character

A

16-byte

area

that

contains

the

4-byte

PVV

left-justified

and

padded

with

blanks.

Restrictions

The

IBM-PINO

PIN

calculation

method

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

On

CCF

systems,

to

use

an

IPINENC

key,

you

must

install

the

NOCV-enablement

keys

in

the

CKDS.

Usage

Notes

On

CCF

systems,

to

use

an

IPINENC

key,

you

must

install

the

NOCV-enablement

keys

in

the

CKDS.

The

following

table

lists

the

PIN

block

variant

constants

(PBVC)

to

use.

Note:

PBVC

is

supported

for

compatibility

with

prior

releases

of

OS/390

ICSF

and

existing

ICSF

applications.

If

PBVC

is

specified

in

the

format

control

parameter

of

the

PIN

profile,

the

Clear

PIN

Generate

Alternate

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

for

processing.

This

means

that

only

control

vectors

and

extraction

methods

valid

for

the

Cryptographic

Coprocessor

Feature

may

be

used

if

PBVC

formatting

is

desired.

It

is

recommended

that

a

format

control

of

NONE

be

used

for

maximum

flexibility.

Restriction:

PBVC

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Table

93.

PIN

Block

Variant

Constants

(PBVCs)

PIN

Format

Name

PIN

Block

Variant

Constant

(PBVC)

ECI-2

X'00000000000093000000000000009300'

ECI-3

X'00000000000095000000000000009500'

ISO-0

X'00000000000088000000000000008800'

ISO-1

X'0000000000008B000000000000008B00'

VISA-2

X'0000000000008D000000000000008D00'

VISA-3

X'0000000000008E000000000000008E00'

VISA-4

X'00000000000090000000000000009000'

3621

X'00000000000084000000000000008400'

Clear

PIN

Generate

Alternate

(CSNBCPA)

Chapter

7.

Financial

Services

247

Table

93.

PIN

Block

Variant

Constants

(PBVCs)

(continued)

PIN

Format

Name

PIN

Block

Variant

Constant

(PBVC)

3624

X'00000000000082000000000000008200'

4704-EPP

X'00000000000087000000000000008700'

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

94.

Clear

pin

generate

alternate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

If

PBVC

is

specified

for

format

control,

the

request

will

be

routed

to

a

Cryptographic

Coprocessor

Feature.

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

PIN_encryption_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

encrypting

control

vector

(either

IPINENC

or

OPINENC).

v

IBM-PINO

PIN

calculation

method

is

specified.

v

Anything

is

specified

other

than

the

default

in

the

PIN

extraction

method

keyword

for

the

given

PIN

block

format

in

rule_array.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

If

PBVC

is

specified

for

format

control,

the

request

will

be

routed

to

a

Cryptographic

Coprocessor

Feature.

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

PIN_encryption_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

encrypting

control

vector

(either

IPINENC

or

OPINENC).

v

IBM-PINO

PIN

calculation

method

is

specified.

v

Anything

is

specified

other

than

the

default

in

the

PIN

extraction

method

keyword

for

the

given

PIN

block

format

in

rule_array.

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

Encrypted

PIN

Generate

(CSNBEPG)

The

Encrypted

PIN

Generate

callable

service

formats

a

PIN

and

encrypts

the

PIN

block.

To

generate

the

PIN,

the

service

uses

one

of

the

following

PIN

calculation

methods:

v

IBM

3624

PIN

Clear

PIN

Generate

Alternate

(CSNBCPA)

248

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

v

IBM

German

Bank

Pool

Institution

PIN

v

Interbank

PIN

To

format

the

PIN,

the

service

uses

one

of

the

following

PIN

block

formats:

v

IBM

3621

format

v

IBM

3624

format

v

ISO-0

format

(same

as

the

ANSI

X9.8,

VISA-1,

and

ECI-1

formats)

v

ISO-1

format

(same

as

the

ECI-4

format)

v

ISO-2

format

v

IBM

4704

encrypting

PINPAD

(4704-EPP)

format

v

VISA

2

format

v

VISA

3

format

v

VISA

4

format

v

ECI-2

format

v

ECI-3

format

Format

CALL

CSNBEPG(

return_code,

reason_code,

exit_data_length,

exit_data,

PIN_generating_key_identifier,

outbound_PIN_encrypting_key_identifier

rule_array_count,

rule_array,

PIN_length,

data_array,

PIN_profile,

PAN_data,

sequence_number

encrypted_PIN_block

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

Encrypted

PIN

Generate

(CSNBEPG)

Chapter

7.

Financial

Services

249

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFFFF'

(2

gigabytes).

The

data

is

defined

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

PIN_generating_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

internal

key

token

or

a

key

label

of

an

internal

key

token

in

the

CKDS.

The

internal

key

token

contains

the

PIN-generating

key.

The

control

vector

must

specify

the

PINGEN

key

type

and

have

the

EPINGEN

usage

bit

set

to

1.

outbound_PIN_encrypting_key_identifier

Direction:

Input

Type:

String

A

64-byte

internal

key

token

or

a

key

label

of

an

internal

key

token

in

the

CKDS.

The

internal

key

token

contains

the

key

to

be

used

to

encrypt

the

formatted

PIN

and

must

contain

a

control

vector

that

specifies

the

OPINENC

key

type

and

has

the

EPINGEN

usage

bit

set

to

1.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

1.

rule_array

Direction:

Input

Type:

Character

string

Keywords

that

provide

control

information

to

the

callable

service.

Each

keyword

is

left-justified

in

an

8-byte

field,

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

The

rule

array

keywords

are

shown

as

follows:

Table

95.

Process

Rules

for

the

Encrypted

PIN

Generate

Callable

Service

Process

Rule

Description

GBP-PIN

This

keyword

specifies

the

IBM

German

Bank

Pool

Institution

PIN

calculation

method

is

to

be

used

to

generate

a

PIN.

IBM-PIN

This

keyword

specifies

the

IBM

3624

PIN

calculation

method

is

to

be

used

to

generate

a

PIN.

INBK-PIN

This

keyword

specifies

the

Interbank

PIN

calculation

method

is

to

be

used

to

generate

a

PIN.

PIN_length

Direction:

Input

Type:

Integer

Encrypted

PIN

Generate

(CSNBEPG)

250

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

A

integer

defining

the

PIN

length

for

those

PIN

calculation

methods

with

variable

length

PINs;

otherwise,

the

variable

should

be

set

to

zero.

data_array

Direction:

Input

Type:

String

Three

16-byte

character

strings,

which

are

equivalent

to

a

single

48-byte

string.

The

values

in

the

data

array

depend

on

the

keyword

for

the

PIN

calculation

method.

Each

element

is

not

always

used,

but

you

must

always

declare

a

complete

data

array.

The

numeric

characters

in

each

16-byte

string

must

be

from

1

to

16

bytes

in

length,

uppercase,

left-justified,

and

padded

on

the

right

with

space

characters.

Table

96

describes

the

array

elements.

Table

96.

Array

Elements

for

the

Encrypted

PIN

Generate

Callable

Service

Array

Element

Description

Decimalization_table

Decimalization

table

for

IBM

and

GBP

only.

Sixteen

characters

that

are

used

to

map

the

hexadecimal

digits

(X'0'

to

X'F')

of

the

encrypted

validation

data

to

decimal

digits

(X'0'

to

X'9').

Trans_sec_parm

For

Interbank

only,

sixteen

digits.

Eleven

right-most

digits

of

the

personal

account

number

(PAN).

A

constant

of

6.

One

digit

key

selector

index.

Three

digits

of

PIN

validation

data.

Validation_data

Validation

data

for

IBM

and

IBM

German

Bank

Pool

padded

to

16

bytes.

One

to

sixteen

characters

of

hexadecimal

account

data

left-justified

and

padded

on

the

right

with

blanks.

Table

97

lists

the

data

array

elements

required

by

the

process

rule

(rule_array

parameter).

The

numbers

refer

to

the

process

rule’s

position

within

the

array.

Table

97.

Array

Elements

Required

by

the

Process

Rule

Process

Rule

IBM-PIN

GBP-PIN

INBK-PIN

Decimalization_table

1

1

Validation_data

2

2

Trans_sec_parm

1

PIN_profile

Direction:

Input

Type:

String

array

A

24-byte

string

containing

the

PIN

profile

including

the

PIN

block

format.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

PAN_data

Direction:

Input

Type:

String

A

12-byte

string

that

contains

12

digits

of

Personal

Account

Number

(PAN)

data.

The

service

uses

this

parameter

if

the

PIN

profile

specifies

the

ISO-0

or

VISA-4

keyword

for

the

PIN

block

format.

Otherwise,

ensure

that

this

parameter

is

a

Encrypted

PIN

Generate

(CSNBEPG)

Chapter

7.

Financial

Services

251

4-byte

variable

in

application

storage.

The

information

in

this

variable

will

be

ignored,

but

the

variable

must

be

specified.

Note:

When

using

the

ISO-0

keyword,

use

the

12

rightmost

digit

of

the

PAN

data,

excluding

the

check

digit.

When

using

the

VISA-4

keyword,

use

the

12

leftmost

digits

of

the

PAN

data,

excluding

the

check

digit.

sequence_number

Direction:

Input

Type:

Integer

The

4-byte

string

that

contains

the

sequence

number

used

by

certain

PIN

block

formats.

The

service

uses

this

parameter

if

the

PIN

profile

specifies

the

3621

or

4704-EPP

keyword

for

the

PIN

block

format.

Otherwise,

ensure

that

this

parameter

is

a

4-byte

variable

in

application

data

storage.

The

information

in

the

variable

will

be

ignored,

but

the

variable

must

be

declared.

To

enter

a

sequence

number,

do

the

following:

v

Enter

99999

to

use

a

random

sequence

number

that

the

service

generates.

v

For

the

3621

PIN

block

format,

enter

a

value

in

the

range

from

0

to

65535.

v

For

the

4704-EPP

PIN

block

format,

enter

a

value

in

the

range

from

0

to

255.

encrypted_PIN_block

Direction:

Output

Type:

String

The

field

where

the

service

returns

the

8-byte

encrypted

PIN.

Restrictions

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

The

format

control

specified

in

the

PIN

profile

must

be

NONE.

If

PBVC

is

specified

as

the

format

control,

the

service

will

fail.

Usage

Notes

SAF

will

be

invoked

to

check

authorization

to

use

the

Encrypted

PIN

Generate

service

and

any

key

labels

specified

as

input.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

98.

Encrypted

pin

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

Encrypted

PIN

Generate

(CSNBEPG)

252

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

98.

Encrypted

pin

generate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Encrypted

PIN

Translate

(CSNBPTR)

Use

the

encrypted

PIN

translate

callable

service

to

reencipher

a

PIN

block

from

one

PIN-encrypting

key

to

another

and,

optionally,

to

change

the

PIN

block

format,

such

as

the

pad

digit

or

sequence

number.

The

unique-key-per-transaction

key

derivation

for

single

and

double-length

keys

is

available

for

the

encrypted

PIN

translate

service.

This

support

is

available

for

the

input_PIN_encrypting_key_identifier

and

the

output_PIN_encrypting_key_identifier

parameters

for

both

REFORMAT

and

TRANSLAT

process

rules.

The

rule_array

keyword

determines

which

PIN

key(s)

are

derived

key(s).

The

encrypted

PIN

translate

service

can

be

used

for

unique-key-per-transaction

key

derivation.

Format

CALL

CSNBPTR(

return_code,

reason_code,

exit_data_length,

exit_data,

input_PIN_encrypting_key_identifier,

output_PIN_encrypting_key_identifier,

input_PIN_profile,

PAN_data_in,

PIN_block_in,

rule_array_count,

rule_array,

output_PIN_profile,

PAN_data_out,

sequence_number,

PIN_block_out

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

Encrypted

PIN

Generate

(CSNBEPG)

Chapter

7.

Financial

Services

253

|
|

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

input_PIN_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

input

PIN-encrypting

key

(IPINENC)

for

the

PIN_block_in

parameter

specified

as

a

64-byte

internal

key

token

or

a

key

label.

If

keyword

UKPTOPIN,

UKPTBOTH,

DUKPT-IP

or

DUKPT-BH

is

specified

in

the

rule_array,

then

the

input_PIN_encrypting_key_identifier

must

specify

a

key

token

or

key

label

of

a

KEYGENKY

with

the

UKPT

usage

bit

enabled.

output_PIN_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

output

PIN-encrypting

key

(OPINENC)

for

the

PIN_block_out

parameter

specified

as

a

64-byte

internal

key

token

or

a

key

label.

If

keyword

UKPTOPIN,

UKPTBOTH,

DUKPT-IP

or

DUKPT-BH

is

specified

in

the

rule_array,

then

the

output_PIN_encrypting_key_identifier

must

specify

a

key

token

or

key

label

of

a

KEYGENKY

with

the

UKPT

usage

bit

enabled.

input_PIN_profile

Direction:

Input

Type:

Character

string

The

three

8-byte

character

elements

that

contain

information

necessary

to

either

create

a

formatted

PIN

block

or

extract

a

PIN

from

a

formatted

PIN

block.

A

particular

PIN

profile

can

be

either

an

input

PIN

profile

or

an

output

PIN

profile

depending

on

whether

the

PIN

block

is

being

enciphered

or

deciphered

by

the

callable

service.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

If

you

choose

the

TRANSLAT

processing

rule

(this

is

not

enforced

on

the

PCIXCC)

in

the

rule_array

parameter,

the

input_PIN_profile

and

the

output_PIN_profile

must

specify

the

same

PIN

block

format.

If

you

choose

the

REFORMAT

processing

rule

in

the

rule_array

parameter,

the

input

PIN

profile

and

output

PIN

profile

can

have

different

PIN

block

formats.

If

you

specify

UKPTIPIN/DUKPT-IP

or

UKPTBOTH/DUKPT-BH

in

the

rule_array

parameter,

then

the

input_PIN_profile

is

extended

to

a

48-byte

field

and

must

contain

the

current

key

serial

number.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

Encrypted

PIN

Translate

(CSNBPTR)

254

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|

The

pad

digit

is

needed

to

extract

the

PIN

from

a

3624

or

3621

PIN

block

in

the

Encrypted

PIN

translate

callable

service

with

a

process

rule

(rule_array

parameter)

of

REFORMAT.

If

the

process

rule

is

TRANSLAT,

the

pad

digit

is

ignored.

PAN_data_in

Direction:

Input

Type:

Character

string

The

personal

account

number

(PAN)

if

the

process

rule

(rule_array

parameter)

is

REFORMAT

and

the

input

PIN

format

is

ISO-0

or

VISA-4

only.

Otherwise,

this

parameter

is

ignored.

Specify

12

digits

of

account

data

in

character

format.

For

ISO-0,

use

the

rightmost

12

digits

of

the

PAN,

excluding

the

check

digit.

For

VISA-4,

use

the

leftmost

12

digits

of

the

PAN,

excluding

the

check

digit.

PIN_block_in

Direction:

Input

Type:

String

The

8-byte

enciphered

PIN

block

that

contains

the

PIN

to

be

translated.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

process

rules

specified

in

the

rule_array

parameter.

The

value

may

be

1,

2

or

3.

rule_array

Direction:

Input

Type:

Character

string

The

process

rule

for

the

callable

service.

Table

99.

Keywords

for

Encrypted

PIN

Translate

Keyword

Meaning

Processing

Rules

(required)

REFORMAT

Changes

the

PIN

format,

the

contents

of

the

PIN

block,

and

the

PIN-encrypting

key.

TRANSLAT

Changes

the

PIN-encrypting

key

only.

It

does

not

change

the

PIN

format

and

the

contents

of

the

PIN

block.

PIN

Block

Format

and

PIN

Extraction

Method

(optional)

See

“PIN

Block

Format

and

PIN

Extraction

Method

Keywords”

on

page

233

for

additional

information

and

a

list

of

PIN

block

formats

and

PIN

extraction

method

keywords.

Note:

If

a

PIN

extraction

method

is

not

specified,

the

first

one

listed

in

Table

79

on

page

233

for

the

PIN

block

format

will

be

the

default.

DUKPT

Keywords

-

Single

length

key

derivation

(optional)

UKPTIPIN

The

input_PIN_encrypting_key_identifier

is

derived

as

a

single

length

key.

The

input_PIN_encrypting_key_identifier

must

be

a

KEYGENKY

key

with

the

UKPT

usage

bit

enabled.

The

input_PIN_profile

must

be

48

bytes

and

contain

the

key

serial

number.

Encrypted

PIN

Translate

(CSNBPTR)

Chapter

7.

Financial

Services

255

Table

99.

Keywords

for

Encrypted

PIN

Translate

(continued)

Keyword

Meaning

UKPTOPIN

The

output_PIN_encrypting_key_identifier

is

derived

as

a

single

length

key.

The

output_PIN_encrypting_key_identifier

must

be

a

KEYGENKY

key

with

the

UKPT

usage

bit

enabled.

The

output_PIN_profile

must

be

48

bytes

and

contain

the

key

serial

number.

UKPTBOTH

Both

the

input_PIN_encrypting_key_identifier

and

the

output_PIN_encrypting_key_identifier

are

derived

as

a

single

length

key.

Both

the

input_PIN_encrypting_key_identifier

and

the

output_PIN_encrypting_key_identifier

must

be

KEYGENKY

keys

with

the

UKPT

usage

bit

enabled.

Both

the

input_PIN_profile

and

the

output_PIN_profile

must

be

48

bytes

and

contain

the

respective

key

serial

number.

DUKPT

Keywords

-

double

length

key

derivation

(optional)

-

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

DUKPT-IP

The

input_PIN_encrypting_key_identifier

is

derived

as

a

double

length

key.

The

input_PIN_encrypting_key_identifier

must

be

a

KEYGENKY

key

with

the

UKPT

usage

bit

enabled.

The

input_PIN_profile

must

be

48

bytes

and

contain

the

key

serial

number.

DUKPT-OP

The

output_PIN_encrypting_key_identifier

is

derived

as

a

double

length

key.

The

output_PIN_encrypting_key_identifier

must

be

a

KEYGENKY

key

with

the

UKPT

usage

bit

enabled.

The

output_PIN_profile

must

be

48

bytes

and

contain

the

key

serial

number.

DUKPT-BH

Both

the

input_PIN_encrypting_key_identifier

and

the

output_PIN_encrypting_key_identifier

are

derived

as

a

double

length

key.

Both

the

input_PIN_encrypting_key_identifier

and

the

output_PIN_encrypting_key_identifier

must

be

KEYGENKY

keys

with

the

UKPT

usage

bit

enabled.

Both

the

input_PIN_profile

and

the

output_PIN_profile

must

be

48

bytes

and

contain

the

respective

key

serial

number.

output_PIN_profile

Direction:

Input

Type:

Character

string

The

three

8-byte

character

elements

that

contain

information

necessary

to

either

create

a

formatted

PIN

block

or

extract

a

PIN

from

a

formatted

PIN

block.

A

particular

PIN

profile

can

be

either

an

input

PIN

profile

or

an

output

PIN

profile,

depending

on

whether

the

PIN

block

is

being

enciphered

or

deciphered

by

the

callable

service.

v

If

you

choose

the

TRANSLAT

processing

rule

in

the

rule_array

parameter,

the

input_PIN_profile

and

the

output_PIN_profile

must

specify

the

same

PIN

block

format.

v

If

you

choose

the

REFORMAT

processing

rule

in

the

rule_array

parameter,

the

input

PIN

profile

and

output

PIN

profile

can

have

different

PIN

block

formats.

Encrypted

PIN

Translate

(CSNBPTR)

256

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|

v

If

you

specify

UKPTOPIN

or

UKPTBOTH

in

the

rule_array

parameter,

then

the

output_PIN_profile

is

extended

to

a

48-byte

field

and

must

contain

the

current

key

serial

number.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

v

If

you

specify

DUKPT-OP

or

DUKPT-BH

in

the

rule_array

parameter,

then

the

output_PIN_profile

is

extended

to

a

48-byte

field

and

must

contain

the

current

key

serial

number.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

PAN_data_out

Direction:

Input

Type:

Character

string

The

personal

account

number

(PAN)

if

the

process

rule

(rule_array

parameter)

is

REFORMAT

and

the

output

PIN

format

is

ISO-0

or

VISA-4

only.

Otherwise,

this

parameter

is

ignored.

Specify

12

digits

of

account

data

in

character

format.

For

ISO-0,

use

the

rightmost

12

digits

of

the

PAN,

excluding

the

check

digit.

For

VISA-4,

use

the

leftmost

12

digits

of

the

PAN,

excluding

the

check

digit.

sequence_number

Direction:

Input

Type:

Integer

The

sequence

number

if

the

process

rule

(rule_array

parameter)

is

REFORMAT

and

the

output

PIN

block

format

is

3621

or

4704-EPP

only.

Specify

the

integer

value

99999.

Otherwise,

this

parameter

is

ignored.

PIN_block_out

Direction:

Output

Type:

String

The

8-byte

output

PIN

block

that

is

reenciphered.

Restriction

Use

of

the

ISO-2

PIN

block

format

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Use

of

the

UKPT

keywords

require

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Use

of

the

DUKPT

keywords

require

a

PCIXCC.

Usage

Notes

PIN

block

formats

are

more

rigorously

validated

on

the

IBM

Eserver

zSeries

990

than

on

CCF

systems.

Some

PIN

block

formats

are

known

by

several

names.

The

following

table

shows

the

additional

names.

Table

100.

Additional

Names

for

PIN

Formats

PIN

Format

Additional

Name

ISO-0

ANSI

X9.8,

VISA

format

1,

ECI

format

1

ISO-1

ECI

format

4

The

following

table

lists

the

PIN

block

variant

constants

(PBVC)

to

be

used.

Encrypted

PIN

Translate

(CSNBPTR)

Chapter

7.

Financial

Services

257

|
|
|
|

|
|

Note:

PBVC

is

NOT

supported

on

the

IBM

Eserver

zSeries

990.

If

PBVC

is

specified

in

the

format

control

parameter

of

the

PIN

profile,

the

Encrypted

PIN

translate

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

for

processing.

This

means

that

only

control

vectors

and

extraction

methods

valid

for

the

Cryptographic

Coprocessor

Feature

may

be

used

if

PBVC

formatting

is

desired.

It

is

recommended

that

a

format

control

of

NONE

be

used

for

maximum

flexibility.

Table

101.

PIN

Block

Variant

Constants

(PBVCs)

PIN

Format

Name

PIN

Block

Variant

Constant

(PBVC)

ECI-2

X'00000000000093000000000000009300'

ECI-3

X'00000000000095000000000000009500'

ISO-0

X'00000000000088000000000000008800'

ISO-1

X'0000000000008B000000000000008B00'

VISA-2

X'0000000000008D000000000000008D00'

VISA-3

X'0000000000008E000000000000008E00'

VISA-4

X'00000000000090000000000000009000'

3621

X'00000000000084000000000000008400'

3624

X'00000000000082000000000000008200'

4704-EPP

X'00000000000087000000000000008700'

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Encrypted

PIN

Translate

(CSNBPTR)

258

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

102.

Encrypted

pin

translate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

If

PBVC

is

specified

for

format

control,

the

request

will

be

routed

to

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

control

vector

in

a

supplied

PIN

encrypting

key

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

UKPT

support

is

requested.

v

The

PIN

profile

specifies

the

ISO-2

PIN

block

format.

v

if

the

input_PIN_encrypting_key_identifier

identifies

a

key

which

does

not

have

the

default

input

PIN

encrypting

key

control

vector

(IPINENC)

v

if

the

output_PIN_encrypting_key_identifier

identifies

a

key

which

does

not

have

the

default

output

PIN

encrypting

key

control

vector

(OPINENC),

v

if

anything

is

specified

other

than

the

default

in

the

PIN

extraction

method

keyword

for

the

given

PIN

block

format

in

rule_array

DUKPT-IP,

DUKPT-OP

and

DUKPT-BH

keywords

are

not

supported.

Encrypted

PIN

Translate

(CSNBPTR)

Chapter

7.

Financial

Services

259

|
|

Table

102.

Encrypted

pin

translate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

If

PBVC

is

specified

for

format

control,

the

request

will

be

routed

to

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

ICSF

routes

this

service

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

control

vector

in

a

supplied

PIN

encrypting

key

cannot

be

processed

on

the

Cryptographic

Coprocessor

Feature.

v

UKPT

support

is

requested.

v

The

PIN

profile

specifies

the

ISO-2

PIN

block

format.

v

if

the

input_PIN_encrypting_key_identifier

identifies

a

key

which

does

not

have

the

default

input

PIN

encrypting

key

control

vector

(IPINENC)

v

if

the

output_PIN_encrypting_key_identifier

identifies

a

key

which

does

not

have

the

default

output

PIN

encrypting

key

control

vector

(OPINENC)

v

if

anything

is

specified

other

than

the

default

in

the

PIN

extraction

method

keyword

for

the

given

PIN

block

format

in

rule_array

DUKPT-IP,

DUKPT-OP

and

DUKPT-BH

keywords

are

not

supported.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

Use

of

DUPKT

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

Encrypted

PIN

Verify

(CSNBPVR)

Use

the

Encrypted

PIN

verify

callable

service

to

verify

that

one

of

the

following

customer

selected

trial

PINs

is

valid:

v

IBM

3624

(IBM-PIN)

v

IBM

3624

PIN

offset

(IBM-PINO)

v

IBM

German

Bank

Pool

(GBP-PIN)

v

IBM

German

Bank

Pool

PIN

offset

(GBP-PINO)

-

not

supported

on

the

IBM

Eserver

zSeries

990

v

VISA

PIN

validation

value

(VISA-PVV)

v

VISA

PIN

validation

value

(VISAPVV4)

v

Interbank

PIN

(INBK-PIN)

The

unique-key-par-transaction

key

derivation

for

single

and

double-length

keys

is

available

for

the

input_PIN_encrypting_key_identifier

parameter.

Encrypted

PIN

Translate

(CSNBPTR)

260

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

|
|
|
|

|
|

Format

CALL

CSNBPVR(

return_code,

reason_code,

exit_data_length,

exit_data,

input_PIN_encrypting_key_identifier,

PIN_verifying_key_identifier,

input_PIN_profile,

PAN_data,

encrypted_PIN_block,

rule_array_count,

rule_array,

PIN_check_length,

data_array

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

input_PIN_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

key

label

or

internal

key

token

containing

the

PIN-encrypting

key

(IPINENC)

that

enciphers

the

PIN

block.

If

keyword

UKPTIPIN

or

DUKPT-IP

is

specified

in

the

rule_array,

then

the

input_PIN_encrypting_key_identifier

must

specify

a

key

token

or

key

label

of

a

KEYGENKY

with

the

UKPT

usage

bit

enabled.

Encrypted

PIN

Verify

(CSNBPVR)

Chapter

7.

Financial

Services

261

PIN_verifying_key_identifier

Direction:

Input/Output

Type:

String

The

64-byte

key

label

or

internal

key

token

that

identifies

the

PIN

verify

(PINVER)

key.

input_PIN_profile

Direction:

Input

Type:

Character

string

The

three

8-byte

character

elements

that

contain

information

necessary

to

either

create

a

formatted

PIN

block

or

extract

a

PIN

from

a

formatted

PIN

block.

A

particular

PIN

profile

can

be

either

an

input

PIN

profile

or

an

output

PIN

profile

depending

on

whether

the

PIN

block

is

being

enciphered

or

deciphered

by

the

callable

service.

If

you

specify

UKPTIPIN

in

the

rule_array

parameter,

then

the

input_PIN_profile

is

extended

to

a

48-byte

field

and

must

contain

the

current

key

serial

number.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

If

you

specify

DUKPT-IP

in

the

rule_array

parameter,

then

the

input_PIN_profile

is

extended

to

a

48-byte

field

and

must

contain

the

current

key

serial

number.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

The

pad

digit

is

needed

to

extract

the

PIN

from

a

3624

or

3621

PIN

block

in

the

encrypted

PIN

verify

callable

service.

PAN_data

Direction:

Input

Type:

Character

string

The

personal

account

number

(PAN)

is

required

for

ISO-0

and

VISA-4

only.

Otherwise,

this

parameter

is

ignored.

Specify

12

digits

of

account

data

in

character

format.

For

ISO-0,

use

the

rightmost

12

digits

of

the

PAN,

excluding

the

check

digit.

For

VISA-4,

use

the

leftmost

12

digits

of

the

PAN,

excluding

the

check

digit.

encrypted_PIN_block

Direction:

Input

Type:

String

The

8-byte

enciphered

PIN

block

that

contains

the

PIN

to

be

verified.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

process

rules

specified

in

the

rule_array

parameter.

The

value

may

be

1,

2

or

3.

rule_array

Direction:

Input

Type:

Character

string

Encrypted

PIN

Verify

(CSNBPVR)

262

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|

The

process

rule

for

the

PIN

verify

algorithm.

Table

103.

Keywords

for

Encrypted

PIN

Verify

Keyword

Meaning

Algorithm

Value

(required)

GBP-PIN

The

IBM

German

Bank

Pool

PIN.

It

verifies

the

PIN

entered

by

the

customer

and

compares

that

PIN

with

the

institution

generated

PIN

by

using

an

institution

key.

GBP-PINO

The

IBM

German

Bank

Pool

PIN

offset.

It

verifies

the

PIN

entered

by

the

customer

by

comparing

with

the

calculated

institution

PIN

(IPIN)

and

adding

the

specified

offset

to

the

pool

PIN

(PPIN)

generated

by

using

a

pool

key.

GBP-PINO

is

not

supported

on

the

IBM

Eserver

zSeries

990.

IBM-PIN

The

IBM

3624

PIN,

which

is

an

institution-assigned

PIN.

It

does

not

calculate

the

PIN

offset.

IBM-PINO

The

IBM

3624

PIN

offset,

which

is

a

customer-selected

PIN

and

calculates

the

PIN

offset.

INBK-PIN

The

Interbank

PIN

verify

algorithm.

VISA-PVV

The

VISA

PIN

verify

value.

VISAPVV4

The

VISA

PIN

verify

value.

If

the

length

is

4

digits,

normal

processing

for

VISA-PVV

will

occur.

The

VISAPVV4

requires

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

If

one

is

not

available,

the

service

will

fail.

If

the

length

is

greater

than

4

digits,

the

service

will

fail.

PIN

Block

Format

and

PIN

Extraction

Method

(optional)

See

“PIN

Block

Format

and

PIN

Extraction

Method

Keywords”

on

page

233

for

additional

information

and

a

list

of

PIN

block

formats

and

PIN

extraction

method

keywords.

Note:

If

a

PIN

extraction

method

is

not

specified,

the

first

one

listed

in

Table

79

on

page

233

for

the

PIN

block

format

will

be

the

default.

DUKPT

Keyword

-

Single

length

key

derivation

(optional)

UKPTIPIN

The

input_PIN_encrypting_key_identifier

is

derived

as

a

single

length

key..

The

input_PIN_encrypting_key_identifier

must

be

a

KEYGENKY

key

with

the

UKPT

usage

bit

enabled.

The

input_PIN_profile

must

be

48

bytes

and

contain

the

key

serial

number.

DUKPT

Keyword

-

double

length

key

derivation

(optional)

-

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

DUKPT-IP

The

input_PIN_encrypting_key_identifier

is

to

be

derived

using

the

DUKPT

algorithm.

The

input_PIN_encrypting_key_identifier

must

be

a

KEYGENKY

key

with

the

DUKPT

usage

bit

enabled.

The

input_PIN_profile

must

be

48

bytes

and

contain

the

key

serial

number.

PIN_check_length

Direction:

Input

Type:

Integer

Encrypted

PIN

Verify

(CSNBPVR)

Chapter

7.

Financial

Services

263

|
|

||
|
|
|
|
|

The

PIN

check

length

for

the

IBM-PIN

or

IBM-PINO

process

rules

only.

Otherwise,

it

is

ignored.

Specify

the

rightmost

digits,

4

through

16,

for

the

PIN

to

be

verified.

data_array

Direction:

Input

Type:

String

Three

16-byte

elements

required

by

the

corresponding

rule_array

parameter.

The

data

array

consists

of

three

16-byte

fields

whose

specification

depend

on

the

process

rule.

If

a

process

rule

only

requires

one

or

two

16-byte

fields,

then

the

rest

of

the

data

array

is

ignored

by

the

callable

service.

Table

104

describes

the

array

elements.

Table

104.

Array

Elements

for

the

Encrypted

PIN

Verify

Callable

Service

Array

Element

Description

Decimalization_table

Decimalization

table

for

IBM

and

GBP

only.

Sixteen

decimal

digits

of

0

through

9.

PIN_offset

Offset

data

for

IBM-PINO

and

GBP-PINO.

One

to

twelve

numeric

characters,

0

through

9,

left-justified

and

padded

on

the

right

with

blanks.

For

IBM-PINO,

the

PIN

offset

length

is

specified

in

the

PIN_check_length

parameter.

For

GBP-PINO,

the

PIN

offset

is

always

4

digits.

For

IBM-PIN

and

GBP-PIN,

the

field

is

ignored.

trans_sec_parm

For

VISA,

only

the

leftmost

twelve

digits

of

the

16-byte

field

are

used.

These

consist

of

the

rightmost

eleven

digits

of

the

personal

account

number

(PAN)

and

a

one-digit

key

index.

The

remaining

four

characters

are

ignored.

For

Interbank

only,

all

16

bytes

are

used.

These

consist

of

the

rightmost

eleven

digits

of

the

PAN,

a

constant

of

X'6',

a

one-digit

key

index,

and

three

numeric

digits

of

PIN

validation

data.

RPVV

For

VISA-PVV

only,

referenced

PVV

(4

bytes)

that

is

left-justified.

The

rest

of

the

field

is

ignored.

Validation_data

Validation

data

for

IBM

and

GBP

padded

to

16

bytes.

One

to

sixteen

characters

of

hexadecimal

account

data

left-justified

and

padded

on

the

right

with

blanks.

Table

105

lists

the

data

array

elements

required

by

the

process

rule

(rule_array

parameter).

The

numbers

refer

to

the

process

rule’s

position

within

the

array.

Table

105.

Array

Elements

Required

by

the

Process

Rule

Process

Rule

IBM-PIN

IBM-PINO

GBP-PIN

GBP-PINO

VISA-PVV

INBK-PIN

Decimalization_table

1

1

1

1

Validation_data

2

2

2

2

PIN_offset

3

3

3

3

Trans_sec_parm

1

1

RPVV

2

Restrictions

GBP-PINO

is

only

supported

if

the

CSNBPVR

service

is

processed

on

the

Cryptographic

Coprocessor

Feature.

If

the

service

is

routed

to

a

PCI

Cryptographic

Encrypted

PIN

Verify

(CSNBPVR)

264

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Coprocessor,

the

service

request

will

fail

if

the

GBP-PINO

calculation

method

is

specified.

GBP-PINO

is

not

supported

on

the

IBM

Eserver

zSeries

990.

Use

of

the

ISO-2

PIN

block

format

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Use

of

the

UKPTIPIN

keyword

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Use

of

the

VISAPVV4

keyword

requires

the

optional

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Use

of

the

DUKPT-IP

keyword

requires

a

PCI

X

Cryptographic

Coprocessor.

Usage

Notes

PIN

block

formats

are

more

rigorously

validated

on

the

IBM

Eserver

zSeries

990

than

on

CCF

systems.

The

following

table

lists

the

PIN

block

variant

constants

(PBVC)

to

be

used.

Note:

Restriction:

PBVC

is

not

supported

on

an

IBM

Eserver

zSeries

990.

If

PBVC

is

specified

in

the

format

control

parameter

of

the

PIN

profile,

the

Encrypted

PIN

Verify

service

will

not

be

routed

to

a

PCI

Cryptographic

Coprocessor

for

processing.

This

means

that

only

control

vectors

and

extraction

methods

valid

for

the

Cryptographic

Coprocessor

Feature

may

be

used

if

PBVC

formatting

is

desired.

It

is

recommended

that

a

format

control

of

NONE

be

used

for

maximum

flexibility.

Table

106.

PIN

Block

Variant

Constants

(PBVCs)

PIN

Format

Name

PIN

Block

Variant

Constant

(PBVC)

ECI-2

X'00000000000093000000000000009300'

ECI-3

X'00000000000095000000000000009500'

ISO-0

X'00000000000088000000000000008800'

ISO-1

X'0000000000008B000000000000008B00'

VISA-2

X'0000000000008D000000000000008D00'

VISA-3

X'0000000000008E000000000000008E00'

VISA-4

X'00000000000090000000000000009000'

3621

X'00000000000084000000000000008400'

3624

X'00000000000082000000000000008200'

4704-EPP

X'00000000000087000000000000008700'

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Encrypted

PIN

Verify

(CSNBPVR)

Chapter

7.

Financial

Services

265

|

Table

107.

Encrypted

pin

verify

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

If

PBVC

is

specified

for

format

control,

the

request

will

be

routed

to

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

PIN

profile

specifies

the

ISO-2

PIN

block

format.

v

Anything

is

specified

other

than

the

default

in

the

PIN

extraction

method

keyword

for

the

given

PIN

block

format

in

rule_array.

v

The

input_PIN_encrypting_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

encrypting

key

control

vector

(IPINENC).

v

The

PIN_verifying_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

verify

key

control

vector.

v

The

VISAPVV4

rule

array

keyword

is

specified.

v

You

request

UKPT

support.

The

DUKPT-IP

keyword

is

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

If

PBVC

is

specified

for

format

control,

the

request

will

be

routed

to

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

ICSF

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

if:

v

The

PIN

profile

specifies

the

ISO-2

PIN

block

format.

v

Anything

is

specified

other

than

the

default

in

the

PIN

extraction

method

keyword

for

the

given

PIN

block

format

in

rule_array.

v

The

input_PIN_encrypting_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

encrypting

key

control

vector

(IPINENC).

v

The

PIN_verifying_key_identifier

identifies

a

key

which

does

not

have

the

default

PIN

verify

key

control

vector.

v

The

VISAPVV4

rule

array

keyword

is

specified.

v

You

request

UKPT

support.

The

DUKPT-IP

keyword

is

not

supported.

Encrypted

PIN

Verify

(CSNBPVR)

266

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|

Table

107.

Encrypted

pin

verify

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

GBP-PINO

rule

array

parameter

is

not

supported.

DUKPT

keyword

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

Related

Information

PIN

Formats

and

Algorithms

discusses

the

PIN

algorithms

in

detail.

PIN

Change/Unblock

(CSNBPCU)

The

PIN

Change/Unblock

callable

service

is

used

to

generate

a

special

PIN

block

to

change

the

PIN

accepted

by

an

integrated

circuit

card

(smartcard).

The

special

PIN

block

is

based

on

the

new

PIN

and

the

card-specific

diversified

key

and,

optionally,

on

the

current

PIN

of

the

smartcard.

The

new

PIN

block

is

encrypted

with

a

session

key.

The

session

key

is

derived

in

a

two-step

process.

First,

the

card-specific

diversified

key

(ICC

Master

Key)

is

derived

using

the

TDES-ENC

algorithm

of

the

diversified

key

generation

callable

service.

The

session

key

is

then

generated

according

to

the

rule

array

algorithm:

v

TDES-XOR

-

XOR

ICC

Master

Key

with

the

Application

Transaction

Counter

(ATC)

v

TDESEMV2

-

use

the

EMV2000

algorithm

with

a

branch

factor

of

2

v

TDESEMV4

-

use

the

EMV2000

algorithm

with

a

branch

factor

of

4

The

generating

DKYGENKY

cannot

have

replicated

halves.

The

encryption_issuer_master_key_identifier

is

a

DKYGENKY

that

permits

generation

of

a

SMPIN

key.

The

authentication_

issuer_master_key_identifier

is

also

a

DKYGENKY

that

permits

generation

of

a

double

length

MAC

key.

The

PIN

block

format

is

specified

by

the

VISA

ICC

Card

specification:

two

mutually

exclusive

rule

array

keywords,

VISAPCU1

and

VISAPCU2.

They

refer

to

whether

the

current

PIN

is

used

in

the

generation

of

the

new

PIN.

For

VISAPCU1,

it

is

not

used,

for

VISAPCU2

it

is

used.

Encrypted

PIN

Verify

(CSNBPVR)

Chapter

7.

Financial

Services

267

|

|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|
|
|

Format

CALL

CSNBPCU(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

authentication_issuer_master_key_length,

authentication_issuer_master_key_identifier,

encryption_issuer_master_key_length,

encryption_issuer_master_key_identifier,

key_generation_data_length,

key_generation_data,

new_reference_PIN_key_length,

new_reference_PIN_key_identifier,

new_reference_PIN_block,

new_reference_PIN_profile,

new_reference_PIN_PAN__data,

current_reference_PIN_key_length,

current_reference_PIN_key_identifier,

current_reference_PIN_block,

current_reference_PIN_profile,

current_reference_PIN_PAN__data,

output_PIN_data_length,

output_PIN_data,

output_PIN_profile,

output_PIN_message_length,

output_PIN_message.

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

PIN

Change/Unblock

(CSNBPCU)

268

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|

|

|||
|

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

valid

values

are

1

and

2.

rule_array

Direction:

Input

Type:

String

Keywords

that

provides

control

information

to

the

callable

service.

The

keywords

are

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

The

keywords

must

be

in

contiguous

storage.

Specify

one

or

two

of

the

options

below:

Table

108.

Rule

Array

Keywords

for

PIN

Change/Unblock

Keyword

Meaning

Algorithm

(optional)

TDES-XOR

TDES

encipher

clear

data

to

generate

the

intermediate

(card-unique)

key,

followed

by

XOR

of

the

final

2

bytes

of

each

key

with

the

ATC

counter.

This

is

the

default.

TDESEMV2

Same

processing

as

in

the

diversified

key

generate

service.

TDESEMV4

Same

processing

as

in

the

diversified

key

generate

service.

PIN

processing

method

(required)

VISAPCU1

Form

the

new

PIN

from

the

new

reference

PIN

and

the

intermediate

(card-unique)

key

only.

VISAPCU2

Form

the

new

PIN

from

the

new

reference

PIN,

the

intermediate

(card-unique)

key

and

the

current

reference

PIN.

authentication_issuer_master_key_length

Direction:

Input

Type:

Integer

The

length

of

the

authentication_issuer_master_key_identifier

parameter.

Currently,

the

value

must

be

64.

authentication_issuer_master_key_identifier

Direction:

Input/Output

Type:

String

The

label

name

or

internal

token

of

a

DKYGENKY

key

type

that

is

to

be

used

to

generate

the

card-unique

diversified

key.

The

control

vector

of

this

key

must

be

a

DKYL0

key

that

permits

the

generation

of

a

double-length

MAC

key

(DMAC).

This

DKYGENKY

may

not

have

replicated

key

halves.

encryption_issuer_master_key_length

Direction:

Input

Type:

Integer

The

length

of

the

encryption_issuer_master_key_identifier

parameter.

Currently,

the

value

must

be

64.

PIN

Change/Unblock

(CSNBPCU)

Chapter

7.

Financial

Services

269

|

|

|||
|

|
|

|

|||
|

|
|
|
|

||

||

|

||
|
|

||

||

|

||
|

||
|
|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|

encryption_issuer_master_key_identifier

Direction:

Input/Output

Type:

String

The

label

name

or

internal

token

of

a

DKYGENKY

key

type

that

is

to

be

used

to

generate

the

card-unique

diversified

key

and

the

secure

messaging

session

key

for

the

protection

of

the

output

PIN

block.

The

control

vector

of

this

key

must

be

a

DKYL0

key

that

permits

the

generation

of

a

SMPIN

key

type.

This

DKYGENKY

may

not

have

replicated

key

halves.

key_generation_data_length

Direction:

Input

Type:

Integer

The

length

of

the

key_generation_data

parameter.

This

value

must

be

10,

18,

26

or

34

bytes.

key_generation_data

Direction:

Input

Type:

String

The

data

provided

to

generate

the

card-unique

session

key.

For

TDES-XOR,

this

consists

of

8

or

16

bytes

of

data

to

be

processed

by

TDES

to

generate

the

card-unique

diversified

key

followed

by

a

16

bit

ATC

counter

to

offset

the

card-unique

diversified

key

to

form

the

session

key.

For

TDESEMV2

and

TDESEMV4,

this

may

be

10,

18,

26

or

34

bytes.

See

“Diversified

Key

Generate

(CSNBDKG)”

on

page

78

for

more

information.

new_reference_PIN_key_length

Direction:

Input

Type:

Integer

The

length

of

the

new_reference_PIN_key_identifier

parameter.

Currently,

the

value

must

be

64.

new_reference_PIN_key_identifier

Direction:

Input/Output

Type:

String

The

label

name

or

internal

token

of

a

PIN

encrypting

key

that

is

to

be

used

to

decrypt

the

new_reference_PIN_block.

This

must

be

an

IPINENC

or

OPINENC

key.

If

the

label

name

is

supplied,

the

name

must

be

unique

in

the

CKDS.

new_reference_PIN_block

Direction:

Input

Type:

String

This

is

an

8-byte

field

that

contains

the

enciphered

PIN

block

of

the

new

PIN.

new_reference_PIN_profile

Direction:

Input

Type:

String

This

is

a

24-byte

field

that

contains

three

8-byte

elements

with

a

PIN

block

format

keyword,

a

format

control

keyword

(NONE)

and

a

pad

digit

as

required

by

certain

formats.

PIN

Change/Unblock

(CSNBPCU)

270

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||
|

|
|
|
|
|

|

|||
|

|
|

|

|||
|

|
|
|
|
|
|

|

|||
|

|
|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|
|
|

new_reference_PIN_PAN_data

Direction:

Input

Type:

String

This

is

a

12-byte

field

containing

PAN

in

character

format.

This

data

may

be

needed

to

recover

the

new

reference

PIN

if

the

format

is

ISO-0

or

VISA-4.

If

neither

is

used,

this

parameter

may

be

blanks.

current_reference_PIN_key_length

Direction:

Input

Type:

Integer

The

length

of

the

current_reference_PIN_key_identifier

parameter.

For

the

current

implementation,

the

value

must

be

64.

If

the

rule_array

contains

VISAPCU1,

this

value

must

be

0.

current_reference_PIN_key_identifier

Direction:

Input/Output

Type:

String

The

label

name

or

internal

token

of

a

PIN

encrypting

key

that

is

to

be

used

to

decrypt

the

current_reference_PIN_block.

This

must

be

an

IPINENC

or

OPINENC

key.

If

the

labelname

is

supplied,

the

name

must

be

unique

on

the

CKDS.

If

the

rule_array

contains

VISAPCU1,

this

value

is

ignored.

current_reference_PIN_block

Direction:

Input

Type:

String

This

is

an

8-byte

field

that

contains

the

enciphered

PIN

block

of

the

new

PIN.

If

the

rule_array

contains

VISAPCU1,

this

value

is

ignored.

current_reference_PIN_profile

Direction:

Input

Type:

String

This

is

a

24-byte

field

that

contains

three

8-byte

elements

with

a

PIN

block

format

keyword,

a

format

control

keyword

(NONE)

and

a

pad

digit

as

required

by

certain

formats.

If

the

rule_array

contains

VISAPCU1,

this

value

is

ignored.

current_reference_PIN_PAN_data

Direction:

Input

Type:

String

This

is

a

12-byte

field

containing

PAN

in

character

format.

This

data

may

be

needed

to

recover

the

new

reference

PIN

if

the

format

is

ISO-0

or

VISA-4.

If

neither

is

used,

this

parameter

may

be

blanks.

If

the

rule_array

contains

VISAPCU1,

this

value

is

ignored.

output_PIN_data_length

Direction:

Input

Type:

Integer

Currently

this

field

is

reserved.

The

value

of

this

parameter

should

be

0.

output_PIN_data

Direction:

Input

Type:

String

PIN

Change/Unblock

(CSNBPCU)

Chapter

7.

Financial

Services

271

|

|||
|

|
|
|

|

|||
|

|
|
|

|

|||
|

|
|
|
|

|

|||
|

|
|

|

|||
|

|
|
|

|

|||
|

|
|
|
|

|

|||
|

|

|

|||
|

Currently

this

field

is

reserved.

output_PIN_profile

Direction:

Input

Type:

String

This

is

a

24-byte

field

that

contains

three

8-byte

elements

with

a

PIN

block

format

keyword

and

a

format

control

keyword

(NONE).

output_PIN_message_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

output_PIN_message

field.

Currently

the

value

must

be

at

least

16.

output_PIN_message

Direction:

Output

Type:

String

The

reformatted

PIN

block

with

the

new

reference

PIN

enciphered

under

the

SMPIN

session

key.

Usage

Notes

There

are

additional

access

points

for

this

service.

RACF

will

be

invoked

to

check

authorization

to

use

the

PIN

change/unblock

service

and

any

labelname

specified.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

109.

PIN

Change/Unblock

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Not

supported

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Not

supported

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

PIN

Change/Unblock

(CSNBPCU)

272

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|

|||
|

|
|

|

|||
|

|
|

|

|||
|

|
|

|

|

|
|

|
|

||

||
|
|

|

|
|

|
|

||

|
|

|
|

|

||

|
|

|
|

|
|
|
|

|

Secure

Messaging

for

Keys

(CSNBSKY)

The

Secure

Messaging

for

Keys

callable

service

will

encrypt

a

text

block

including

a

clear

key

value

decrypted

from

an

internal

or

external

DES

token.

The

text

block

is

normally

a

″Value″

field

of

a

secure

message

TLV

(Tag/Length/Value)

element

of

a

secure

message.

TLV

is

defined

in

ISO/IEC

7816-4.

Format

CALL

CSNBSKY(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

input_key_identifier,

key_encrypting_key_identifier,

secmsg_key_identifier,

text_length,

clear_text,

initialization_vector,

key_offset,

key_offset_field_length,

enciphered_text,

output_chaining_vector

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

Secure

Messaging

for

Keys

(CSNBSKY)

Chapter

7.

Financial

Services

273

|

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

valid

values

are

0

and

1.

rule_array

Direction:

Input

Type:

Character

String

Keywords

that

provides

control

information

to

the

callable

service.

The

processing

method

is

the

encryption

mode

used

to

encrypt

the

message.

Table

110.

Rule

Array

Keywords

for

Secure

Messaging

for

Keys

Keyword

Meaning

Enciphering

mode

(optional)

TDES-CBC

Use

CBC

mode

to

encipher

the

message

(default).

TDES-ECB

Use

EBC

mode

to

encipher

the

message.

input_key_identifier

Direction:

Input/Output

Type:

String

The

internal

token,

external

token,

or

key

label

of

an

internal

token

of

a

double

length

DES

key.

The

key

is

recovered

in

the

clear

and

placed

in

the

text

to

be

encrypted.

The

control

vector

of

the

DES

key

must

not

prohibit

export.

key_encrypting_key_identifier

Direction:

Input/Output

Type:

String

If

the

input_key_identifier

is

an

external

token,

then

this

parameter

is

the

internal

token

or

the

key

label

of

the

internal

token

of

IMPORTER

or

EXPORTER.

If

it

is

not,

it

is

a

null

token.

If

a

key

label

is

specified,

the

key

label

must

be

unique.

secmsg_key_identifier

Direction:

Input/Output

Type:

String

The

internal

token

or

key

label

of

a

secure

message

key

for

encrypting

keys.

This

key

is

used

to

encrypt

the

updated

clear_text

containing

the

recovered

DES

key.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

clear_text

parameter

that

follows.

Length

must

be

a

multiple

of

eight.

Maximum

length

is

4K.

clear_text

Direction:

Input

Type:

String

Secure

Messaging

for

Keys

(CSNBSKY)

274

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Clear

text

that

contains

the

recovered

DES

key

at

the

offset

specified

and

is

then

encrypted.

Any

padding

or

formatting

of

the

message

must

be

done

by

the

caller

on

input.

initialization_vector

Direction:

Input

Type:

String

The

8-byte

supplied

string

for

the

TDES-CBC

mode

of

encryption.

The

initialization_vector

is

XORed

with

the

first

8

bytes

of

clear_text

before

encryption.

This

field

is

ignored

for

TDES-ECB

mode.

key_offset

Direction:

Input

Type:

Integer

The

offset

within

the

clear_text

parameter

at

key_offset

where

the

recovered

clear

input_key_identifier

value

is

to

be

placed.

The

first

byte

of

the

clear_text

field

is

offset

0.

key_offset_field_length

Direction:

Input

Type:

Integer

The

length

of

the

field

within

clear_text

parameter

at

key_offset

where

the

recovered

clear

input_key_identifier

value

is

to

be

placed.

Length

must

be

a

multiple

of

eight

and

is

equal

to

the

key

length

of

the

recovered

key.

The

key

must

fit

entirely

within

the

clear_text.

enciphered_text

Direction:

Output

Type:

String

The

field

where

the

enciphered

text

is

returned.

The

length

of

this

field

must

be

at

least

as

long

as

the

clear_text

field.

output_chaining_vector

Direction:

Output

Type:

String

This

field

contains

the

last

8

bytes

of

enciphered

text

and

is

used

as

the

initialization_vector

for

the

next

encryption

call

if

data

needs

to

be

chained

for

TDES-CBC

mode.

No

data

is

returned

for

TDES-ECB.

Restrictions

v

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Usage

Notes

SAF

will

be

invoked

to

check

authorization

to

use

the

secure

messaging

for

keys

service

and

any

key

labels

specified

as

input.

Keys

only

appear

in

the

clear

within

the

secure

boundary

of

the

cryptographic

coprocessor

and

never

in

host

storage.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Secure

Messaging

for

Keys

(CSNBSKY)

Chapter

7.

Financial

Services

275

Table

111.

Secure

messaging

for

keys

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Secure

Messaging

for

PINs

(CSNBSPN)

The

Secure

Messaging

for

PINs

callable

service

will

encrypt

a

text

block

including

a

clear

PIN

block

recovered

from

an

encrypted

PIN

block.

The

input

PIN

block

will

be

reformatted

if

the

block

format

in

the

input_PIN_profile

is

different

than

the

block

format

n

the

output_PIN_profile.

The

clear

PIN

block

will

only

be

self

encrypted

if

the

SELFENC

keyword

is

specified

in

the

rule_array.

The

text

block

is

normally

a

″Value″

field

of

a

secure

message

TLV

(Tag/Length/Value)

element

of

a

secure

message.

TLV

is

defined

in

ISO/IEC

7816-4.

Format

CALL

CSNBSPN(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

input_PIN_block,

PIN_encrypting_key_identifier,

input_PIN_profile,

input_PAN_data,

secmsg_key_identifier,

output_PIN_profile,

output_PAN_data,

text_length,

clear_text,

initialization_vector,

PIN_offset,

PIN_offset_field_length,

enciphered_text,

output_chaining_vector

)

Secure

Messaging

for

Keys

(CSNBSKY)

276

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

valid

values

are

0,

1,

or

2.

rule_array

Direction:

Input

Type:

Character

String

Keywords

that

provide

control

information

to

the

callable

service.

The

processing

method

is

the

algorithm

used

to

create

the

generated

key.

The

keywords

are

left

justified

and

padded

on

the

right

with

blanks.

Table

112.

Rule

Array

Keywords

for

Secure

Messaging

for

PINs

Keyword

Meaning

Enciphering

mode

(optional)

TDES-CBC

Use

CBC

mode

to

encipher

the

message

(default).

TDES-ECB

Use

EBC

mode

to

encipher

the

message.

PIN

encryption

(optional)

CLEARPIN

Recovered

clear

input

PIN

block

(may

be

reformatted)

is

placed

in

the

clear

in

the

message

for

encryption

with

the

secure

message

key

(default).

Secure

Messaging

for

PINs

(CSNBSPN)

Chapter

7.

Financial

Services

277

Table

112.

Rule

Array

Keywords

for

Secure

Messaging

for

PINs

(continued)

Keyword

Meaning

SELFENC

Recovered

clear

input

PIN

block

(may

be

reformatted)

is

self-encrypted

and

then

placed

in

the

message

for

encryption

with

the

secure

message

key.

input_PIN_block

Direction:

Input

Type:

String

The

8-byte

input

PIN

block

that

is

to

be

recovered

in

the

clear

and

perhaps

reformatted,

and

then

placed

in

the

clear_text

to

be

encrypted.

PIN_encrypting_key_identifier

Direction:

Input/Output

Type:

String

The

internal

token

or

key

label

of

the

internal

token

of

the

PIN

encrypting

key

used

in

encrypting

the

input_PIN_block.

The

key

must

be

an

IPINENC

key.

input_PIN_profile

Direction:

Input

Type:

Character

String

The

three

8-byte

character

elements

that

contain

information

necessary

to

extract

the

PIN

from

a

formatted

PIN

block.

The

valid

input

PIN

formats

are

ISO-0,

ISO-1,

and

ISO-2.

See

“The

PIN

Profile”

on

page

232

for

additional

information.

input_PAN_data

Direction:

Input

Type:

Character

String

The

12

digit

personal

account

number

(PAN)

if

the

input

PIN

format

is

ISO-0

only.

Otherwise,

the

parameter

is

ignored.

secmsg_key_identifier

Direction:

Input/Output

Type:

String

The

internal

token

or

key

label

of

an

internal

token

of

a

secure

message

key

for

encrypting

PINs.

This

key

is

used

to

encrypt

the

updated

clear_text.

output_PIN_profile

Direction:

Input

Type:

String

The

three

8-byte

character

elements

that

contain

information

necessary

to

create

a

formatted

PIN

block.

If

reformatting

is

not

required,

the

input_PIN_profile

and

the

output_PIN_profile

must

specify

the

same

PIN

block

format.

Output

PIN

block

formats

supported

are

ISO-0,

ISO-1,

and

ISO-2.

output_PAN_data

Direction:

Input

Type:

String

Secure

Messaging

for

PINs

(CSNBSPN)

278

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

12

digit

personal

account

number

(PAN)

if

the

output

PIN

format

is

ISO-0

only.

Otherwise,

this

parameter

is

ignored.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

clear_text

parameter

that

follows.

Length

must

be

a

multiple

of

eight.

Maximum

length

is

4K.

clear_text

Direction:

Input

Type:

String

Clear

text

that

contains

the

recovered

and/or

reformatted/encrypted

PIN

at

offset

specified

and

then

encrypted.

Any

padding

or

formatting

of

the

message

must

be

done

by

the

caller

on

input.

initialization_vector

Direction:

Input

Type:

String

The

8-byte

supplied

string

for

the

TDES-CBC

mode

of

encryption.

The

initialization_vector

is

XORed

with

the

first

8

bytes

of

clear_text

before

encryption.

This

field

is

ignored

for

TDES-ECB

mode.

PIN_offset

Direction:

Input

Type:

Integer

The

offset

within

the

clear_text

parameter

where

the

reformatted

PIN

block

is

to

be

placed.

The

first

byte

of

the

clear_text

field

is

offset

0.

PIN_offset_field_length

Direction:

Input

Type:

Integer

The

length

of

the

field

within

clear_text

parameter

at

PIN_offset

where

the

recovered

clear

input_PIN_block

value

is

to

be

placed.

The

PIN

block

may

be

self-encrypted

if

requested

by

the

rule

array.

Length

must

be

eight.

The

PIN

block

must

fit

entirely

within

the

clear_text.

enciphered_text

Direction:

Output

Type:

String

The

field

where

the

enciphered

text

is

returned.

The

length

of

this

field

must

be

at

least

as

long

as

the

clear_text

field.

output_chaining_vector

Direction:

Output

Type:

String

This

field

contains

the

last

8

bytes

of

enciphered

text

and

is

used

as

the

initialization_vector

for

the

next

encryption

call

if

data

needs

to

be

chained

for

TDES-CBC

mode.

No

data

is

returned

for

TDES-ECB.

Secure

Messaging

for

PINs

(CSNBSPN)

Chapter

7.

Financial

Services

279

Restrictions

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Usage

Notes

SAF

will

be

invoked

to

check

authorization

to

use

the

secure

messaging

for

PINs

service

and

any

key

labels

specified

as

input.

Keys

only

appear

in

the

clear

within

the

secure

boundary

of

the

cryptographic

coprocessors

and

never

in

host

storage.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

113.

Secure

messaging

for

PINs

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

SET

Block

Compose

(CSNDSBC)

The

SET

Block

Compose

callable

service

performs

DES-encryption

of

data,

OAEP-formatting

through

a

series

of

SHA-1

hashing

operations,

and

the

RSA-encryption

of

the

Optimal

Asymmetric

Encryption

Padding

(OAEP)

block.

Secure

Messaging

for

PINs

(CSNBSPN)

280

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Format

CALL

CSNDSBC(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

block_contents_identifier,

XData_string_length,

XData_string,

data_to_encrypt_length,

data_to_encrypt,

data_to_hash_length,

data_to_hash,

initialization_vector,

RSA_public_key_identifier_length,

RSA_public_key_identifier,

DES_key_block_length,

DES_key_block,

RSA_OAEP_block_length,

RSA_OAEP_block,

chaining_vector,

DES_encrypted_data_block

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

SET

Block

Compose

(CSNDSBC)

Chapter

7.

Financial

Services

281

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

1

or

2.

rule_array

Direction:

Input

Type:

Character

String

Keywords

that

provides

control

information

to

the

callable

service.

The

keyword

must

be

in

8

bytes

of

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

Table

114.

Keywords

for

SET

Block

Compose

Control

Information

Keyword

Meaning

Block

Type

(required)

SET1.00

The

structure

of

the

RSA-OAEP

encrypted

block

is

defined

by

SET

protocol.

Formatting

Information

(optional)

DES-ONLY

DES

encryption

only

is

to

be

performed;

no

RSA-OAEP

formatting

will

be

performed.

(See

Usage

Notes.)

block_contents_identifier

Direction:

Input

Type:

String

A

one-byte

string,

containing

a

binary

value

that

will

be

copied

into

the

Block

Contents

(BC)

field

of

the

SET

DB

data

block

(indicates

what

data

is

carried

in

the

Actual

Data

Block,

ADB,

and

the

format

of

any

extra

data

(XData_string)).

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

XData_string_length

Direction:

Input

Type:

Integer

The

length

in

bytes

of

the

data

contained

within

XData_string.

The

maximum

length

is

94

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

XData_string

Direction:

Input

Type:

String

Extra-encrypted

data

contained

within

the

OAEP-processed

and

RSA-encrypted

block.

The

format

is

indicated

by

block_contents_identifier.

For

a

XData_string_length

value

of

zero,

XData_string

must

still

be

specified,

but

will

be

ignored

by

ICSF.

The

string

is

treated

as

a

string

of

hexadecimal

digits.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

data_to_encrypt_length

Direction:

Input/Output

Type:

Integer

SET

Block

Compose

(CSNDSBC)

282

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

length

in

bytes

of

data

that

is

to

be

DES-encrypted.

The

length

has

a

maximum

value

of

32

MB

minus

8

bytes

to

allow

for

up

to

8

bytes

of

padding.

The

data

is

identified

in

the

data_to_encrypt

parameter.

On

output,

this

value

is

updated

with

the

length

of

the

encrypted

data

in

the

DES_encrypted_data_block.

data_to_encrypt

Direction:

Input

Type:

String

The

data

that

is

to

be

DES-encrypted

(with

a

64-bit

DES

key

generated

by

this

service).

The

data

will

be

padded

by

this

service

according

to

the

PKSC

#5

padding

rules.

data_to_hash_length

Direction:

Input

Type:

Integer

The

length

in

bytes

of

the

data

to

be

hashed.

The

hash

is

an

optional

part

of

the

OAEP

block.

If

the

data_to_hash_length

is

0,

no

hash

will

be

included

in

the

OAEP

block.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule_array

parameter.

data_to_hash

Direction:

Input

Type:

String

The

data

that

is

to

be

hashed

and

included

in

the

OAEP

block.

No

hash

is

computed

or

inserted

in

the

OAEP

block

if

the

data_to_hash_length

is

0.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule_array

parameter.

initialization_vector

Direction:

Input

Type:

String

An

8-byte

string

containing

the

initialization

vector

to

be

used

for

the

cipher

block

chaining

for

the

DES

encryption

of

the

data

in

the

data_to_encrypt

parameter.

The

same

initialization

vector

must

be

used

to

perform

the

DES

decryption

of

the

data.

RSA_public_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

RSA_public_key_identifier

field.

The

maximum

size

is

2500

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

RSA_public_key_identifier

Direction:

Input

Type:

String

A

string

containing

either

the

key

label

of

the

RSA

public

key

or

the

RSA

public

key

token

to

be

used

to

perform

the

RSA

encryption

of

the

OAEP

block.

The

modulus

bit

length

of

the

key

must

be

1024

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

DES_key_block_length

Direction:

Input/Output

Type:

Integer

SET

Block

Compose

(CSNDSBC)

Chapter

7.

Financial

Services

283

The

length

of

the

DES_key_block.

The

current

length

of

this

field

is

defined

to

be

exactly

64

bytes.

DES_key_block

Direction:

Input/Output

Type:

String

The

DES

key

information

returned

from

a

previous

SET

Block

Compose

service.

The

contents

of

the

DES_key_block

is

the

64-byte

DES

internal

key

token

(containing

the

DES

key

enciphered

under

the

host

master

key).

Your

application

program

must

not

change

the

data

in

this

string.

RSA_OAEP_block_length

Direction:

Input/Output

Type:

Integer

The

length

of

a

block

of

storage

to

hold

the

RSA-OAEP_block.

The

length

must

be

at

least

128

bytes

on

input.

The

length

value

will

be

updated

on

exit

with

the

actual

length

of

the

RSA-OAEP_block,

which

is

exactly

128

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

RSA_OAEP_block

Direction:

Output

Type:

String

The

OAEP-formatted

data

block,

encrypted

under

the

RSA

public

key

passed

as

RSA_public_key_identifier.

When

the

OAEP-formatted

data

block

is

returned,

it

is

left

justified

within

the

RSA-OAEP_block

field

if

the

input

field

length

(RSA-OAEP_block_length)

was

greater

than

128

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

field

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

This

field

is

ignored

by

this

service,

but

must

be

specified.

DES_encrypted_data_block

Direction:

Output

Type:

String

The

DES-encrypted

data

block

(data

passed

in

as

data_to_encrypt).

The

length

of

the

encrypted

data

is

returned

in

data_to_encrypt_length.

The

DES_encrypted_data_block

may

be

8

bytes

longer

than

the

length

of

the

data_to_encrypt

because

of

padding

added

by

this

service.

Restrictions

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Not

all

CCA

implementations

support

a

key

label

as

input

in

the

RSA_public_key_identifier

parameter.

Some

implementations

may

only

support

a

key

token.

The

data_to_encrypt

and

the

DES_encrypted_data_block

cannot

overlap.

SET

Block

Compose

(CSNDSBC)

284

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

CCF

Systems

only:

NOCV

keys

must

be

installed

in

the

CKDS

to

use

SET

block

compose

service

on

a

CDMF-only

system.

Usage

Notes

RACF

will

be

invoked

to

check

authorization

to

use

the

SET

Block

Compose

service.

The

first

time

the

SET

Block

Compose

service

is

invoked

to

form

an

RSA-OAEP

block

and

DES-encrypt

data

for

communication

between

a

specific

source

and

destination

(for

example,

between

the

merchant

and

payment

gateway),

do

not

specify

the

DES-ONLY

keyword.

A

DES

key

will

be

generated

by

the

service

and

returned

in

the

key

token

contained

in

the

DES_key_block.

On

subsequent

calls

to

the

Compose

SET

Block

service

for

communication

between

the

same

source

and

destination,

the

DES

key

can

be

re-used.

The

caller

of

the

service

must

supply

the

DES_key_block,

the

DES_key_block_length,

the

data_to_encrypt,

the

data_to_encrypt_length,

and

the

rule-array

keywords

SET1.00

and

DES-ONLY.

You

do

not

need

to

supply

the

block

contents

identifier,

XDATA

string

and

length,

RSA-OAEP

block

and

length,

and

RSA

public

key

information,

although

you

must

still

specify

the

parameters.

For

this

invocation,

the

RSA-OAEP

formatting

is

bypassed

and

only

DES

encryption

is

performed,

using

the

supplied

DES

key.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

115.

SET

block

compose

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

If

there

are

no

PCI

Cryptographic

Coprocessors

online,

the

request

is

routed

to

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

This

service

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

to

perform

the

RSA-OAEP

processing.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

If

there

are

no

PCI

Cryptographic

Coprocessors

online,

the

request

is

routed

to

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

This

service

routes

the

request

to

a

PCI

Cryptographic

Coprocessor

to

perform

the

RSA-OAEP

processing.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

SET

Block

Decompose

(CSNDSBD)

Decomposes

the

RSA-OAEP

block

and

the

DES-encrypted

data

block

of

the

SET

protocol

to

provide

unencrypted

data

back

to

the

caller.

SET

Block

Compose

(CSNDSBC)

Chapter

7.

Financial

Services

285

|

Format

CALL

CSNDSBD(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

RSA_OAEP_block_length,

RSA_OAEP_block,

DES_encrypted_data_block_length,

DES_encrypted_data_block,

initialization_vector,

RSA_private_key_identifier_length,

RSA_private_key_identifier,

DES_key_block_length,

DES_key_block,

block_contents_identifier,

XData_string_length,

XData_string,

chaining_vector,

data_block,

hash_block_length,

hash_block)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

SET

Block

Decompose

(CSNDSBD)

286

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

1

or

2.

rule_array

Direction:

Input

Type:

String

One

keyword

that

provides

control

information

to

the

callable

service.

The

keyword

indicates

the

block

type.

The

keyword

must

be

in

8

bytes

of

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

Table

116.

Keywords

for

SET

Block

Compose

Control

Information

Keyword

Meaning

Block

Type

(required)

SET1.00

The

structure

of

the

RSA-OAEP

encrypted

block

is

defined

by

SET

protocol.

Formatting

Information

(optional)

DES-ONLY

DES

decryption

only

is

to

be

performed;

no

RSA-OAEP

block

decryption

will

be

performed.

(See

Usage

Notes.)

PINBLOCK

Specifies

that

the

OAEP

block

will

contain

PIN

information

in

the

XDATA

field,

including

an

ISO-0

format

PIN

block.

The

DES_key_block

must

be

128

bytes

in

length

and

contain

a

IPINENC

or

OPINENC

key.

The

PIN

block

will

be

encrypted

under

the

PIN

encrypting

key.

The

PIN

information

and

the

encrypted

PIN

block

are

returned

in

the

XDATA_string

parameter.

RSA_OAEP_block_length

Direction:

Input

Type:

Integer

The

length

of

RSA-OAEP_block

must

be

128

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

RSA_OAEP_block

Direction:

Input

Type:

String

The

RSA-encrypted

OAEP-formatted

data

block.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

DES_encrypted_data_block_length

Direction:

Input/Output

Type:

Integer

The

length

in

bytes

of

the

DES-encrypted

data

block.

The

input

length

must

be

a

multiple

of

8

bytes.

Updated

on

return

to

the

length

of

the

decrypted

data

returned

in

data_block.

The

maximum

value

of

DES_encrypted_data_block_length

is

32MB

bytes.

SET

Block

Decompose

(CSNDSBD)

Chapter

7.

Financial

Services

287

DES_encrypted_data_block

Direction:

Input

Type:

String

The

DES-encrypted

data

block.

The

data

will

be

decrypted

and

passed

back

as

data_block.

initialization_vector

Direction:

Input

Type:

String

An

8-byte

string

containing

the

initialization

vector

to

be

used

for

the

cipher

block

chaining

for

the

DES

decryption

of

the

data

in

the

DES_encrypted_data_block

parameter.

You

must

use

the

same

initialization

vector

that

was

used

to

perform

the

DES

encryption

of

the

data.

RSA_private_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

RSA_private_key_identifier

field.

The

maximum

size

is

2500

bytes.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

RSA_private_key_identifier

Direction:

Input

Type:

String

A

key

label

of

the

RSA

private

key

or

an

internal

token

of

the

RSA

private

key

to

be

used

to

decipher

the

RSA-OAEP

block

passed

in

RSA-OAEP_block.

The

modulus

bit

length

of

the

key

must

be

1024.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

DES_key_block_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

DES_key_block.

The

current

length

of

this

field

may

be

64

or

128

bytes.

If

rule

array

keyword

PINBLOCK

is

specified,

the

length

must

be

128

bytes.

DES_key_block

Direction:

Input/Output

Type:

String

The

DES_key_block

contains

either

one

or

two

DES

internal

key

tokens.

If

only

one

token

is

specified

on

input,

it

contains

either

a

null

DES

token

(or

binary

zeroes)

or

(if

DES-ONLY

is

specified)

the

DES

key

information

returned

from

a

previous

SET

Block

Decompose

service

invocation.

This

is

the

64-byte

DES

internal

key

token

formed

with

the

DES

key

which

was

retrieved

from

the

RSA-OAEP

block

and

enciphered

under

the

host

master

key.

Your

application

must

not

change

this

DES

key

information.

If

two

tokens

are

specified

in

the

DES_key_block,

the

first

64

bytes

contain

the

DES

token

described

above.

The

second

64

bytes,

used

when

PINBLOCK

is

specified

in

the

rule

array,

contains

the

DES

internal

token

or

the

CKDS

key

label

of

the

IPINENC

or

OPINENC

key

used

to

encrypt

the

PIN

block

returned

to

the

caller

in

the

XDATA_string

parameter.

If

a

key

label

is

specified,

it

must

be

left-justified

and

padded

on

the

right

with

blanks.

SET

Block

Decompose

(CSNDSBD)

288

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

block_contents_identifier

Direction:

Output

Type:

String

A

one-byte

string,

containing

the

binary

value

from

the

block

contents

(BC)

field

of

the

SET

data

block

(DB).

It

indicates

what

data

is

carried

in

the

actual

data

block

(ADB)

and

the

format

of

any

extra

data

(XData_string).

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

XData_string_length

Direction:

Input/Output

Type:

Integer

The

length

of

a

string

where

the

data

contained

within

XData_string

will

be

returned.

The

string

must

be

at

least

94

bytes

in

length.

The

value

will

be

updated

upon

exit

with

the

actual

length

of

the

returned

XData_string.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

XData_string

Direction:

Output

Type:

String

Extra-encrypted

data

contained

within

the

OAEP-processed

and

RSA-encrypted

block.

The

format

is

indicated

by

block_contents_identifier.

The

string

is

treated

by

ICSF

as

a

string

of

hexadecimal

digits.

The

service

will

always

return

the

data

from

the

beginning

of

the

XDataString

to

the

end

of

the

SET

DB

block,

a

maximum

of

94

bytes

of

data.

The

caller

must

examine

the

value

returned

in

block_contents_identifier

to

determine

the

actual

length

of

the

XDataString.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule-array.

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

field

that

ICSF

uses

as

a

system

work

area.

Your

application

program

must

not

change

the

data

in

this

string.

This

field

is

ignored

by

this

service,

but

must

be

specified.

data_block

Direction:

Output

Type:

String

The

data

that

was

decrypted

(passed

in

as

DES_encrypted_data_block).

Any

padding

characters

are

removed.

hash_block_length

Direction:

Input/Output

Type:

Integer

The

length

in

bytes

of

the

SHA-1

hash

returned

in

hash_block.

On

input,

this

parameter

must

be

set

to

the

length

of

the

hash_block

field.

The

length

must

be

at

least

20

bytes.

On

output,

this

field

is

updated

to

reflect

the

length

of

the

SHA-1

hash

returned

in

the

hash_block

field

(exactly

20

bytes).

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule_array

parameter.

hash_block

Direction:

Output

Type:

String

SET

Block

Decompose

(CSNDSBD)

Chapter

7.

Financial

Services

289

The

SHA-1

hash

extracted

from

the

RSA-OAEP

block.

This

parameter

is

ignored

if

DES-ONLY

is

specified

in

the

rule_array

parameter.

Restrictions

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Not

all

CCA

implementations

support

a

key

label

as

input

in

the

RSA_private_key_identifier

parameter.

Some

implementations

may

only

support

a

key

token.

The

RSA

private

key

used

by

this

service

must

have

been

generated

as

a

signature-only

key.

This

restriction

does

not

apply

if

you

are

running

on

the

IBM

Eserver

zSeries

990.

The

data_block

and

the

DES_encrypted_data_block

cannot

overlap.

CCF

Systems

only:The

ANSI

system

keys

must

be

installed

in

the

CKDS

to

use

the

SET

block

decompose

service

on

a

CDMF-only

system.

Usage

Notes

RACF

is

invoked

to

check

authorization

to

use

the

SET

Block

Decompose

service.

When

the

SET

Block

Decompose

service

is

invoked

without

the

DES-ONLY

keyword,

the

DES

key

is

retrieved

from

the

RSA-OAEP

block

and

returned

in

the

key

token

contained

in

the

DES_key_block.

On

subsequent

calls

to

the

SET

Block

Decompose

service,

a

caller

can

re-use

the

DES

key.

The

caller

of

the

service

must

supply

the

DES_key_block,

the

DES_key_block_length,

the

DES_encrypted_data_block,

the

DES_encrypted_data_block_length,

the

initialization

and

chaining

vectors,

and

the

rule_array

keywords

SET1.00

and

DES-ONLY.

The

RSA

private

key

information,

RSA-OAEP

block

and

length,

XData

string

and

length,

and

hash

block

and

length

need

not

be

supplied

(although

the

parameters

must

still

be

specified).

For

this

invocation,

the

decryption

of

the

RSA-OAEP

block

is

bypassed;

only

DES

decryption

is

performed,

using

the

supplied

DES

key.

When

the

SET

Block

Decompose

service

is

invoked

with

the

PINBLOCK

keyword,

DES-ONLY

may

not

also

be

specified.

If

both

of

these

rule

array

keywords

are

specified,

the

service

will

fail.

If

PINBLOCK

is

specified

and

the

DES_key_block_length

field

is

not

128,

the

service

will

fail.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

SET

Block

Decompose

(CSNDSBD)

290

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

Table

117.

SET

block

decompose

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

If

there

is

no

PCI

Cryptographic

Coprocessor

available,

the

request

will

be

processed

on

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

A

PCI

Cryptographic

Coprocessor

is

required

if:

v

the

RSA_private_key_identifier

specifies

a

retained

private

key

v

the

RSA_private_key_identifier

specifies

a

CRT

private

key

v

the

PINBLOCK

rule

array

keyword

is

specified

The

service

has

a

preference

for

being

processed

on

a

PCI

Cryptographic

Coprocessor

so

that

the

symmetric

key

does

not

appear

in

the

clear.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

If

there

is

no

PCI

Cryptographic

Coprocessor

available,

the

request

will

be

processed

on

the

Cryptographic

Coprocessor

Feature.

PCI

Cryptographic

Coprocessor

A

PCI

Cryptographic

Coprocessor

is

required

if:

v

the

RSA_private_key_identifier

specifies

a

retained

private

key

v

the

RSA_private_key_identifier

specifies

a

CRT

private

key

v

the

PINBLOCK

rule

array

keyword

is

specified

The

service

has

a

preference

for

being

processed

on

a

PCI

Cryptographic

Coprocessor

so

that

the

symmetric

key

does

not

appear

in

the

clear.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Transaction

Validation

(CSNBTRV)

The

transaction

validation

callable

service

supports

the

generation

and

validation

of

American

Express

card

security

codes

(CSC).

This

service

generates

and

verifies

transaction

values

based

on

information

from

the

transaction

and

a

cryptographic

key.

You

select

the

validation

method,

and

either

the

generate

or

verify

mode,

through

rule-array

keywords.

For

the

American

Express

process,

the

control

vector

supplied

with

the

cryptographic

key

must

indicate

a

MAC

or

MACVER

class

key.

The

key

may

be

single

or

double

length.

DATAM

and

DATAMV

keys

are

not

supported.

The

MAC

SET

Block

Decompose

(CSNDSBD)

Chapter

7.

Financial

Services

291

|

|
|
|
|
|

|
|
|

generate

control

vector

bit

must

be

on

(bit

20)

if

you

request

CSC

generation

and

MAC

verify

bit

(bit

21)

must

be

on

if

you

request

verification.

Format

CALL

CSNBTRV(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

transaction_key_identifier_length,

transaction_key_identifier,

transaction_info_length,

transaction_info,

validation_values_length,

validation_values

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

valid

values

are

1

or

2.

Transaction

Validation

(CSNBTRV)

292

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|
|

rule_array

Direction:

Input

Type:

Character

String

Keywords

that

provides

control

information

to

the

callable

service.

The

keywords

are

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

The

keywords

must

be

in

contiguous

storage.

Specify

one

or

two

of

the

values

inTable

118.

Table

118.

Rule

Array

Keywords

for

Transaction

Validation

Keyword

Meaning

American

Express

card

security

codes

(required)

CSC-3

3-digit

card

security

code

(CSC)

located

on

the

signature

panel.

VERIFY

implied.

This

is

the

default.

CSC-4

4-digit

card

security

code

(CSC)

located

on

the

signature

panel.

VERIFY

implied.

CSC-5

5-digit

card

security

code

(CSC)

located

on

the

signature

panel.

VERIFY

implied.

CSC-345

Generate

5-byte,

4-byte,

3-byte

values

when

given

an

account

number

an

an

expiration

date,

GENERATE

implied.

Operation

(optional)

VERIFY

Specifies

verification

of

the

value

presented

in

the

validation

values

variable.

GENERATE

Specifies

generation

of

the

value

presented

in

the

validation

values

variable.

transaction_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

transaction_key_identifier

parameter.

transaction_key_identifier

Direction:

Input

Type:

String

The

labelname

or

internal

token

of

a

MAV

or

MACVER

class

key.

Key

may

be

single

or

double

length.

transaction_info_length

Direction:

Input

Type:

Integer

The

length

of

the

transaction_info

parameter.

For

the

American

Express

CSC

codes,

the

length

must

be

19.

transaction_info

Direction:

Input

Type:

String

For

American

Express,

this

is

a

19-byte

field

containing

the

concatenation

of

the

4-byte

expiration

data

(in

the

format

YYMM)

and

the

15-byte

American

Express

account

number.

Provide

the

information

in

character

format.

Transaction

Validation

(CSNBTRV)

Chapter

7.

Financial

Services

293

|

|||
|

|
|
|
|

||

||

|

||
|

||
|

||
|

||
|

|

||
|

||
|
|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|

|

|||
|

|
|
|

validation_values_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

validation_values

parameter.

Maximum

value

for

this

field

is

64.

validation_values

Direction:

Input

Type:

String

This

variable

contains

American

Express

CSC

values.

The

data

is

output

for

GENERATE

and

input

for

VERIFY.

Table

119.

Output

description

for

validation

values

Operation

Element

Description

GENERATE

and

CSC-345

5555544444333

where:

55555

=

CSC

5

value

4444

=

CSC

4

value

333

=

CSC

3

value

VERIFY

and

CSC-3

333

=

CSC

3

value

VERIFY

and

CSC-4

4444

=

CSC

4

value

VERIFY

and

CSC-5

55555

=

CSC

5

value

Usage

Notes

There

are

additional

access

control

points

for

this

service.

RACF

will

be

invoked

to

check

authorization

for

using

this

service

and

the

label

name

specified.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

120.

Transaction

validation

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Not

supported

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Not

supported

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

Transaction

Validation

(CSNBTRV)

294

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||
|

|
|

|

|||
|

|
|

||

||

|
|
|

|
|
|

||

||

||
|

|

|

|
|

|
|

||

||
|
|

|

|
|

|
|

||

|
|

|
|

|

||

|
|

|
|

|
|
|
|

VISA

CVV

Service

Generate

(CSNBCSG)

Use

the

VISA

CVV

Service

Generate

callable

service

to

generate

a

VISA

Card

Verification

Value

(CVV)

or

MasterCard

Card

Verification

Code

(CVC)

as

defined

for

track

2.

This

service

generates

a

CVV

that

is

based

upon

the

information

that

the

PAN_data,

the

expiration_date,

and

the

service_code

parameters

provide.

The

service

uses

the

Key-A

and

the

Key-B

keys

to

cryptographically

process

this

information.

Key-A

and

Key-B

can

be

single-length

DATA

or

MAC

keys.

If

the

requested

CVV

is

shorter

than

5

characters,

the

CVV

is

padded

on

the

right

by

space

characters.

The

CVV

is

returned

in

the

5-byte

variable

that

the

CVV_value

parameter

identifies.

When

you

verify

a

CVV,

compare

the

result

to

the

value

that

the

CVV_value

supplies.

Format

CALL

CSNBCSG(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

PAN_data,

expiration_date,

service_code,

CVV_key_A_Identifier,

CVV_key_B_Identifier,

CVV_value)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Section

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Section

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

Transaction

Validation

(CSNBTRV)

Chapter

7.

Financial

Services

295

|

|

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

parameter

rule_array_count

must

be

0,

1,

or

2.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

Each

keyword

is

left-justified

in

8-byte

fields,

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

121.

CVV

Generate

Rule

Array

Keywords

Keyword

Meaning

PAN

data

length

(optional)

PAN-13

Specifies

that

the

length

of

the

PAN

data

is

13

bytes.

PAN-13

is

the

default

value.

PAN-16

Specifies

that

the

length

of

the

PAN

data

is

16

bytes.

CVV

length

(optional)

CVV-1

Specifies

that

the

CVV

is

to

be

computed

as

one

byte,

followed

by

4

blanks.

CVV-1

is

the

default

value.

CVV-2

Specifies

that

the

CVV

is

to

be

computed

as

2

bytes,

followed

by

3

blanks.

CVV-3

Specifies

that

the

CVV

is

to

be

computed

as

3

bytes,

followed

by

2

blanks.

CVV-4

Specifies

that

the

CVV

is

to

be

computed

as

4

bytes,

followed

by

1

blank.

CVV-5

Specifies

that

the

CVV

is

to

be

computed

as

5

bytes.

PAN_data

Direction:

Input

Type:

String

The

PAN_data

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

contains

personal

account

number

(PAN)

information

in

character

form.

The

PAN

is

the

account

number

as

defined

for

the

track-2

magnetic-stripe

standards.

If

the

PAN-13

keyword

is

specified

in

the

rule

array,

13

characters

are

processed;

if

the

PAN-16

keyword

is

specified

in

the

rule

array,

16

characters

are

processed.

Even

if

you

specify

the

PAN-13

keyword,

the

server

might

copy

16

bytes

to

a

work

area.

Therefore

ensure

that

the

callable

service

can

address

16

bytes

of

storage.

VISA

CVV

Service

Generate

(CSNBCSG)

296

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

expiration_date

Direction:

Input

Type:

String

The

expiration_date

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

contains

the

card

expiration

date

in

numeric

character

form

in

a

4-byte

field.

The

application

programmer

must

determine

whether

the

CVV

will

be

calculated

with

the

date

form

of

YYMM

or

MMYY.

service_code

Direction:

Input

Type:

String

The

service_code

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

contains

the

service

code

in

numeric

character

form

in

a

3-byte

field.

The

service

code

is

the

number

that

the

track-2

magnetic-stripe

standards

define.

The

service

code

of

’000’

is

supported.

CVV_key_A_Identifier

Direction:

Input/Output

Type:

String

The

CVV_key_A_Identifier

parameter

specifies

an

address

that

contains

a

64-byte

internal

key

token

or

a

key

label

of

a

single-length

DATA

or

MAC

key

that

decrypts

information

in

the

CCV

process.

The

internal

key

token

contains

the

key-A

key

that

encrypts

information

in

the

CVV

process.

CVV_key_B_Identifier

Direction:

Input/Output

Type:

String

The

CVV_key_B_Identifier

parameter

specifies

an

address

that

contains

a

64-byte

internal

key

token

or

a

key

label

of

a

single-length

DATA

or

MAC

key

that

decrypts

information

in

the

CCV

process.

The

internal

key

token

contains

the

key-B

key

that

decrypts

information

in

the

CVV

process.

CVV_value

Direction:

Output

Type:

String

The

CVV_value

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

will

be

used

to

store

the

computed

5-byte

character

output

value.

Restriction

The

CVV

generate

callable

service

is

not

supported

on

CCF

systems

with

a

CDMF-only

configuration.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

VISA

CVV

Service

Generate

(CSNBCSG)

Chapter

7.

Financial

Services

297

|
|

Table

122.

VISA

CVV

service

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

The

request

is

processed

on

the

CCF

if

Key-A

and

Key-B

are

both

DATA

keys.

MAC

keys

are

not

supported.

PCI

Cryptographic

Coprocessor

The

request

is

processed

on

a

PCICC

if

Key-A

or

Key-B

is

a

MAC

key.

MACVER

keys

are

not

supported.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

request

is

processed

on

the

CCF

if

Key-A

and

Key-B

are

both

DATA

keys.

MAC

and

MACVER

keys

are

not

supported.

PCI

Cryptographic

Coprocessor

The

request

is

processed

on

a

PCICC

if

Key-A

or

Key-B

is

a

MAC

key.

MACVER

keys

are

not

supported.

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

MACVER

keys

are

not

supported.

VISA

CVV

Service

Verify

(CSNBCSV)

Use

the

VISA

CVV

service

verify

callable

service

to

verify

a

VISA

Card

Verification

Value

(CVV)

or

MasterCard

Card

Verification

Code

(CVC)

as

defined

for

track

2.

This

service

generates

a

CVV

that

is

based

upon

the

information

that

the

PAN_data,

the

expiration_date,

and

the

service_code

parameters

provide.

The

service

uses

the

Key-A

and

the

Key-B

keys

to

cryptographically

process

this

information.

If

the

requested

CVV

is

shorter

than

5

characters,

the

CVV

is

padded

on

the

right

by

space

characters.

The

generated

CVV

is

then

compared

to

the

value

that

the

CVV_value

supplies

for

verification.

Format

CALL

CSNBCSV(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

PAN_data,

expiration_date,

service_code,

CVV_key_A_Identifier,

CVV_key_B_Identifier,

CVV_value)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

VISA

CVV

Service

Generate

(CSNBCSG)

298

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

parameter

rule_array_count

must

be

0,

1,

or

2.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

Each

keyword

is

left-justified

in

8-byte

fields,

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

123.

CVV

Verify

Rule

Array

Keywords

Keyword

Meaning

PAN

data

length

(optional)

PAN-13

Specifies

that

the

length

of

the

PAN

data

is

13

bytes.

PAN-13

is

the

default

value.

PAN-16

Specifies

that

the

length

of

the

PAN

data

is

16

bytes.

CVV

length

(optional)

CVV-1

Specifies

that

the

CVV

is

to

be

computed

as

one

byte,

followed

by

4

blanks.

CVV-1

is

the

default

value.

CVV-2

Specifies

that

the

CVV

is

to

be

computed

as

2

bytes,

followed

by

3

blanks.

CVV-3

Specifies

that

the

CVV

is

to

be

computed

as

3

bytes,

followed

by

2

blanks.

CVV-4

Specifies

that

the

CVV

is

to

be

computed

as

4

bytes,

followed

by

1

blank.

CVV-5

Specifies

that

the

CVV

is

to

be

computed

as

5

bytes.

VISA

CVV

Service

Verify

(CSNBCSV)

Chapter

7.

Financial

Services

299

PAN_data

Direction:

Input

Type:

String

The

PAN_data

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

contains

personal

account

number

(PAN)

information

in

character

form.

The

PAN

is

the

account

number

as

defined

for

the

track-2

magnetic-stripe

standards.

If

the

PAN-13

keyword

is

specified

in

the

rule

array,

13

characters

are

processed;

if

the

PAN-16

keyword

is

specified

in

the

rule

array,

16

characters

are

processed.

Even

if

you

specify

the

PAN-13

keyword,

the

server

might

copy

16

bytes

to

a

work

area.

Therefore

ensure

that

the

callable

service

can

address

16

bytes

of

storage.

expiration_date

Direction:

Input

Type:

String

The

expiration_date

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

contains

the

card

expiration

date

in

numeric

character

form

in

a

4-byte

field.

The

application

programmer

must

determine

whether

the

CVV

will

be

calculated

with

the

date

form

of

YYMM

or

MMYY.

service_code

Direction:

Input

Type:

String

The

service_code

parameter

specifies

an

address

that

points

to

the

place

in

application

data

storage

that

contains

the

service

code

in

numeric

character

form

in

a

3-byte

field.

The

service

code

is

the

number

that

the

track-2

magnetic-stripe

standards

define.

The

service

code

of

’000’

is

supported.

CVV_key_A_Identifier

Direction:

Input/Output

Type:

String

The

CVV_key_A_Identifier

parameter

specifies

an

address

that

contains

a

64-byte

internal

key

token

or

a

key

label

of

a

single-length

DATA,

MAC

or

MACVER

key

that

decrypts

information

in

the

CCV

process.

The

internal

key

token

contains

the

key-A

key

that

encrypts

information

in

the

CVV

process.

CVV_key_B_Identifier

Direction:

Input/Output

Type:

String

The

CVV_key_B_Identifier

parameter

specifies

an

address

that

contains

a

64-byte

internal

key

token

or

a

key

label

of

a

single-length

DATA,

MAC

or

MACVER

key

that

decrypts

information

in

the

CCV

process.

The

internal

key

token

contains

the

key-B

key

that

decrypts

information

in

the

CVV

process.

CVV_value

Direction:

Input

Type:

String

The

CVV_value

parameter

specifies

an

address

that

contains

the

CVV

value

which

will

be

compared

to

the

computed

CVV

value.

This

is

a

5-byte

field.

VISA

CVV

Service

Verify

(CSNBCSV)

300

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restrictions

The

CVV

verify

callable

service

is

not

supported

on

CCF

systems

with

a

CDMF-only

configuration..

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

124.

VISA

CVV

service

verify

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

The

request

is

processed

on

the

CCF

if

Key-A

and

Key-B

are

both

DATA

keys.

MAC

and

MACVER

keys

are

not

supported.

PCI

Cryptographic

Coprocessor

The

request

is

processed

on

a

PCICC

if

Key-A

or

Key-B

is

a

MAC

or

MACVER

key.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

request

is

processed

on

the

CCF

if

Key-A

and

Key-B

are

both

DATA

keys.

MAC

and

MACVER

keys

are

not

supported.

PCI

Cryptographic

Coprocessor

The

request

is

processed

on

a

PCICC

if

Key-A

or

Key-B

is

a

MAC

or

MACVER

key.

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

VISA

CVV

Service

Verify

(CSNBCSV)

Chapter

7.

Financial

Services

301

|
|

VISA

CVV

Service

Verify

(CSNBCSV)

302

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

8.

Using

Digital

Signatures

This

chapter

describes

the

PKA

callable

services

that

support

using

digital

signatures

to

authenticate

messages.

v

“Digital

Signature

Generate

(CSNDDSG)”

v

“Digital

Signature

Verify

(CSNDDSV)”

on

page

309

Digital

Signature

Generate

(CSNDDSG)

Use

the

digital

signature

generate

callable

service

to

generate

a

digital

signature

using

a

PKA

private

key.

The

digital

signature

generate

callable

service

may

use

either

the

RSA

or

DSS

private

key,

depending

on

the

algorithm

you

are

using.

DSS

is

not

supported

on

the

PCI

X

Cryptographic

Coprocessor.

The

RSA

private

key

must

be

valid

for

signature

usage.

This

service

supports

the

following

methods:

v

ANSI

X9.30

(DSS)

v

ANSI

X9.31

(RSA)

v

ISO

9796-1

(RSA)

v

RSA

DSI

PKCS

1.0

and

1.1

(RSA)

v

Padding

on

the

left

with

zeros

(RSA)

Note:

The

maximum

signature

length

is

256

bytes

(2048

bits).

The

input

text

should

have

been

previously

hashed

using

either

the

one-way

hash

generate

callable

service

or

the

MDC

generation

callable

service.

If

the

signature

formatting

algorithm

specifies

ANSI

X9.31,

you

must

specify

the

hash

algorithm

used

to

hash

the

text

(SHA-1

or

RPMD-160).

See

“Formatting

Hashes

and

Keys

in

Public-Key

Cryptography”

on

page

509.

If

the

PKA_private_key_identifier

specifies

an

RSA

private

key,

you

select

the

method

of

formatting

the

text

through

the

rule_array

parameter.

If

the

PKA_private_key_identifier

specifies

a

DSS

private

key,

the

DSS

signature

generated

is

according

to

ANSI

X9.30.

For

DSS,

the

signature

is

generated

on

a

20-byte

hash

created

from

SHA-1

algorithm.

Note:

For

PKCS

the

message

digest

and

the

message-digest

algorithm

identifier

are

combined

into

an

ASN.1

value

of

type

DigestInfo,

which

is

BER-encoded

to

give

an

octet

string

D

(see

Table

125).

D

is

the

text

string

supplied

in

the

hash

variable.

©

Copyright

IBM

Corp.

1997,

2004

303

Format

CALL

CSNDDSG(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

PKA_private_key_identifier_length,

PKA_private_key_identifier,

hash_length,

hash,

signature_field_length,

signature_bit_length,

signature_field)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

may

be

0

1,

or

2.

rule_array

Direction:

Input

Type:

String

Digital

Signature

Generate

(CSNDDSG)

304

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Keywords

that

provide

control

information

to

the

callable

service.

A

keyword

specifies

the

method

for

calculating

the

RSA

digital

signature.

Table

125

lists

the

keywords.

Each

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

125.

Keywords

for

Digital

Signature

Generate

Control

Information

-

Valid

only

for

RSA

key

types.

Keyword

Meaning

Digital

Signature

Formatting

Method

(optional)

ISO-9796

Calculate

the

digital

signature

on

the

hash

according

to

ISO-9796-1.

Any

hash

method

is

allowed.

This

is

the

default.

PKCS-1.0

Calculate

the

digital

signature

on

the

BER-encoded

ASN.1

value

of

the

type

DigestInfo

containing

the

hash

according

to

the

RSA

Data

Security,

Inc.

Public

Key

Cryptography

Standards

#1

block

type

00.

The

text

must

have

been

hashed

and

BER-encoded

before

input

to

this

service.

PKCS-1.1

Calculate

the

digital

signature

on

the

BER-encoded

ASN.1

value

of

the

type

DigestInfo

containing

the

hash

according

to

the

RSA

Data

Security,

Inc.

Public

Key

Cryptography

Standards

#1

block

type

01.

The

text

must

have

been

hashed

and

BER-encoded

before

input

to

this

service.

ZERO-PAD

Format

the

hash

by

padding

it

on

the

left

with

binary

zeros

to

the

length

of

the

RSA

key

modulus.

Any

supported

hash

function

is

allowed.

X9.31

Format

according

to

the

ANSI

X9.31

standard.

The

input

text

must

have

been

previously

hashed

with

one

of

the

hash

algorithms

specified

below.

Hash

Method

Specification:

Required

with

X9.31

RPMD-160

Hash

the

input

text

using

the

RIPEMD-160

hash

method.

SHA-1

Hash

the

input

text

using

the

SHA-1

hash

method.

PKA_private_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

PKA_private_key_identifier

field.

The

maximum

size

is

2500

bytes.

PKA_private_key_identifier

Direction:

Input

Type:

String

An

internal

token

or

label

of

the

PKA

private

key

or

Retained

key.

If

the

signature

format

is

X9.31,

the

modulus

of

the

RSA

key

must

have

a

length

of

at

least

1024

bits.

Digital

Signature

Generate

(CSNDDSG)

Chapter

8.

Using

Digital

Signatures

305

hash_length

Direction:

Input

Type:

Integer

The

length

of

the

hash

parameter

in

bytes.

It

must

be

the

exact

length

of

the

text

to

sign.

The

maximum

size

is

256

bytes.

If

you

specify

ZERO-PAD

in

the

rule_array

parameter,

the

length

is

restricted

to

36

bytes

unless

the

RSA

key

is

a

signature

only

key,

then

the

maximum

length

is

256

bytes.

On

the

IBM

Eserver

zSeries

990,

the

hash

length

limit

is

controlled

by

a

new

access

control

point.

If

OFF

(disabled),

the

maximum

hash

length

limit

for

ZERO-PAD

is

the

modulus

length

of

the

PKA

private

key.

If

ON

(enabled),

the

maximum

hash

length

limit

for

ZERO-PAD

is

36

bytes.

Only

RSA

key

management

keys

are

affected

by

this

access

control

point.

The

limit

for

RSA

signature

use

only

keys

is

256

bytes.

This

new

access

control

point

is

always

disabled

in

the

Default

role.

You

must

have

a

TKE

workstation

to

enable

it.

hash

Direction:

Input

Type:

String

The

application-supplied

text

on

which

to

generate

the

signature.

The

input

text

must

have

been

previously

hashed,

and

for

PKCS

formatting,

it

must

be

BER-encoded

as

previously

described.

For

X9.31,

the

hash

algorithms

must

have

been

either

SHA-1

or

RIPEMD-160.

See

the

rule_array

parameter

for

more

information.

signature_field_length

Direction:

Input/Output

Type:

Integer

The

length

in

bytes

of

the

signature_field

to

contain

the

generated

digital

signature.

Note:

For

RSA,

this

must

be

at

least

the

RSA

modulus

size

(rounded

up

to

a

multiple

of

32

bytes

for

the

X9.31

signature

format,

or

one

byte

for

all

other

signature

formats).

For

DSS,

this

must

be

at

least

40

bytes.

For

RSA

and

DSS,

this

field

is

updated

with

the

minimum

byte

length

of

the

digital

signature.

The

maximum

size

is

256

bytes.

signature_bit_length

Direction:

Output

Type:

Integer

The

bit

length

of

the

digital

signature

generated.

For

ISO-9796

this

is

1

less

than

the

modulus

length.

For

other

RSA

processing

methods,

this

is

the

modulus

length.

For

DSS,

this

is

320.

signature_field

Direction:

Output

Type:

String

The

digital

signature

generated

is

returned

in

this

field.

The

digital

signature

is

in

the

low-order

bits

(right-justified)

of

a

string

whose

length

is

the

minimum

number

of

bytes

that

can

contain

the

digital

signature.

This

string

is

left-justified

within

the

signature_field.

Any

unused

bytes

to

the

right

are

undefined.

Digital

Signature

Generate

(CSNDDSG)

306

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restrictions

Although

ISO-9796

does

not

require

the

input

hash

to

be

an

integral

number

of

bytes

in

length,

this

service

requires

you

to

specify

the

hash_length

in

bytes.

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

X9.31

requires

the

RSA

token

to

have

a

modulus

bit

length

of

at

least

1024

bits

and

the

length

must

also

be

a

multiple

of

256

bits

(or

32

bytes).

The

length

of

the

hash

parameter

in

bytes.

It

must

be

the

exact

length

of

the

text

to

sign.

The

maximum

size

is

256

bytes.

If

you

specify

ZERO-PAD

in

the

rule_array

parameter,

the

length

is

restricted

to

36

bytes

unless

the

RSA

key

is

a

signature

only

key,

then

the

maximum

length

is

256

bytes.

On

the

IBM

Eserver

zSeries

990,

the

hash

length

limit

is

controlled

by

a

new

access

control

point.

If

OFF

(disabled),

the

maximum

hash

length

limit

for

ZERO-PAD

is

the

modulus

length

of

the

PKA

private

key.

If

ON

(enabled),

the

maximum

hash

length

limit

for

ZERO-PAD

is

36

bytes.

Only

RSA

key

management

keys

are

affected

by

this

access

control

point.

The

limit

for

RSA

signature

use

only

keys

is

256

bytes.

This

new

access

control

point

is

always

disabled

in

the

Default

role.

You

must

have

a

TKE

workstation

to

enable

it.

Usage

Notes

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Digital

Signature

Generate

(CSNDDSG)

Chapter

8.

Using

Digital

Signatures

307

Table

126.

Digital

signature

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

The

request

is

processed

on

the

CCF

when:

v

the

modulus

bit

length

of

the

RSA

key

is

less

than

512

bits

v

the

key

specified

is

a

DSS

key

v

the

key

specified

is

a

X’02’

private

modulus-exponent

RSA

key

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

signature

only

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

key-management

use

and

the

SMK

is

equal

to

the

KMMK

PCI

Cryptographic

Coprocessor

The

request

is

processed

on

the

PCICC

when

v

the

key

specified

is

a

X’08’

CRT

RSA

key

v

the

key

specified

is

a

retained

key.

The

request

will

be

routed

to

the

specific

coprocessor

of

the

retained

key.

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

signature

only

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

key-management

use

and

the

SMK

is

equal

to

the

KMMK

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

key-management

use

and

the

SMK

is

not

equal

to

the

KMMK

Digital

Signature

Generate

(CSNDDSG)

308

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

126.

Digital

signature

generate

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

request

is

processed

on

the

CCF

when:

v

the

modulus

bit

length

of

the

RSA

key

is

less

than

512

bits

v

the

key

specified

is

a

DSS

key

v

the

key

specified

is

a

X’02’

private

modulus-exponent

RSA

key

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

signature

only

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

key-management

use

and

the

SMK

is

equal

to

the

KMMK

PCI

Cryptographic

Coprocessor

The

request

is

processed

on

the

PCICC

when

v

the

key

specified

is

a

X’08’

CRT

RSA

key

v

the

key

specified

is

a

retained

key.

The

request

will

be

routed

to

the

specific

coprocessor

of

the

retained

key.

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

signature

only

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

key-management

use

and

the

SMK

is

equal

to

the

KMMK

v

the

key

specified

is

a

X’06’

private

modulus-exponent

RSA

key

and

the

key

use

bits

indicate

key-management

use

and

the

SMK

is

not

equal

to

the

KMMK

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

DSS

tokens

are

not

supported.

ZERO-PAD

hash

length

is

controlled

by

an

access

control

point.

When

enabled,

the

hash

length

limit

is

36

bytes.

When

disabled,

the

hash

length

limit

is

the

modulus

byte

length

of

the

RSA

key.

This

access

control

point

is

always

disabled

and

can

only

be

enabled

with

TKE

V4.0

or

later.

Digital

Signature

Verify

(CSNDDSV)

Use

the

digital

signature

verify

callable

service

to

verify

a

digital

signature

using

a

PKA

public

key.

The

digital

signature

verify

callable

service

can

use

the

RSA

or

DSS

public

key,

depending

on

the

digital

signature

algorithm

used

to

generate

the

signature.

DSS

is

not

supported

on

the

PCI

X

Cryptographic

Coprocessor.

This

service

supports

the

following

methods:

v

ANSI

X9.30

(DSS)

v

ANSI

X9.31

(RSA)

v

ISO

9796

(RSA)

Digital

Signature

Generate

(CSNDDSG)

Chapter

8.

Using

Digital

Signatures

309

|
||
|
|
|
|
|
|

v

RSA

DSI

PKCS

1.0

and

1.1

(RSA)

v

Padding

on

the

left

with

zeros

(RSA)

Input

text

should

have

been

previously

hashed.

You

can

use

either

the

one-way

hash

generate

callable

service

or

the

MDC

generation

callable

service.

See

also

“Formatting

Hashes

and

Keys

in

Public-Key

Cryptography”

on

page

509.

This

service

routes

requests

to

the

Cryptographic

Coprocessor

Feature

or

PCI

X

Cryptographic

Coprocessor.

On

the

IBM

Eserver

zSeries

990,

if

a

PCI

Cryptographic

Accelerator

is

active,

CSNDDSV

will

be

routed

there.

Note:

The

maximum

signature

length

is

256

bytes

(2048

bits).

Format

CALL

CSNDDSV(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

PKA_public_key_identifier_length,

PKA_public_key_identifier,

hash_length,

hash,

signature_field_length,

signature_field)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

Digital

Signature

Verify

(CSNDDSV)

310

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

0

or

1.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

A

keyword

specifies

the

method

to

use

to

verify

the

RSA

digital

signature.

Table

127

lists

the

keywords.

Each

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

127.

Keywords

for

Digital

Signature

Verify

Control

Information.

Valid

Only

for

RSA

Key

Types.

Keyword

Meaning

ISO-9796

Verify

the

digital

signature

on

the

hash

according

to

ISO-9796-1.

Any

hash

method

is

allowed.

This

is

the

default.

PKCS-1.0

Verify

the

digital

signature

on

the

BER-encoded

ASN.1

value

of

the

type

DigestInfo

as

specified

in

the

RSA

Data

Security,

Inc.

Public

Key

Cryptography

Standards

#1

block

type

00.

The

text

must

specify

BER

encoded

hash

text.

PKCS-1.1

Verify

the

digital

signature

on

the

BER-encoded

ASN.1

value

of

the

type

DigestInfo

as

specified

in

the

RSA

Data

Security,

Inc.

Public

Key

Cryptography

Standards

#1

block

type

01.

The

text

must

specify

BER

encoded

hash

text.

ZERO-PAD

Format

the

hash

by

padding

it

on

the

left

with

binary

zeros

to

the

length

of

the

PKA

key

modulus.

Any

supported

hash

function

is

allowed.

X9.31

Format

according

to

ANSI

X9.31

standard.

PKA_public_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

PKA_public_key_identifier

field

containing

the

public

key

token

or

label.

The

maximum

size

is

2500

bytes.

PKA_public_key_identifier

Direction:

Input

Type:

String

A

token

or

label

of

the

PKA

public

key.

hash_length

Direction:

Input

Type:

Integer

Digital

Signature

Verify

(CSNDDSV)

Chapter

8.

Using

Digital

Signatures

311

The

length

of

the

hash

parameter

in

bytes.

It

must

be

the

exact

length

of

the

text

that

was

signed.

The

maximum

size

is

256

bytes.

hash

Direction:

Input

Type:

String

The

application-supplied

text

on

which

the

supplied

signature

was

generated.

The

text

must

have

been

previously

hashed

and,

for

PKCS

formatting,

BER-encoded

as

previously

described.

signature_field_length

Direction:

Input

Type:

Integer

The

length

in

bytes

of

the

signature_field

parameter.

The

maximum

size

is

256

bytes.

signature_field

Direction:

Input

Type:

String

This

field

contains

the

digital

signature

to

verify.

The

digital

signature

is

in

the

low-order

bits

(right-justified)

of

a

string

whose

length

is

the

minimum

number

of

bytes

that

can

contain

the

digital

signature.

This

string

is

left-justified

within

the

signature_field.

Restrictions

The

ability

to

recover

a

message

from

a

signature

(which

ISO-9796

allows

but

does

not

require)

is

not

supported.

The

exponent

of

the

RSA

public

key

must

be

odd.

Although

ISO-9796

does

not

require

the

input

hash

to

be

an

integral

number

of

bytes

in

length,

this

service

requires

you

to

specify

the

hash_length

in

bytes.

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

X9.31

requires

the

RSA

token

to

have

a

modulus

bit

length

of

at

least

1024

bits

and

the

length

must

also

be

a

multiple

of

256

bits

(or

32

bytes).

Usage

Notes

For

DSS

if

r=0

or

s=0

then

verification

always

fails.

The

DSS

digital

signature

is

of

the

form

r

||

s,

each

20

bytes.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Digital

Signature

Verify

(CSNDDSV)

312

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

128.

Digital

signature

verify

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

or

PCI

Cryptographic

Accelerator

DSS

tokens

are

not

supported.

Digital

Signature

Verify

(CSNDDSV)

Chapter

8.

Using

Digital

Signatures

313

|
|

Digital

Signature

Verify

(CSNDDSV)

314

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

9.

Managing

PKA

Cryptographic

Keys

This

chapter

describes

the

callable

services

that

generate

and

manage

PKA

keys.

v

“PKA

Key

Generate

(CSNDPKG)”

v

“PKA

Key

Import

(CSNDPKI)”

on

page

319

v

“PKA

Key

Token

Build

(CSNDPKB)”

on

page

323

v

“PKA

Key

Token

Change

(CSNDKTC)”

on

page

332

v

“PKA

Public

Key

Extract

(CSNDPKX)”

on

page

334

v

“PKDS

Record

Create

(CSNDKRC)”

on

page

337

v

“PKDS

Record

Delete

(CSNDKRD)”

on

page

339

v

“PKDS

Record

Read

(CSNDKRR)”

on

page

341

v

“PKDS

Record

Write

(CSNDKRW)”

on

page

343

v

“Retained

Key

Delete

(CSNDRKD)”

on

page

345

v

“Retained

Key

List

(CSNDRKL)”

on

page

348

PKA

Key

Generate

(CSNDPKG)

Use

the

PKA

key

generate

callable

service

to

generate

the

following

PKA

keys:

v

PKA

internal

tokens

for

use

with

the

DSS

algorithm

in

the

digital

signature

services

v

RSA

keys

for

use

on

the

Cryptographic

Coprocessor

Feature,

PCI

Cryptographic

Coprocessor,

or

PCI

X

Cryptographic

Coprocessor.

Input

to

the

PKA

key

generate

callable

service

is

either

a

skeleton

key

token

that

has

been

built

by

the

PKA

key

token

build

service

or

a

valid

internal

token.

In

the

case

of

a

valid

internal

token,

PKG

will

generate

a

key

with

the

same

modulus

length

and

the

same

exponent.

DSS

key

generation

requires

the

following

information

in

the

input

skeleton

token:

v

Size

of

modulus

p

in

bits

v

Prime

modulus

p

v

Prime

divisor

q

v

Public

generator

g

v

Optionally,

the

private

key

name

DSS

standards

define

restrictions

on

p,

q,

and

g.

(Refer

to

the

Federal

Information

Processing

Standard

(FIPS)

Publication

186

for

DSS

standards.)

This

callable

service

does

not

verify

all

of

these

restrictions.

If

you

do

not

follow

these

restrictions,

the

keys

you

generate

may

not

be

valid

DSS

keys.

The

PKA

Key

Token

Build

service

or

an

existing

internal

or

external

PKA

DSS

token

can

generate

the

input

skeleton

token,

but

all

of

the

preceding

must

be

provided.

You

can

extract

the

DSS

public

key

token

from

the

internal

private

key

token

by

calling

the

PKA

public

key

extract

callable

service.

Note:

DSS

keys

are

not

supported

on

a

PCI

X

Cryptographic

Coprocessor.

RSA

key

generation

requires

the

following

information

in

the

input

skeleton

token:

v

Size

of

the

modulus

in

bits.

The

modulus

for

modulus-exponent

form

keys

is

between

512

and

1024.

The

CRT

modulus

is

between

512

and

2048.

RSA

key

generation

has

the

following

restrictions:

For

modulus-exponent,

there

are

restrictions

on

modulus,

public

exponent,

and

private

exponent.

For

CRT,

there

are

restrictions

on

dp,

dq,

U,

and

public

exponent.

See

the

Key

value

structure

in

“PKA

Key

Token

Build

(CSNDPKB)”

on

page

323

for

a

summary

of

restrictions.

©

Copyright

IBM

Corp.

1997,

2004

315

Note:

The

Transaction

Security

System

PKA96

PKA

key

generate

verb

supports

RSA

key

generation

only;

it

does

not

support

DSS

key

generation.

Format

CALL

CSNDPKG(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

regeneration_data_length,

regeneration_data,

skeleton_key_identifier_length,

skeleton_key_identifier,

transport_key_identifier,

generated_key_token_length,

generated_key_token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

Value

may

be

1

or

2.

PKA

Key

Generate

(CSNDPKG)

316

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

rule_array

Direction:

Input

Type:

String

A

keyword

that

provides

control

information

to

the

callable

service.

See

Table

129

for

a

list.

A

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

Table

129.

Keywords

for

PKA

Key

Generate

Rule

Array

Keyword

Meaning

Private

Key

Encryption

(required)

CLEAR

Return

the

private

key

in

clear

text.

The

private

key

in

clear

text

is

an

external

token.

Only

valid

for

RSA

keys.

MASTER

Encipher

the

private

key

under

the

master

key.

RETAIN

Retain

the

private

key

within

the

PCI

Cryptographic

Coprocessor

for

additional

security.

Only

valid

for

RSA

keys.

XPORT

Encipher

the

private

key

under

the

transport_key_identifier.

Only

valid

for

RSA

keys.

Options

(optional)

CLONE

Mark

a

generated

and

retained

private

key

as

usable

in

cryptographic

engine

cloning

process.

This

keyword

is

supported

only

if

RETAIN

is

also

specified.

Only

valid

for

RSA

keys.

regeneration_data_length

Direction:

Input

Type:

Integer

The

value

must

be

0

for

DSS

tokens.

For

RSA

tokens,

the

regeneration_data_length

can

be

non-zero.

If

it

is

non-zero,

it

must

be

between

8

and

256

bytes

inclusive.

regeneration_data

Direction:

Input

Type:

String

This

field

points

to

a

string

variable

containing

a

string

used

as

the

basis

for

creating

a

particular

public-private

key

pair

in

a

repeatable

manner.

skeleton_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

skeleton_key_identifier

parameter

in

bytes.

The

maximum

allowed

value

is

2500

bytes.

skeleton_key_identifier

Direction:

Input

Type:

String

The

application-supplied

skeleton

key

token

generated

by

PKA

key

token

build

or

label

of

the

token

that

contains

the

required

network

quantities

for

DSS

key

generation,

or

the

required

modulus

length

and

public

exponent

for

RSA

key

PKA

Key

Generate

(CSNDPKG)

Chapter

9.

Managing

PKA

Cryptographic

Keys

317

generation.

If

RETAIN

was

specified

and

the

skeleton_key_identifier

is

a

label,

the

label

must

match

the

private

key

name

of

the

key.

transport_key_identifier

Direction:

Input

Type:

String

A

64-byte

field

to

contain

a

DES

key

identifier.

This

field

must

be

binary

zeros,

unless

the

XPORT

rule

is

specified.

For

XPORT

rule,

this

is

an

IMPORTER

or

EXPORTER

key

or

the

label

of

an

IMPORTER

or

EXPORTER

key

that

is

used

to

encrypt

the

generated

key.

If

you

specify

a

label,

it

must

resolve

uniquely

to

either

an

IMPORTER

or

EXPORTER

key.

Only

valid

for

RSA

keys.

generated_key_token_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

generated

key

token.

The

field

is

checked

to

ensure

it

is

at

least

equal

to

the

token

being

returned.

The

maximum

size

is

2500

bytes.

On

output,

this

field

is

updated

with

the

actual

token

length.

generated_key_token

Direction:

Input/Output

Type:

String

The

internal

token

or

label

of

the

generated

DSS

or

RSA

key.

The

label

can

be

that

of

a

retained

key.

Checks

are

made

to

ensure

that

a

retained

key

is

not

overlayed

in

PKDS.

If

the

label

is

that

of

a

retained

key,

the

private

name

in

the

token

must

match

the

label

name.

If

a

label

is

specified

in

the

generated_key_token

field,

the

generated_key_token_length

returned

to

the

application

will

be

the

same

as

the

input

length.

If

RETAIN

was

specified,

but

the

generated_key_token

was

not

specified

as

a

label,

the

generated

key

length

returned

to

the

application

will

be

zero

(the

key

was

retained

in

the

PCI

Cryptographic

Coprocessor).

If

the

record

already

exists

in

the

PKDS

with

the

same

label

as

the

one

specified

as

the

generated_key_token,

the

record

will

be

overwritten

with

the

newly

generated

key

token

(unless

the

PKDS

record

is

an

existing

retained

private

key,

in

which

case

it

cannot

be

overwritten).

If

there

is

no

existing

PKDS

record

with

this

label

in

the

case

of

generating

a

retained

key,

a

record

will

be

created.

For

generation

of

a

non-retained

key,

if

a

label

is

specified

in

the

generated_key_token

field,

a

record

must

already

exist

in

the

PKDS

with

this

same

label

or

the

service

will

fail.

Restriction

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

Usage

Notes

When

a

Retained

key

is

created,

ICSF

records

this

event

in

a

type

82

SMF

record

with

a

subtype

of

15.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

PKA

Key

Generate

(CSNDPKG)

318

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

130.

PKA

key

generate

required

hardware

Server

Required

Cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

service

examines

the

skeleton

token

and

routes

the

generation

request

to

the

appropriate

cryptographic

processor.

If

the

skeleton

is

a

DSS

key

token,

processing

takes

place

on

the

Cryptographic

Coprocessor

Feature.

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor.

The

service

examines

the

skeleton

token

and

routes

the

generation

request

to

the

appropriate

cryptographic

processor.

If

the

skeleton

is

an

RSA

key

token,

processing

takes

place

on

the

PCI

Cryptographic

Coprocessor.

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

DSS

tokens

are

not

supported.

PKA

Key

Import

(CSNDPKI)

This

service

imports

an

external

PKA

private

key

token.

(This

consists

of

a

PKA

private

key

and

public

key.)

The

secret

values

of

the

key

may

be

clear

or

encrypted

under

a

limited-authority

DES

importer

key.

This

service

can

also

import

a

clear

PKA

key.

The

PKA

key

token

build

service

creates

a

clear

PKA

key

token.

Output

of

this

service

is

an

ICSF

internal

token

of

the

RSA

or

DSS

private

key.

Restriction:

DSS

keys

are

not

supported

on

the

IBM

Eserver

zSeries

990.

PKA

Key

Generate

(CSNDPKG)

Chapter

9.

Managing

PKA

Cryptographic

Keys

319

|
|

Format

CALL

CSNDPKI(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

source_key_identifier_length,

source_key_identifier,

importer_key_identifier,

target_key_identifier_length,

target_key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

This

must

be

0.

rule_array

Direction:

Input

Type:

String

Reserved

field.

This

field

is

not

used,

but

you

must

specify

it.

PKA

Key

Import

(CSNDPKI)

320

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

source_key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

source_key_identifier

parameter.

The

maximum

size

is

2500

bytes.

source_key_identifier

Direction:

Input

Type:

String

The

external

token

or

label

of

a

PKA

private

key.

This

cannot

be

the

label

of

a

retained

private

key.

This

is

the

output

of

the

PKA

key

generate

(CSNDPKG)

callable

service

or

the

PKA

key

token

build

(CSNDPKB)

callable

service.

If

encrypted,

it

was

created

on

another

platform.

importer_key_identifier

Direction:

Input/Output

Type:

String

A

DES

internal

token

or

the

label

of

an

IMP-PKA

key.

This

is

a

limited

authority

key-encrypting

key.

It

is

ignored

for

clear

tokens.

target_key_identifier_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

target_key_identifier

parameter.

The

maximum

size

is

2500

bytes.

target_key_identifier

Direction:

Input/Output

Type:

String

This

field

contains

the

internal

token

or

label

of

the

imported

PKA

private

key.

If

a

label

is

specified

on

input,

a

PKDS

record

with

this

label

must

exist.

The

PKDS

record

with

this

label

will

be

overwritten

with

imported

key

unless

the

existing

record

is

a

retained

key.

If

the

record

is

a

retained

key,

the

import

will

fail.

A

retained

key

record

cannot

be

overwritten.

If

no

label

is

specified

on

input,

this

field

should

be

set

to

binary

zeroes

on

input.

Restrictions

This

service

imports

RSA

keys

of

up

to

2048

bits.

However,

the

hardware

configuration

sets

the

limits

on

the

modulus

size

of

keys

for

digital

signatures

and

key

management;

thus,

the

key

may

be

successfully

imported

but

fail

when

used

if

the

limits

are

exceeded.

The

importer_key_identifier

is

a

limited-authority

key-encrypting

key.

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

CRT

form

tokens

with

a

private

section

ID

of

X'05'

cannot

be

imported

into

ICSF.

Usage

Notes

An

RSA

modulus-exponent

form

token

imported

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

results

in

a

X'06'

format,

while

a

PKA

Key

Import

(CSNDPKI)

Chapter

9.

Managing

PKA

Cryptographic

Keys

321

|
|

token

imported

on

a

Cryptographic

Coprocessor

Feature

will

result

in

a

X'02'

format.

If

the

modulus

length

is

less

than

512,

the

token

will

be

imported

on

the

CCF,

and

it

will

be

X'02'

format.

This

service

imports

keys

of

any

modulus

size

up

to

2048

bits.

However,

the

hardware

configuration

sets

the

limits

on

the

modulus

size

of

keys

for

digital

signatures

and

key

management;

thus,

the

key

may

be

successfully

imported

but

fail

when

used

if

the

limits

are

exceeded.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

131.

PKA

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

The

request

will

be

processed

on

the

CCF

when

v

the

source_key_identifier

contains

an

RSA

modulus-exponent

private

key

with

a

modulus

length

of

less

than

512

bits

v

the

source_key_identifier

contains

a

DSS

private

key

PCI

Cryptographic

Coprocessor

The

request

will

be

processed

on

the

PCICC

when

v

the

source_key_identifier

contains

an

RSA

modulus-exponent

private

key

with

a

modulus

length

of

a

least

512

bits

v

the

source_key_identifier

contains

an

RSA

CRT

private

key

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

The

request

will

be

processed

on

the

CCF

when

v

the

source_key_identifier

contains

an

RSA

modulus-exponent

private

key

with

a

modulus

length

of

less

than

512

bits

v

the

source_key_identifier

contains

a

DSS

private

key

PCI

Cryptographic

Coprocessor

The

request

will

be

processed

on

the

PCICC

when

v

the

source_key_identifier

contains

an

RSA

modulus-exponent

private

key

with

a

modulus

length

of

a

least

512

bits

v

the

source_key_identifier

contains

an

RSA

CRT

private

key

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

DSS

tokens

are

not

supported.

PKA

Key

Import

(CSNDPKI)

322

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|

PKA

Key

Token

Build

(CSNDPKB)

Use

this

utility

to

build

external

PKA

key

tokens

containing

unenciphered

private

RSA

or

DSS

keys.

You

can

use

this

token

as

input

to

the

PKA

key

import

service

to

obtain

an

operational

internal

token

containing

an

enciphered

private

key.

This

service

builds

a

skeleton

token

you

can

use

as

input

to

the

PKA

key

generate

callable

service

(see

Table

129

on

page

317).

You

can

also

input

to

this

service

a

clear

unenciphered

public

RSA

or

DSS

key

and

return

the

public

key

in

a

token

format

that

other

ICSF

PKA

services

can

use

directly.

You

can

also

use

this

service

to

build

a

key

token

for

an

RSA

private

key

in

optimized

Chinese

Remainder

Theorem

(CRT)

form.

DSS

key

generation

requires

the

following

information

in

the

input

skeleton

token:

v

Size

of

modulus

p

in

bits

v

Prime

modulus

p

v

Prime

divisor

q

v

Public

generator

g

v

Optionally,

the

private

key

name

Note:

DSS

standards

define

restrictions

on

the

prime

modulus

p,

prime

divisor

q,

and

public

generator

g.

(Refer

to

the

Federal

Information

Processing

Standard

(FIPS)

Publication

186

for

DSS

standards.)

This

callable

service

does

not

verify

all

of

these

restrictions.

If

you

do

not

follow

the

restrictions,

the

keys

you

generate

may

not

be

valid

DSS

keys.

Restriction:

DSS

is

not

supported

on

a

PCI

X

Cryptographic

Coprocessor.

PKA

key

token

build

will

still

build

DSS

tokens,

but

they

cannot

be

used

in

any

other

service

on

the

IBM

Eserver

zSeries

990.

Format

CALL

CSNDPKB(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_value_structure_length,

key_value_structure,

private_key_name_length,

private_key_name,

reserved_1_length,

reserved_1,

reserved_2_length,

reserved_2,

reserved_3_length,

reserved_3,

reserved_4_length,

reserved_4,

reserved_5_length,

reserved_5,

key_token_length,

key_token)

PKA

Key

Token

Build

(CSNDPKB)

Chapter

9.

Managing

PKA

Cryptographic

Keys

323

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Input/Output

Type:

String

Reserved

field.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

Value

must

be

1

or

2.

rule_array

Direction:

Input

Type:

String

One

or

two

keywords

that

provide

control

information

to

the

callable

service.

Table

132

lists

the

keywords.

The

keywords

must

be

in

contiguous

storage

with

each

of

the

keywords

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

Table

132.

Keywords

for

PKA

Key

Token

Build

Control

Information

Keyword

Meaning

Key

Type

(required)

DSS-PRIV

This

keyword

indicates

building

a

key

token

containing

both

public

and

private

DSS

key

information.

The

parameter

key_value_structure

identifies

the

input

key

values,

if

supplied.

DSS-PUBL

This

keyword

indicates

building

a

key

token

containing

public

DSS

key

information.

The

parameter

key_value_structure

identifies

the

input

key

values,

if

supplied.

PKA

Key

Token

Build

(CSNDPKB)

324

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

132.

Keywords

for

PKA

Key

Token

Build

Control

Information

(continued)

Keyword

Meaning

RSA-CRT

This

keyword

indicates

building

a

token

containing

an

RSA

private

key

in

the

optimized

Chinese

Remainder

Theorem

(CRT)

form.

The

parameter

key_value_structure

identifies

the

input

key

values,

if

supplied.

RSA-PRIV

This

keyword

indicates

building

a

token

containing

both

public

and

private

RSA

key

information.

The

parameter

key_value_structure

identifies

the

input

key

values,

if

supplied.

RSA-PUBL

This

keyword

indicates

building

a

token

containing

public

RSA

key

information.

The

parameter

key_value_structure

identifies

the

input

values,

if

supplied.

Key

Usage

Control

(optional)

KEY-MGMT

Indicates

that

an

RSA

private

key

can

be

used

in

both

the

symmetric

key

import

and

the

digital

signature

generate

callable

services.

KM-ONLY

Indicates

that

an

RSA

private

key

can

be

used

only

in

symmetric

key

distribution.

SIG-ONLY

Indicates

that

an

RSA

private

key

cannot

be

used

in

symmetric

key

distribution.

This

is

the

default.

Note

that

for

DSS-PRIV

the

keyword

is

allowed

but

extraneous;

DSS

keys

are

defined

only

for

digital

signature.

key_value_structure_length

Direction:

Input

Type:

Integer

This

is

a

segment

of

contiguous

storage

containing

a

variable

number

of

input

clear

key

values.

The

length

depends

on

the

key

type

parameter

in

the

rule

array

and

on

the

actual

values

input.

The

length

is

in

bytes.

Table

133.

Key

Value

Structure

Length

Maximum

Values

for

Key

Types

Key

Type

Key

Value

Structure

Maximum

Value

DSS-PRIV

436

DSS-PUBL

416

RSA-CRT

2500

RSA-PRIV

648

RSA-PUBL

520

key_value_structure

Direction:

Input

Type:

String

This

is

a

segment

of

contiguous

storage

containing

a

variable

number

of

input

clear

key

values

and

the

lengths

of

these

values

in

bits

or

bytes,

as

specified.

The

structure

elements

are

ordered,

of

variable

length,

and

the

input

key

values

must

be

right-justified

within

their

respective

structure

elements

and

padded

on

the

left

with

binary

zeros.

If

the

leading

bits

of

the

modulus

are

zero’s,

don’t

PKA

Key

Token

Build

(CSNDPKB)

Chapter

9.

Managing

PKA

Cryptographic

Keys

325

count

them

in

the

length.

Table

134

defines

the

structure

and

contents

as

a

function

of

key

type.

Table

134.

Key

Value

Structure

Elements

for

PKA

Key

Token

Build

Offset

Length

(bytes)

Description

Key

Value

Structure

(Optimized

RSA,

Chinese

Remainder

Theorem

form,

RSA-CRT)

000

002

Modulus

length

in

bits

(512

to

2048).

This

is

required.

002

002

Modulus

field

length

in

bytes,

“nnn.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

This

value

must

not

exceed

256.

004

002

Public

exponent

field

length

in

bytes,

“eee.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

006

002

Reserved,

binary

zero.

008

002

Length

of

the

prime

number,

p,

in

bytes,

“ppp.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

Maximum

size

of

p

+

q

is

256

bytes.

010

002

Length

of

the

prime

number,

q,

in

bytes,

“qqq.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

Maximum

size

of

p

+

q

is

256

bytes.

012

002

Length

of

dp,

in

bytes,

“rrr.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

Maximum

size

of

dp

+

dq

is

256

bytes.

014

002

Length

of

dq,

in

bytes,

“sss.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

Maximum

size

of

dp

+

dq

is

256

bytes.

016

002

Length

of

U,

in

bytes,

“uuu.”

This

value

can

be

zero

if

the

key

token

is

used

as

a

skeleton_key_token

in

the

PKA

key

generate

callable

service.

Maximum

size

of

U

is

256

bytes.

018

nnn

Modulus,

n.

PKA

Key

Token

Build

(CSNDPKB)

326

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

134.

Key

Value

Structure

Elements

for

PKA

Key

Token

Build

(continued)

Offset

Length

(bytes)

Description

018

+

nnn

eee

Public

exponent,

e.

This

is

an

integer

such

that

1<e<n.

e

must

be

odd.

When

you

are

building

a

skeleton_key_token

to

control

the

generation

of

an

RSA

key

pair,

the

public

key

exponent

can

be

one

of

the

following

values:

3,

65537

(216

+

1),

or

0

to

indicate

that

a

full

random

exponent

should

be

generated.

The

exponent

field

can

be

a

null-length

field

if

the

exponent

value

is

0.

018

+

nnn

+

eee

ppp

Prime

number,

p.

018

+

nnn

+

eee

+

ppp

qqq

Prime

number,

q.

018

+

nnn

+

eee

+

ppp

+

qqq

rrr

dp

=

d

mod(p-1).

018

+

nnn

+

eee

+

ppp

+

qqq

+

rrr

sss

dq

=

d

mod(q-1).

018

+

nnn

+

eee

+

ppp

+

qqq

+

rrr

+

sss

uuu

U

=

q–1mod(p).

Key

Value

Structure

(RSA

Private

or

RSA

Public)

000

002

Modulus

length

in

bits.

This

is

required.

When

building

a

skeleton

token,

the

modulus

length

in

bits

must

be

greater

than

or

equal

to

512

bits.

002

002

Modulus

field

length

in

bytes,

“XXX”.

This

value

can

be

zero

if

you

are

using

the

key

token

as

a

skeleton

in

the

PKA

key

generate

verb.

This

value

must

not

exceed

256

when

the

RSA-PUBL

keyword

is

used,

and

must

not

exceed

128

when

the

RSA-PRIV

keyword

is

used.

This

service

can

build

a

key

token

for

a

public

RSA

key

with

a

2048-bit

modulus

length,

or

it

can

build

a

key

token

for

a

1024-bit

modulus

length

private

key.

PKA

Key

Token

Build

(CSNDPKB)

Chapter

9.

Managing

PKA

Cryptographic

Keys

327

Table

134.

Key

Value

Structure

Elements

for

PKA

Key

Token

Build

(continued)

Offset

Length

(bytes)

Description

004

002

Public

exponent

field

length

in

bytes,

“YYY”.

This

value

must

not

exceed

256

when

the

RSA-PUBL

keyword

is

used,

and

must

not

exceed

128

when

the

RSA-PRIV

keyword

is

used.

This

value

can

be

zero

if

you

are

using

the

key

token

as

a

skeleton

token

in

the

PKA

key

generate

verb.

In

this

case,

a

random

exponent

is

generated.

To

obtain

a

fixed,

predetermined

public

key

exponent,

you

can

supply

this

field

and

the

public

exponent

as

input

to

the

PKA

key

generate

verb.

006

002

Private

exponent

field

length

in

bytes,

“ZZZ”.

This

field

can

be

zero,

indicating

that

private

key

information

is

not

provided.

This

value

must

not

exceed

128

bytes.

This

value

can

be

zero

if

you

are

using

the

key

token

as

a

skeleton

token

in

the

PKA

key

generate

verb.

008

XXX

Modulus,

n.

This

is

an

integer

such

that

1<n<22048.

The

n

is

the

product

of

p

and

q

for

primes

p

and

q.

008

+

XXX

YYY

RSA

public

exponent,

e.

This

is

an

integer

such

that

1<e<n.

e

must

be

odd.

When

you

are

building

a

skeleton_key_token

to

control

the

generation

of

an

RSA

key

pair,

the

public

key

exponent

can

be

one

of

the

following

values:

3,

65537

(216

+

1),

or

0

to

indicate

that

a

full

random

exponent

should

be

generated.

The

exponent

field

can

be

a

null-length

field

if

the

exponent

value

is

0.

008

+

XXX

+

YYY

ZZZ

RSA

secret

exponent

d.

This

is

an

integer

such

that

1<d<n.

The

value

of

d

is

e-1

mod(p-1)(q-1);

the

You

need

not

specify

this

value

if

you

specify

RSA-PUBL

in

the

rule

array.

Key

Value

Structure

(DSS

Private

or

DSS

Public)

000

002

Modulus

length

in

bits.

This

is

required.

PKA

Key

Token

Build

(CSNDPKB)

328

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

134.

Key

Value

Structure

Elements

for

PKA

Key

Token

Build

(continued)

Offset

Length

(bytes)

Description

002

002

Prime

modulus

field

length

in

bytes,

“XXX”.

You

can

supply

this

as

a

network

quantity

to

the

ICSF

PKA

key

generate

callable

service,

which

uses

the

quantity

to

generate

DSS

keys.

The

maximum

allowed

value

is

128.

004

002

Prime

divisor

field

length

in

bytes,

“YYY”.

You

can

supply

this

as

a

network

quantity

to

the

ICSF

PKA

key

generate

callable

service,

which

uses

the

quantity

to

generate

DSS

keys.

The

allowed

values

are

0

or

20

bytes.

006

002

Public

generator

field

length

in

bytes,

“ZZZ”.

You

can

supply

this

in

a

skeleton

token

as

a

network

quantity

to

the

ICSF

PKA

key

generate

callable

service,

which

uses

the

quantity

to

generate

DSS

keys.

The

maximum

allowed

value

is

128

bytes

and

is

exactly

the

same

length

as

the

prime

modulus.

008

002

Public

key

field

length

in

bytes,

“AAA”.

This

field

can

be

zero,

indicating

that

the

ICSF

PKA

key

generate

callable

service

generates

a

value

at

random

from

supplied

or

generated

network

quantities.

The

maximum

allowed

value

is

128

bytes

and

is

exactly

the

same

length

as

the

prime

modulus.

010

002

Secret

key

field

length

in

bytes,

“BBB”.

This

field

can

be

zero,

indicating

that

the

ICSF

PKA

key

generate

callable

service

generates

a

value

at

random

from

supplied

or

generated

network

quantities.

The

allowed

values

are

0

or

20

bytes.

012

XXX

DSS

prime

modulus

p.

This

is

an

integer

such

that

2L-1<p<2L.

The

p

must

be

prime.

You

can

supply

this

value

in

a

skeleton

token

as

a

network

quantity;

it

is

used

in

the

algorithm

that

generates

DSS

keys.

PKA

Key

Token

Build

(CSNDPKB)

Chapter

9.

Managing

PKA

Cryptographic

Keys

329

Table

134.

Key

Value

Structure

Elements

for

PKA

Key

Token

Build

(continued)

Offset

Length

(bytes)

Description

012

+

XXX

YYY

DSS

prime

divisor

q.

This

is

an

integer

that

is

a

prime

divisor

of

p-1

and

2159<q<2160.

You

can

supply

this

value

in

a

skeleton

token

as

a

network

quantity;

it

is

used

in

the

algorithm

that

generates

DSS

keys.

012

+

XXX+

YYY

ZZZ

DSS

public

generator

g.

This

is

an

integer

such

that

1<g<p.

You

can

supply

this

value

in

a

skeleton

token

as

a

network

quantity;

it

is

used

in

the

algorithm

that

generates

DSS

keys.

012

+

XXX+

YYY+

ZZZ

AAA

DSS

public

key

y.

This

is

an

integer

such

that

y

=

gx

mod

p.

012

+

XXX+

YYY+

ZZZ+

AAA

BBB

DSS

secret

private

key

x.

This

is

an

integer

such

that

0<x<q.

The

x

is

random.

You

need

not

supply

this

value

if

you

specify

DSS-PUBL

in

the

rule

array.

Notes:

1.

All

length

fields

are

in

binary.

2.

All

binary

fields

(exponent,

lengths,

modulus,

and

so

on)

are

stored

with

the

high-order

byte

field

first.

This

integer

number

is

right-justified

within

the

key

structure

element

field.

3.

You

must

supply

all

values

in

the

structure

to

create

a

token

containing

an

RSA

or

DSS

private

key

for

input

to

the

PKA

key

import

service.

private_key_name_length

Direction:

Input

Type:

Integer

The

length

can

be

0

or

64.

private_key_name

Direction:

Input

Type:

EBCDIC

character

This

field

contains

the

name

of

a

private

key.

The

name

must

conform

to

ICSF

label

syntax

rules.

That

is,

allowed

characters

are

alphanumeric,

national

(@,#,$)

or

period

(.).

The

first

character

must

be

alphabetic

or

national.

The

name

is

folded

to

upper

case

and

converted

to

ASCII

characters.

ASCII

is

the

permanent

form

of

the

name

because

the

name

should

be

independent

of

the

platform.

The

name

is

then

cryptographically

coupled

with

clear

private

key

data

before

encryption

of

the

private

key.

Because

of

this

coupling,

the

name

can

never

change

after

the

key

token

is

imported.

The

parameter

is

valid

only

with

key

type

RSA-CRT.

reserved_1_length

Direction:

Input

Type:

Integer.

Length

in

bytes

of

a

reserved

parameter.

You

must

set

this

variable

to

0.

PKA

Key

Token

Build

(CSNDPKB)

330

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

reserved_1

Direction:

Input

Type:

String

The

reserved_1

parameter

identifies

a

string

that

is

reserved.

The

service

ignores

it.

reserved_2_length

Direction:

Input

Type:

Integer.

Length

in

bytes

of

a

reserved

parameter.

You

must

set

this

variable

to

0.

reserved_2

Direction:

Input

Type:

String

The

reserved_2

parameter

identifies

a

string

that

is

reserved.

The

service

ignores

it.

reserved_3_length

Direction:

Input

Type:

Integer.

Length

in

bytes

of

a

reserved

parameter.

You

must

set

this

variable

to

0.

reserved_3

Direction:

Input

Type:

String

The

reserved_3

parameter

identifies

a

string

that

is

reserved.

The

service

ignores

it.

reserved_4_length

Direction:

Input

Type:

Integer.

Length

in

bytes

of

a

reserved

parameter.

You

must

set

this

variable

to

0.

reserved_4

Direction:

Input

Type:

String

The

reserved_4

parameter

identifies

a

string

that

is

reserved.

The

service

ignores

it.

reserved_5_length

Direction:

Input

Type:

Integer.

Length

in

bytes

of

a

reserved

parameter.

You

must

set

this

variable

to

0.

reserved_5

Direction:

Input

Type:

String

The

reserved_5

parameter

identifies

a

string

that

is

reserved.

The

service

ignores

it.

PKA

Key

Token

Build

(CSNDPKB)

Chapter

9.

Managing

PKA

Cryptographic

Keys

331

key_token_length

Direction:

Input/Output

Type:

Integer

Length

of

the

returned

key

token.

The

service

checks

the

field

to

ensure

it

is

at

least

equal

to

the

size

of

the

token

to

return.

On

return

from

this

service,

this

field

is

updated

with

the

exact

length

of

the

key_token

created.

On

input,

a

size

of

2500

bytes

is

sufficient

to

contain

the

largest

key_token

created.

key_token

Direction:

Output

Type:

String

The

returned

key

token

containing

an

unenciphered

private

or

public

key.

The

private

key

is

in

an

external

form

that

can

be

exchanged

with

different

Common

Cryptographic

Architecture

(CCA)

PKA

systems.

You

can

use

the

public

key

token

directly

in

appropriate

ICSF

signature

verification

or

key

management

services.

Usage

Notes

If

you

are

building

a

skeleton

for

use

in

a

PKA

Key

Generate

request

to

generate

a

retained

PKA

private

key,

you

must

build

a

private

key

name

section

in

the

skeleton

token.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

135.

PKA

key

token

build

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

PKA

Key

Token

Change

(CSNDKTC)

The

PKA

Key

Token

Change

callable

service

changes

PKA

key

tokens

(RSA

and

DSS)

from

encipherment

under

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

old

Asymmetric-Keys

Master

Key

to

encipherment

under

the

current

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

Asymmetric-Keys

Master

Key.

This

service

only

changes

Private

Internal

PKA

Key

Tokens.

PKA

private

keys

encrypted

under

the

Key

Management

PKA

Key

Token

Build

(CSNDPKB)

332

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Master

Key

(KMMK)

cannot

be

reenciphered

using

this

service

unless

the

KMMK

has

the

same

value

as

the

Signature

Master

Key

(SMK).

Format

CALL

CSNDKTC(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_identifier_length,

key_identifier

)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

1.

rule_array

Direction:

Input

Type:

Character

String

PKA

Key

Token

Change

(CSNDKTC)

Chapter

9.

Managing

PKA

Cryptographic

Keys

333

The

process

rule

for

the

callable

service.

The

keyword

must

be

in

8

bytes

of

contiguous

storage,

left-justified

and

padded

on

the

right

with

blanks.

Table

136.

Rule

Array

Keywords

for

PKA

Key

Token

Change

(Required)

Keyword

Meaning

RTCMK

Changes

the

PKA

key

from

encipherment

with

the

old

master

key

to

encipherment

with

the

current

master

key.

key_identifier_length

Direction:

Input

Type:

Integer

The

length

of

the

key_identifier

parameter.

The

maximum

size

is

2500

bytes.

key_identifier

Direction:

Input/Output

Type:

String

An

internal

RSA

or

DSS

private

key

token.

Usage

Notes

PKA

callable

services

must

be

enabled

to

use

the

PKA

Key

Token

Change

callable

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

137.

PKA

key

token

change

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

PKA

Public

Key

Extract

(CSNDPKX)

Use

the

PKA

public

key

extract

callable

service

to

extract

a

PKA

public

key

token

from

a

supplied

PKA

internal

or

external

private

key

token.

This

service

performs

no

cryptographic

verification

of

the

PKA

private

token.

You

can

verify

the

private

token

by

using

it

in

a

service

such

as

digital

signature

generate.

PKA

Key

Token

Change

(CSNDKTC)

334

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Format

CALL

CSNDPKX(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

source_key_indentifier_length,

source_key_identifier,

target_public_key_token_length,

target_public_key_token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Ignored

Type:

String

Reserved

field.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

The

value

must

be

0.

rule_array

Direction:

Input

Type:

String

Reserved

field.

This

field

is

not

used,

but

you

must

specify

it.

PKA

Public

Key

Extract

(CSNDPKX)

Chapter

9.

Managing

PKA

Cryptographic

Keys

335

source_key_identifier_length

Direction:

Input

Type:

integer

The

length

of

the

source_key_identifier

parameter.

The

maximum

size

is

2500

bytes.

When

the

source_key_identifier

parameter

is

a

key

label,

this

field

specifies

the

length

of

the

label.

source_key_identifier

Direction:

Input/output

Type:

string

The

internal

or

external

token

of

a

PKA

private

key

or

the

label

of

a

PKA

private

key.

This

can

be

the

input

or

output

from

PKA

key

import

or

from

PKA

key

generate.

This

service

supports

the

RSA

private

key

token

formats

supported

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

If

the

source_key_identifier

specifies

a

label

for

a

private

key

that

has

been

retained

within

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor,

this

service

extracts

only

the

public

key

section

of

the

token.

target_public_key_token_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

target_public_key_token

parameter.

The

maximum

size

is

2500

bytes.

On

output,

this

field

will

be

updated

with

the

actual

byte

length

of

the

target_public_key_token.

target_public_key_token

Direction:

Output

Type:

String

This

field

contains

the

token

of

the

extracted

PKA

public

key.

Restriction

The

caller

must

be

in

task

mode

and

not

in

SRB

mode.

Usage

Notes

This

service

extracts

the

public

key

from

the

internal

or

external

form

of

a

private

key.

However,

it

does

not

check

the

cryptographic

validity

of

the

private

token.

Beginning

with

OS/390

V2

R9

ICSF,

this

service

must

be

in

task

mode,

not

SRB

mode.

It

was

also

enhanced

to

support

PKDS

labels

as

well

as

tokens.

This

requires

a

change

to

the

stub

module

CSNDPKX.

Existing

applications

that

have

been

link

edited

with

the

old

stub

module

will

still

run

without

change.

Access

to

this

service

can

also

be

RACF

controlled.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

PKA

Public

Key

Extract

(CSNDPKX)

336

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

138.

PKA

public

key

extract

build

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None

PKDS

Record

Create

(CSNDKRC)

This

callable

service

writes

a

new

record

to

the

PKDS.

Format

CALL

CSNDKRC(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

label,

token_length,

token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

PKA

Public

Key

Extract

(CSNDPKX)

Chapter

9.

Managing

PKA

Cryptographic

Keys

337

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

This

parameter

is

ignored

by

ICSF.

rule_array

Direction:

Input

Type:

String

This

parameter

is

ignored

by

ICSF.

label

Direction:

Input

Type:

String

The

label

of

the

record

to

be

created.

A

64

byte

character

string.

token_length

Direction:

Input

Type:

Integer

The

length

of

the

field

containing

the

token

to

be

written

to

the

PKDS.

If

zero

is

specified,

a

null

token

will

be

added

to

the

PKDS.

The

maximum

value

of

token_length

is

the

maximum

length

of

a

private

RSA

or

DSS

token.

token

Direction:

Input

Type:

String

Data

to

be

written

to

the

PKDS

if

token_length

is

non-zero.

A

RSA

or

DSS

private

token

in

either

external

or

internal

format,

or

a

DSS

or

RSA

public

token.

Restriction

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Usage

Notes

PKA

callable

services

must

be

enabled

for

you

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

PKDS

Record

Create

(CSNDKRC)

338

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

139.

PKDS

record

create

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

PKDS

Record

Delete

(CSNDKRD)

Use

PKDS

record

delete

to

delete

a

record

from

the

PKDS.

Format

CALL

CSNDKRD(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

label)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

PKDS

Record

Create

(CSNDKRC)

Chapter

9.

Managing

PKA

Cryptographic

Keys

339

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

This

parameter

is

ignored

by

ICSF,

except

that

its

value

must

be

0,

or

1.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

Each

keyword

is

left-justified

in

8-byte

fields

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

140.

Keywords

for

PKDS

Record

Delete

Keyword

Meaning

Deletion

Mode

(optional)

specifies

whether

the

record

is

to

be

deleted

entirely

or

whether

only

its

contents

are

to

be

erased.

LABEL-DL

Specifies

that

the

record

will

be

deleted

from

the

PKDS

entirely.

This

is

the

default

deletion

mode.

TOKEN-DL

Specifies

that

the

only

the

contents

of

the

record

are

to

be

deleted.

The

record

will

still

exist

in

the

PKDS,

but

will

contain

only

binary

zeroes.

label

Direction:

Input

Type:

String

The

label

of

the

record

to

be

deleted.

A

64

byte

character

string.

Restrictions

v

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

v

This

service

cannot

delete

the

PKDS

record

for

a

retained

key.

Usage

Notes

PKA

callable

services

must

be

enabled

for

you

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

PKDS

Record

Delete

(CSNDKRD)

340

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

141.

PKDS

record

delete

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

PKDS

Record

Read

(CSNDKRR)

Reads

a

record

from

the

PKDS

and

returns

the

content

of

the

record.

This

is

true

even

when

the

record

contains

a

null

PKA

token.

Format

CALL

CSNDKRR(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

label,

token_length,

token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

PKDS

Record

Delete

(CSNDKRD)

Chapter

9.

Managing

PKA

Cryptographic

Keys

341

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

This

parameter

is

ignored

by

ICSF.

rule_array

Direction:

Input

Type:

String

This

parameter

is

ignored

by

ICSF.

label

Direction:

Input

Type:

String

The

label

of

the

record

to

be

read.

A

64

byte

character

string.

token_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

area

to

which

the

record

is

to

be

returned.

On

successful

completion

of

this

service,

token_length

will

contain

the

actual

length

of

the

record

returned.

token

Direction:

Output

Type:

String

Area

into

which

the

returned

record

will

be

written.

The

area

should

be

at

least

as

long

as

the

record.

Restriction

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Usage

Notes

PKA

callable

services

must

be

enabled

for

you

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

PKDS

Record

Read

(CSNDKRR)

342

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

142.

PKDS

record

read

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

PKDS

Record

Write

(CSNDKRW)

Writes

over

an

existing

record

in

the

PKDS.

Format

CALL

CSNDKRW(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

label,

token_length,

token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

PKDS

Record

Read

(CSNDKRR)

Chapter

9.

Managing

PKA

Cryptographic

Keys

343

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

the

rule_array

parameter.

Its

value

must

be

0

or

1.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

Each

keyword

is

left-justified

in

8-byte

fields

and

padded

on

the

right

with

blanks.

All

keywords

must

be

in

contiguous

storage.

Table

143.

Keywords

for

PKDS

Record

Write

Keyword

Meaning

Write

Mode

(optional)

specifies

the

circumstances

under

which

the

record

is

to

be

written.

CHECK

Specifies

that

the

record

will

be

written

only

if

a

record

of

type

NULL

with

the

same

label

exists

in

the

PKDS.

If

such

a

record

exists,

ICSF

overwrites

it.

This

is

the

default

condition.

OVERLAY

Specifies

that

the

record

will

be

overwritten

regardless

of

the

current

content

of

the

record.

If

a

record

with

the

same

label

exists

in

the

PKDS,

ICSF

overwrites

it.

label

Direction:

Input

Type:

String

The

label

of

the

record

to

be

overwritten.

A

64

byte

character

string.

token_length

Direction:

Input

Type:

Integer

The

length

of

the

field

containing

the

token

to

be

written

to

the

PKDS.

token

Direction:

Input

Type:

String

PKDS

Record

Write

(CSNDKRW)

344

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

data

to

be

written

to

the

PKDS,

which

is

a

DSS

or

RSA

private

token

in

either

external

or

internal

format,

or

a

DSS

or

RSA

public

token.

Restrictions

v

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

v

This

service

cannot

update

a

PKDS

record

for

a

retained

key.

Usage

Notes

PKA

callable

services

must

be

enabled

for

you

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

144.

PKDS

record

write

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Retained

Key

Delete

(CSNDRKD)

Use

the

retained

key

delete

callable

service

to

delete

a

key

that

has

been

retained

within

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

This

service

also

deletes

the

record

that

contains

the

associated

key

token

from

the

PKDS.

It

also

allows

the

deletion

of

a

retained

key

in

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

even

if

there

isn’t

a

PKDS

record,

or

deletion

of

a

PKDS

record

for

a

retained

key

even

if

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

holding

the

retained

key

is

not

online.

Use

the

rule_array

parameter

specifying

the

FORCE

keyword

and

serial

number

of

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

that

contains

the

retained

key

to

be

deleted.

If

a

PKDS

record

exists

for

the

same

label,

but

the

serial

number

doesn’t

match

the

serial

number

in

rule_array,

the

service

will

fail.

If

any

applications

still

need

the

public

key,

use

public

key

extract

to

create

a

public

key

token

before

deletion

of

the

retained

key.

PKDS

Record

Write

(CSNDKRW)

Chapter

9.

Managing

PKA

Cryptographic

Keys

345

Format

CALL

CSNDRKD(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_label)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

supplied

in

the

rule_array

parameter.

The

value

may

be

0

or

2.

rule_array

Direction:

Input

Type:

Character

String

This

parameter

may

be

FORCE

and

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

serial

number.

key_label

Direction:

Input

Type:

String

A

64-byte

label

of

a

key

that

has

been

retained

in

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Retained

Key

Delete

(CSNDRKD)

346

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restriction

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Usage

Notes

ICSF

calls

the

Security

Server

(RACF)

to

check

authorization

to

use

the

Retained

Key

Delete

service

and

the

label

of

the

key

specified

in

key_label.

Retained

private

keys

are

domain-specific.

Only

the

LPAR

domain

that

created

a

Retained

private

key

can

delete

the

key

via

the

Retained

Key

Delete

service.

When

a

Retained

key

is

deleted

using

the

Retained

Key

Delete

service,

ICSF

records

this

event

in

a

type

82

SMF

record

with

a

subtype

of

15.

If

the

Retained

key

does

not

exist

in

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

and

the

PKDS

record

exists

and

the

domain

that

created

the

retained

key

matches

the

domain

of

the

requestor,

ICSF

deletes

the

PKDS

record.

This

situation

may

occur

if

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

has

been

zeroized

through

TKE

or

the

service

processor.

If

a

PKDS

record

containing

the

retained

key

exists

but

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

holding

the

retained

key

is

not

online,

ICSF

deletes

the

PKDS

record

if

the

FORCE

keyword

is

specified.

If

the

retained

key

exists

on

the

specified

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

but

there

is

no

corresponding

PKDS

record,

ICSF

deletes

the

retained

key

from

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

if

the

FORCE

keyword

is

specified.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

145.

Retained

key

delete

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Retained

Key

Delete

(CSNDRKD)

Chapter

9.

Managing

PKA

Cryptographic

Keys

347

Retained

Key

List

(CSNDRKL)

Use

the

retained

key

list

callable

service

to

list

the

key

labels

of

those

keys

that

have

been

retained

within

all

currently

active

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors.

Format

CALL

CSNDRKL(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

key_label_mask

retained_keys_count

key_labels_count

key_labels)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

supplied

in

the

rule_array

parameter.

The

value

must

be

0.

Retained

Key

List

(CSNDRKL)

348

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

rule_array

Direction:

Input

Type:

Character

String

This

parameter

is

ignored

by

ICSF.

key_label_mask

Direction:

Input

Type:

String

A

64-byte

key

label

mask

that

is

used

to

filter

the

list

of

key

names

returned

by

the

verb.

You

can

use

a

wild

card

(*)

to

identify

multiple

keys

retained

within

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

Note:

If

an

asterisk

(*)

is

used,

it

must

be

the

last

character

in

key_label_mask.

There

can

only

be

one

*.

retained_keys_count

Direction:

Output

Type:

Integer

An

integer

variable

to

receive

the

number

of

retained

keys

stored

within

all

active

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors.

key_labels_count

Direction:

Input/Output

Type:

Integer

On

input

this

variable

defines

the

maximum

number

of

key

labels

to

be

returned.

On

output

this

variable

defines

the

total

number

of

key

labels

returned.

The

value

returned

in

the

retained_keys_count

variable

can

be

larger

if

you

have

not

provided

for

the

return

of

a

sufficiently

large

number

of

key

labels

in

the

key_labels_count

field.

key_labels

Direction:

Output

Type:

String

A

string

variable

where

the

key

label

information

will

be

returned.

This

field

must

be

at

least

64

times

the

key

label

count

value.

The

key

label

information

is

a

string

of

zero

or

more

64-byte

entries.

The

first

64-byte

entry

contains

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

card

serial

number,

and

is

followed

by

one

or

more

64-byte

entries

that

each

contain

a

key

label

of

a

key

retained

within

that

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

The

format

of

the

first

64-byte

entry

is

as

follows:

/nnnnnnnnbbbbb...bbb

where

"/"

is

the

character

"/"

(EBCDIC:

X’61’)

"nnnnnnnn"

is

the

8-byte

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

card

serial

number

"bbbbb...bbb"

is

55

bytes

of

blank

pad

characters

(EBCDIC:

X’40’)

This

information

(64-byte

card

serial

number

entry

followed

by

one

or

more

64-byte

label

entries)

is

repeated

for

each

active

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

that

contains

retained

keys

that

match

the

key_label_mask.

All

data

returned

is

EBCDIC

characters.

The

number

of

bytes

of

information

returned

is

governed

by

the

value

specified

in

Retained

Key

List

(CSNDRKL)

Chapter

9.

Managing

PKA

Cryptographic

Keys

349

the

key_labels_count

field.

The

key_labels

field

must

be

large

enough

to

hold

the

number

of

64-byte

labels

specified

in

the

key_labels_count

field

plus

one

64-byte

entry

for

each

active

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

(a

maximum

of

64

PCI

Cryptographic

Coprocessors

or

PCI

X

Cryptographic

Coprocessors).

Restriction

Caller

must

be

task

mode

and

must

not

be

SRB

mode.

Usage

Notes

Not

all

CCA

platforms

may

support

multiple

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

cards.

In

the

case

where

only

one

card

is

supported,

the

key_labels

field

will

contain

one

or

more

64-byte

entries

that

each

contain

a

key

label

of

a

key

retained

within

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

There

will

be

no

64-byte

entry

or

entries

containing

a

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

card

serial

number.

ICSF

calls

RACF

to

check

authorization

to

use

the

Retained

Key

List

service.

ICSF

caller

must

be

authorized

to

the

key_label_mask

name

including

the

*.

Retained

private

keys

are

domain-specific.

ICSF

lists

only

those

keys

that

were

created

by

the

LPAR

domain

that

issues

the

Retained

Key

List

request.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

146.

Retained

key

list

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

Retained

Key

List

(CSNDRKL)

350

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

10.

Utilities

This

chapter

describes

the

following

callable

services:

v

“Character/Nibble

Conversion

(CSNBXBC

and

CSNBXCB)”

v

“Code

Conversion

(CSNBXEA

and

CSNBXAE)”

on

page

353

v

“ICSF

Query

Facility

(CSFIQF)”

on

page

355

v

“X9.9

Data

Editing

(CSNB9ED)”

on

page

366

Note:

These

services

are

not

dependent

on

the

hardware.

They

will

run

on

any

server.

Character/Nibble

Conversion

(CSNBXBC

and

CSNBXCB)

Use

these

utilities

to

convert

a

binary

string

to

a

character

string

(CSNBXBC)

or

convert

a

character

string

to

a

binary

string

(CSNBXCB).

Format

CALL

CSNBXBC(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

source_text,

target_text,

code_table)

CALL

CSNBXCB(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

source_text,

target_text,

code_table)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

©

Copyright

IBM

Corp.

1997,

2004

351

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Ignored

Type:

String

Reserved

field.

text_length

Direction:

Input/Output

Type:

Integer

On

input,

the

text_length

contains

an

integer

that

is

the

length

of

the

source_text.

The

length

must

be

a

positive

nonzero

value.

On

output,

text_length

is

updated

with

an

integer

that

is

the

length

of

the

target_text.

source_text

Direction:

Input

Type:

String

This

parameter

contains

the

string

to

convert.

target_text

Direction:

Output

Type:

String

The

converted

text

that

the

callable

service

returns.

code_table

Direction:

Input

Type:

String

A

16-byte

conversion

table.

The

code

table

for

binary

to

EBCDIC

conversion

is

X'F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6'.

Usage

Notes

These

services

are

structured

differently

from

the

other

services.

They

run

in

the

caller's

address

space

in

the

caller's

key

and

mode.

ICSF

need

not

be

active

for

you

to

run

either

of

these

services.

No

pre-

or

post-processing

exits

are

enabled

for

these

services,

and

no

calls

to

RACF

are

issued

when

you

run

these

services.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Character/Nibble

Conversion

(CSNBXBC

and

CSNBXCB)

352

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

147.

Character/Nibble

conversion

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

Code

Conversion

(CSNBXEA

and

CSNBXAE)

Use

these

utilities

to

convert

ASCII

data

to

EBCDIC

data

(CSNBXAE)

or

EBCDIC

data

to

ASCII

data

(CSNBXEA).

Format

CALL

CSNBXAE(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

source_text,

target_text,

code_table)

CALL

CSNBXEA(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

source_text,

target_text,

code_table)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

Character/Nibble

Conversion

(CSNBXBC

and

CSNBXCB)

Chapter

10.

Utilities

353

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Ignored

Type:

String

Reserved

field.

text_length

Direction:

Input

Type:

Integer

The

text_length

contains

an

integer

that

is

the

length

of

the

source_text.

The

length

must

be

a

positive

nonzero

value.

source_text

Direction:

Input

Type:

String

This

parameter

contains

the

string

to

convert.

target_text

Direction:

Output

Type:

String

The

converted

text

that

the

callable

service

returns.

code_table

Direction:

Input

Type:

String

A

256-byte

conversion

table.

When

value

is

zero,

this

service

uses

the

default

code

table.

See

Appendix

G,

“EBCDIC

and

ASCII

Default

Conversion

Tables,”

on

page

513

for

contents

of

the

default

table.

Note:

The

Transaction

Security

System

code

table

has

2

additional

8-byte

fields

that

are

not

used

in

the

conversion

process.

ICSF

accepts

either

a

256-byte

or

a

272-byte

code

table,

but

uses

only

the

first

256

bytes

in

the

conversion.

Usage

Notes

These

services

are

structured

differently

than

the

other

services.

They

run

in

the

caller's

address

space

in

the

caller's

key

and

mode.

ICSF

need

not

be

active

for

you

to

run

either

of

these

services.

No

pre-

or

post-processing

exits

are

enabled

for

these

services,

and

no

calls

to

RACF

are

issued

when

you

run

these

services.

Code

Conversion

(CSNBXEA

and

CSNBXAE)

354

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

148.

Code

conversion

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

ICSF

Query

Facility

(CSFIQF)

Use

this

utility

to

retrieve

information

about

ICSF,

the

cryptographic

coprocessors

and

the

CCA

code

in

the

coprocessors.

This

information

includes

the

following:

v

general

information

about

ICSF

v

general

information

about

CCA

code

in

a

coprocessor

v

export

control

information

from

a

coprocessor

v

diagnostic

information

from

a

coprocessor

Coprocessor

information

requests

may

be

directed

to

a

specific

ONLINE

or

ACTIVE

coprocessor

or

any

ACTIVE

coprocessor.

This

service

has

an

interface

similar

to

the

IBM

4758

service

CSUACFQ.

Instead

of

the

output

being

returned

in

the

rule

array,

there

is

a

separate

output

area.

The

format

of

the

data

returned

remains

the

same.

This

service

supports

a

subset

of

the

keywords

supported

by

CSUACFQ.

For

the

same

supported

keywords,

CSFIQF

and

CSUACFQ

return

the

same

coprocessor-specific

information.

The

service

returns

information

elements

in

the

returned_data

field

and

updates

the

returned_data_length

with

the

actual

length

of

the

output

returned_data

field.

Code

Conversion

(CSNBXEA

and

CSNBXAE)

Chapter

10.

Utilities

355

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|

Format

CALL

CSFIQF(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count

rule_array

returned_data_length

returned_data

reserved_data_length

reserved_data)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

data.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

rule_array.

Value

must

be

1

or

2

rule_array

Direction:

Input

Type:

String

ICSF

Query

Service

(CSFIQF)

356

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

||
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|

|

|||
|

Keywords

that

provide

control

information

to

callable

services.

The

keywords

are

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

The

keywords

must

be

in

contiguous

storage.

Specify

one

or

two

of

the

values

in

Table

149.

Table

149.

Keywords

for

ICSF

Query

Service

Keyword

Meaning

Coprocessor

(optional)

-

parameter

is

ignored

for

ICSFSTAT.

COPROCxx

Specifies

the

specific

coprocessor

to

execute

the

request.

xx

may

be

00

through

63

inclusive.

This

may

be

the

processor

number

of

a

PCICC

or

a

PCIXCC.

ANY

Process

request

on

any

ACTIVE

cryptographic

coprocessor.

This

is

the

default.

nnnnnnnn

Specifies

the

8-byte

serial

number

of

the

coprocessor

to

execute

the

request.

Information

to

return

(required)

ICSFSTAT

Get

ICSF

related

status

information.

STATCCA

Get

CCA-related

status

information.

STATCCAE

Get

CCA-related

extended

status

information.

STATCARD

Get

coprocessor-related

basic

status

information.

STATDIAG

Get

coprocessor-related

basic

status

information.

STATEID

Get

coprocessor-related

basic

status

information.

STATEXPT

Get

coprocessor-related

basic

status

information.

returned_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

thereturned_data

parameter.

Currently,

the

value

must

be

at

least

eight

times

the

number

of

elements

returned

for

the

rule_array

keyword

specified.

Allow

additional

space

for

future

enhancements.

On

output,

this

field

will

contain

the

actual

length

of

the

data

returned.

returned_data

Direction:

Output

Type:

String

This

field

will

contain

the

output

from

the

service.

It

has

the

format

of

8-byte

elements

of

character

data.

The

format

of

the

output

returned_data

depends

on

the

value

of

the

input

rule_array

and

the

information

requested.

Different

information

is

returned

depending

on

what

the

input

keyword

is:

STATCARD,

STATCCAE,

STATDIAG,

STATEID

or

STATEXPTS.

For

returned_data

elements

that

contain

numbers,

those

numbers

are

represented

by

numeric

characters

which

are

left-justified

and

padded

on

the

right

with

space

characters.

For

example,

a

returned_data

element

which

contains

the

number

two

with

contain

the

character

string

'2

'.

Table

150.

Output

for

option

STATCCA

Element

Number

Name

Description

ICSF

Query

Service

(CSFIQF)

Chapter

10.

Utilities

357

|
|
|
|

||

||

|

||
|
|

||
|

||
|

|

||

||

||

||

||

||

||
|

|

|||
|

|
|
|
|

|

|||
|

|
|

|
|
|
|

|
|
|
|

||

|
|
||

Table

150.

Output

for

option

STATCCA

(continued)

1

NMK

Status

State

of

the

New

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

partially

complete

key

3

Register

contains

a

complete

key

2

CMK

Status

State

of

the

Current

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

key

3

OMK

Status

State

of

the

Old

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

key

4

CCA

Application

Version

A

character

string

that

identifies

the

version

of

the

CCA

application

program

that

is

running

in

the

coprocessor.

5

CCA

Application

Build

Date

A

character

string

containing

the

build

date

for

the

CCA

application

program

that

is

running

in

the

coprocessor.

6

User

Role

A

character

string

containing

the

Role

identifier

which

defines

the

host

application

user’s

current

authority.

Table

151.

Output

for

option

STATCCAE

Element

Number

Name

Description

1

Symmetric

NMK

Status

State

of

the

Symmetric

New

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

partially

complete

key

3

Register

contains

a

complete

key

2

Symmetric

CMK

Status

State

of

the

Symmetric

Current

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

key

3

Symmetric

OMK

Status

State

of

the

Symmetric

Old

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

key

4

CCA

Application

Version

A

character

string

that

identifies

the

version

of

the

CCA

application

program

that

is

running

in

the

coprocessor.

ICSF

Query

Service

(CSFIQF)

358

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||

||

||

||
|

||

|||

||

||

||

|||

||

||

||

||
|
|
|
|

||
|
|
|
|

|||
|
|

||

|
|
||

|||

||

||

||
|

||

|||

||

||

||

|||

||

||

||

||
|
|
|
|

Table

151.

Output

for

option

STATCCAE

(continued)

5

CCA

Application

Build

Date

A

character

string

containing

the

build

date

for

the

CCA

application

program

that

is

running

in

the

coprocessor.

6

User

Role

A

character

string

containing

the

Role

identifier

which

defines

the

host

application

user’s

current

authority.

7

Asymmetric

NMK

Status

State

of

the

Asymmetric

New

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

partially

complete

key

3

Register

contains

a

complete

key

8

Asymmetric

CMK

Status

State

of

the

Asymmetric

Current

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

key

9

Asymmetric

OMK

Status

State

of

the

Asymmetric

Old

Master

Key

Register:

Number

Meaning

1

Register

is

clear

2

Register

contains

a

key

Table

152.

Output

for

option

STATCARD

Element

Number

Name

Description

1

Number

of

installed

adapters

The

number

of

active

cryptographic

coprocessors

installed

in

the

machine.

This

only

includes

coprocessors

that

have

CCA

software

loaded

(including

those

with

CCA

UDX

software).

2

DES

hardware

level

A

numeric

character

string

containing

an

integer

value

identifying

the

version

of

DES

hardware

that

is

on

the

coprocessor.

3

RSA

hardware

level

A

numeric

character

string

containing

an

integer

value

identifying

the

version

of

RSA

hardware

that

is

on

the

coprocessor.

4

POST

Version

A

character

string

identifying

the

version

of

the

coprocessor’s

Power-On

Self

Test

(POST)

firmware.

The

first

four

characters

define

the

POST0

version

and

the

last

four

characters

define

the

POST1

version.

5

Coprocessor

Operating

System

Name

A

character

string

identifying

the

operating

system

firmware

on

the

coprocessor.

6

Coprocessor

Operating

System

Version

A

character

string

identifying

the

version

of

the

operating

system

firmware

on

the

coprocessor.

7

Coprocessor

Part

Number

A

character

string

containing

the

eight-character

part

number

identifying

the

version

of

the

coprocessor.

8

Coprocessor

EC

Level

A

character

string

containing

the

eight-character

EC

(engineering

change)

level

for

this

version

of

the

coprocessor.

ICSF

Query

Service

(CSFIQF)

Chapter

10.

Utilities

359

|

||
|
|
|
|

|||
|

||
|
|

||

||

||
|

||

||
|
|

||

||

||

||
|
|

||

||

||
|

||

|
|
||

||
|
|
|
|
|

|||
|
|

|||
|
|

|||
|
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

|||
|
|

Table

152.

Output

for

option

STATCARD

(continued)

9

Miniboot

Version

A

character

string

identifying

the

version

of

the

coprocessor’s

miniboot

firmware.

This

firmware

controls

the

loading

of

programs

into

the

coprocessor.

The

first

four

characters

define

the

MiniBoot0

version

and

the

last

four

characters

define

the

MiniBoot1

version.

10

CPU

Speed

A

numeric

character

string

containing

the

operating

speed

of

the

microprocessor

chip,

in

megahertz.

11

Adapter

ID

(Also

see

element

number

15)

A

unique

identifier

manufactured

into

the

coprocessor.

The

coprocessor’s

Adapter

ID

is

an

eight-byte

binary

value

where

the

high-order

byte

is

X'78'

for

an

IBM

4758-001

and

4758-013,

and

is

X'71'

for

an

IBM

4758-002

and

4758-023.

The

remaining

bytes

are

a

random

value.

12

Flash

Memory

Size

A

numeric

character

string

containing

the

size

of

the

flash

EPROM

memory

on

the

coprocessor,

in

64-kilobyte

increments.

13

DRAM

Memory

Size

A

numeric

character

string

containing

the

size

of

the

battery-backed

RAM

on

the

coprocessor,

in

kilobytes.

14

Battery-Backed

Memory

Size

A

numeric

character

string

containing

the

size

of

the

battery-backed

RAM

on

the

coprocessor,

in

kilobytes.

15

Serial

Number

A

character

string

containing

the

unique

serial

number

of

the

coprocessor.

The

serial

number

is

factory

installed

and

is

also

reported

by

the

CLU

utility

in

a

coprocessor

signed

status

message.

Table

153.

Output

for

option

STATDIAG

Element

Number

Name

Description

1

Battery

State

A

numeric

character

string

containing

a

value

which

indicates

whether

the

battery

on

the

coprocessor

needs

to

be

replaced:

Number

Meaning

1

Battery

is

good

2

Battery

should

be

replaced

2

Intrusion

Latch

State

A

numeric

character

string

containing

a

value

which

indicates

whether

the

intrusion

latch

on

the

coprocessor

is

set

or

cleared:

Number

Meaning

1

Latch

is

cleared

2

Latch

is

set

ICSF

Query

Service

(CSFIQF)

360

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||
|
|

|
|
|

|||
|

||
|
|
|
|
|
|
|

|||
|
|

|||
|

||
|
|
|

|||
|
|
|
|

||

|
|
||

|||
|
|

||

||

||

|||
|
|

||

||

||

Table

153.

Output

for

option

STATDIAG

(continued)

3

Error

Log

Status

A

numeric

character

string

containing

a

value

which

indicates

whether

there

is

data

in

the

coprocessor

CCA

error

log.

Number

Meaning

1

Error

log

is

empty

2

Error

log

contains

data

but

is

not

yet

full

3

Error

log

is

full

4

Mesh

Intrusion

A

numeric

character

string

containing

a

value

to

indicate

whether

the

coprocessor

has

detected

tampering

with

the

protective

mesh

that

surrounds

the

secure

module

—

indicating

a

probable

attempt

to

physically

penetrate

the

module.

Number

Meaning

1

No

intrusion

detected

2

Intrusiun

attempt

detected.

5

Low

Voltage

Detected

A

numeric

character

string

containing

a

value

to

indicate

whether

a

power

supply

voltage

was

below

the

minimum

acceptable

level.

This

may

indicate

an

attempt

to

attack

the

security

module.

Number

Meaning

1

Only

acceptable

voltages

have

been

detected

2

A

voltage

has

been

detected

below

the

low-voltage

tamper

threshold

6

High

Voltage

Detected

A

numeric

character

string

containing

a

value

to

indicate

whether

a

power

supply

voltage

was

above

the

maximum

acceptable

level.

This

may

indicate

an

attempt

to

attack

the

security

module.

Number

Meaning

1

Only

acceptable

voltages

have

been

detected

2

A

voltage

has

been

detected

above

the

high-voltage

tamper

threshold

7

Temperature

Range

Exceeded

A

numeric

character

string

containing

a

value

to

indicate

whether

the

temperature

in

the

secure

module

was

outside

of

the

acceptable

limits.

This

may

indicate

an

attempt

to

obtain

information

from

the

module:

Number

Meaning

1

Temperature

is

acceptable

2

Detected

temperature

is

outside

an

acceptable

limit

ICSF

Query

Service

(CSFIQF)

Chapter

10.

Utilities

361

|

|||
|
|

||

||

||
|

||

|||
|
|
|
|

||

||

||

|||
|
|
|

||

||
|

||
|

|||
|
|
|

||

||
|

||
|

||
|
|
|
|
|
|

||

||

||
|

Table

153.

Output

for

option

STATDIAG

(continued)

8

Radiation

Detected

A

numeric

character

string

containing

a

value

to

indicate

whether

radiation

was

detected

inside

the

secure

module.

This

may

indicate

an

attempt

to

obtain

information

from

the

module:

Number

Meaning

1

No

radiation

has

been

detected

2

Radiation

has

been

detected

9,

11,

13,

15,

17

Last

Five

Commands

Run

These

five

rule-array

elements

contain

the

last

five

commands

that

were

executed

by

the

coprocessor

CCA

application.

They

are

in

chronological

order,

with

the

most

recent

command

in

element

9.

Each

element

contains

the

security

API

command

code

in

the

first

four

characters

and

the

subcommand

code

in

the

last

four

characters.

10,

12,

14,16,

18

Last

Five

Return

Codes

These

five

rule-array

elements

contain

the

SAPI

return

codes

and

reason

codes

corresponding

to

the

five

commands

in

rule-array

elements

9,

11,

13,

15,

and

17.

l

Each

element

contains

the

return

code

in

the

first

four

characters

and

the

reason

code

in

the

last

four

characters.

Table

154.

Output

for

option

STATEID

Element

Number

Name

Description

1

EID

The

two

elements

when

concatenated

provide

the

16-byte

EID

value.

Table

155.

Output

for

option

STATEXPT

Element

Number

Name

Description

1

Base

CCA

Services

Availability

A

numeric

character

string

containing

a

value

to

indicate

whether

base

CCA

services

are

available.

Number

Meaning

0

Base

CCA

services

are

not

available

1

Base

CCA

services

are

available

2

CDMF

Availability

A

numeric

character

string

containing

a

value

to

indicate

whether

CDMF

is

available.

Number

Meaning

0

CDMF

encryption

is

not

available

1

CDMF

encryption

is

available

ICSF

Query

Service

(CSFIQF)

362

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||
|
|
|

||

||

||

|
|
|
|
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|
|

||

|
|
||

|||
|
|

||

|
|
||

||
|
|
|
|

||

||
|

||
|

|||
|

||

||
|

||

Table

155.

Output

for

option

STATEXPT

(continued)

3

56-bit

DES

Availability

A

numeric

character

string

containing

a

value

to

indicate

whether

56-bit

DES

encryption

is

available.

Number

Meaning

0

56-bit

DES

encryption

is

not

available

1

56-bit

DES

encryption

is

available

4

Triple-DES

Availability

A

numeric

character

string

containing

a

value

to

indicate

whether

triple-DES

encryption

is

available.

Number

Meaning

0

Triple-DES

encryption

is

not

available

1

Triple-DES

encryption

is

available

5

SET

Services

Availability

A

numeric

character

string

containing

a

value

to

indicate

whether

SET

(Secure

Electronic

Transaction)

services

are

available.

Number

Meaning

0

SET

Services

are

not

available

1

SET

Services

are

available

6

Maximum

Modulus

for

Symmetric

Key

Encryption

A

numeric

character

string

containing

the

maximum

modulus

size

that

is

enabled

for

the

encryption

of

symmetric

keys.

This

defines

the

longest

public-key

modulus

that

can

be

used

for

key

management

of

symmetric-algorithm

keys.

Number

Meaning

0

DSA

not

available

1

DSA

1024

key

size

2

DSA

2048

key

size

For

ICSFSTAT,

the

coprocessor

keyword

is

ignored.

The

output

returned_data

for

the

ICSFSTAT

keyword

is

defined

in

Table

156.

Table

156.

Output

for

option

ICSFSTAT

Element

Number

Name

Description

1

FMID

8-byte

ICSF

FMID

ICSF

Query

Service

(CSFIQF)

Chapter

10.

Utilities

363

|

|||
|
|

||

||
|

||
|

|||
|
|

||

||
|

||
|

|||
|
|

||

||
|

||

||
|
|
|
|
|
|

||

||

||

||
|

|
|

||

|
|
||

|||

Table

156.

Output

for

option

ICSFSTAT

(continued)

2

ICSF

Status

Field

1

Status

of

ICSF

Number

Meaning

0

ICSF

started

1

ICSF

initialized

(CCVINIT

is

on)

2

SYM-MK

valid

(CCVTMK

is

on)

3

PKA

callable

services

enabled

3

ICSF

Status

Field

2

Status

of

ICSF

Number

Meaning

0

64-bit

callers

not

supported

1

64-bit

callers

supported

4

CPACF

CPACF

availability

Number

Meaning

0

CPACF

not

available

1

SHA-1

available

only

2

DES/TDES

enabled

5

AES

AES

availability

for

clear

keys

Number

Meaning

0

AES

not

available

1

AES

software

only

2

AES

hardware

available

6

DSA

DSA

algorithm

availability

Number

Meaning

0

DSA

not

available

1

DSA

1024

key

size

2

DSA

2048

key

size

7

RSA

Signature

RSA

Signature

key

length

Number

Meaning

0

RSA

not

available

1

RSA

1024

key

size

2

RSA

2048

key

size

3

RSA

4096

key

size

8

RSA

Key

Management

RSA

Key

Management

key

length

Number

Meaning

0

RSA

not

available

1

RSA

1024

key

size

2

RSA

2048

key

size

3

RSA

4096

key

size

ICSF

Query

Service

(CSFIQF)

364

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

|||

||

||

||
|

||
|

||

|||

||

||

||

|||

||

||

||

||

|||

||

||

||

||

|||

||

||

||

||

|||

||

||

||

||

||

|||

||

||

||

||

||

Table

156.

Output

for

option

ICSFSTAT

(continued)

9

RSA

Key

Generate

RSA

Key

Generate

Number

Meaning

0

Service

not

available

1

Service

available

-

2048

bit

modulus

2

Service

available

-

4096

bit

modulus

10

Accelerators

Availability

of

clear

RSA

key

accelerators

(PCICAs)

Number

Meaning

0

Not

available

1

At

least

one

available

for

application

use.

2

DES/TDES

enabled

11

Future

Use

Currently

blanks

12

Future

Use

Currently

blanks

reserved_data_length

Direction:

Input

Type:

Integer

The

length

of

the

reserved_data

parameter.

Currently,

the

value

must

be

0.

reserved_data

Direction:

Input

Type:

String

This

field

is

currently

not

used.

Usage

Notes

RACF

will

be

invoked

to

check

authorization

to

use

this

service.

PKA

key

generate

available

indicates

the

PKA

callable

services

are

enabled

and

there

is

at

least

one

PCICC

or

PCIXCC

that

is

ACTIVE

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

157.

ICSF

Query

Service

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

ICSF

Query

Service

(CSFIQF)

Chapter

10.

Utilities

365

|

|||

||

||

||
|

||
|

|||
|

||

||

||
|

||

|||

|||
|

|

|||
|

|

|

|||
|

|

|

|

|
|

|
|

||

||
|
|

|

|
|

|
|

||

Table

157.

ICSF

Query

Service

required

hardware

(continued)

Server

Required

cryptographic

hardware

Restrictions

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

X9.9

Data

Editing

(CSNB9ED)

Use

this

utility

to

edit

an

ASCII

text

string

according

to

the

editing

rules

of

ANSI

X9.9-4.

It

edits

the

text

that

the

source_text

parameter

supplies

according

to

the

following

rules.

The

rules

are

listed

here

in

the

order

in

which

they

are

applied.

It

returns

the

result

in

the

target_text

parameter.

1.

This

service

replaces

each

carriage-return

(CR)

character

and

each

line-feed

(LF)

character

with

a

single-space

character.

2.

It

replaces

each

lowercase

alphabetic

character

(a

through

z)

with

its

equivalent

uppercase

character

(A

through

Z).

3.

It

deletes

all

characters

other

than

the

following:

v

Alphabetics

A...Z

v

Numerics

0...9

v

Space

v

Comma

,

v

Period

.

v

Dash

-

v

Solidus

/

v

Asterisk

*

v

Open

parenthesis

(

v

Close

parenthesis

)

4.

It

deletes

all

leading

space

characters.

5.

It

replaces

all

sequences

of

two

or

more

space

characters

with

a

single-space

character.

Format

CALL

CSNB9ED(

return_code,

reason_code,

exit_data_length,

exit_data,

text_length,

source_text,

target_text)

ICSF

Query

Service

(CSFIQF)

366

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

||
|
|

|

|
|

|
|

|

||

|
|

|
|

||

|

|

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Ignored

Type:

Integer

Reserved

field.

exit_data

Direction:

Ignored

Type:

String

Reserved

field.

text_length

Direction:

Input/Output

Type:

Integer

On

input,

the

text_length

contains

an

integer

that

is

the

length

of

the

source_text.

The

length

must

be

a

positive,

nonzero

value.

On

output,

text_length

is

updated

with

an

integer

that

is

the

length

of

the

edited

text.

source_text

Direction:

Input

Type:

String

This

parameter

contains

the

string

to

edit.

target_text

Direction:

Output

Type:

String

The

edited

text

that

the

callable

service

returns.

Usage

Notes

This

service

is

structured

differently

from

the

other

services.

It

runs

in

the

caller's

address

space

in

the

caller's

key

and

mode.

ICSF

need

not

be

active

for

the

service

to

run.

There

are

no

pre-processing

or

post-processing

exits

that

are

enabled

for

this

service.

While

running,

this

service

does

not

issue

any

calls

to

RACF.

X9.9

Data

Editing

(CSNB9ED)

Chapter

10.

Utilities

367

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

158.

X9.9

data

editing

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

None.

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

None.

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

None.

X9.9

Data

Editing

(CSNB9ED)

368

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

11.

Trusted

Key

Entry

Workstation

Interfaces

The

Trusted

Key

Entry

(TKE)

workstation,

an

optional

feature,

lets

you

load

DES

and

PKA

master

keys,

SYM-MK

and

ASYM-MK

master

keys

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor,

and

securely

add

operational

key-encrypting

keys

and

PIN

keys

to

the

CKDS

on

CCF

systems.

TKE

uses

the

PKSC

interface

callable

service

(CSFPKSC)

for

support

of

the

Cryptographic

Coprocessor

Feature

and

the

PCI

interface

callable

service

(CSFPCI)

for

the

support

of

the

PCI

Cryptographic

Coprocessor

and

PCI

X

Cryptographic

Coprocessor.

This

chapter

describes

the

following

callable

services:

v

“PCI

Interface

Callable

Service

(CSFPCI)”

v

“PKSC

Interface

Callable

Service

(CSFPKSC)”

on

page

373

PCI

Interface

Callable

Service

(CSFPCI)

TKE

uses

this

callable

service

to

send

a

request

to

a

specific

PCI

card

queue

and

remove

the

corresponding

response

when

complete.This

service

also

allows

the

TKE

workstation

to

query

the

list

of

access

control

points

which

may

be

enabled

or

disabled

by

a

TKE

user.

This

service

is

synchronous.

The

return

and

reason

codes

reflect

the

success

or

failure

of

the

queue

functions

rather

than

the

success

or

failure

of

the

actual

PCI

request.

Format

CALL

CSFPCI(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

target_pci_coprocessor,

target_pci_coprocessor_serial_number,

request_block_length,

request_block,

request_data_block_length,

request_data_block,

reply_block_length,

reply_block,

reply_data_block_length,

reply_data_block,

masks_length,

masks_data)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

See

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

for

a

list

of

return

codes.

©

Copyright

IBM

Corp.

1997,

2004

369

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

See

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

for

a

list

of

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

are

supplying

in

rule_array.

The

value

must

be

1.

rule_array

Direction:

Input

Type:

String

Keyword

that

provides

control

information

to

callable

services.

The

keyword

is

left-justified

in

an

8-byte

field

and

padded

on

the

right

with

blanks.

The

keyword

must

be

in

contiguous

storage.

The

keywords

listed

below

are

mutually

exclusive.

Table

159.

Keywords

for

PCI

Interface

Callable

Service

Keyword

Meaning

ACPOINTS

Queries

the

list

of

access

control

points

which

may

be

enabled

or

disabled

by

a

TKE

user.

ACTIVECP

This

keyword

is

a

request

to

call

the

PCI

card

initialization

code

to

revalidate

the

PCI

cards.

After

the

PCI

card

initialization

is

completed,

both

the

64-bit

mask

indicating

which

of

the

PCI

cards

are

online

and

64-bit

mask

indicating

which

of

the

PCI

cards

are

active

will

be

returned.

This

keyword

is

used

by

the

TKE

workstation

code

after

the

ACTIVATE

portion

of

the

domain

zeroize

command.

This

is

to

ensure

that

the

status

of

the

PCI

card

is

accurately

reflected

to

the

users.

See

the

masks_data

parameter

description

for

more

information.

APNUM

Specifies

the

target_pci_coprocessor

field

to

be

used.

SERIALNO

Specifies

the

target_pci_coprocessor_number

field

to

be

used

PCI

Interface

(CSFPCI)

370

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

159.

Keywords

for

PCI

Interface

Callable

Service

(continued)

Keyword

Meaning

PCIMASKS

This

keyword

is

a

request

to

return

both

the

64-bit

mask

indicating

which

of

the

PCI

cards

are

online

and

64-bit

mask

indicating

which

of

the

PCI

cards

are

active.

See

the

masks_data

parameter

description

for

more

information.

XCPMASK

This

keyword

is

a

request

to

return

both

the

64-bit

mask

indicating

which

of

the

PCIXCCs

are

online

and

the

64-bit

mask

indicating

which

of

the

PCIXCCs

are

active.

See

the

masks_data

parameter

description

for

more

information.

Note:

When

the

PCIMASKS,

ACTIVEP,

and

XCPMASK

keywords

are

specified,

the

request_data_block_length,

request_data_block,

reply_data_block_length,

and

the

reply_data_block

parameters

are

ignored.

target_pci_coprocessor

Direction:

Input

Type:

Integer

The

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

card

to

which

this

request

is

directed.

Value

is

1

-

64.

target_pci_coprocessor_serial_number

Direction:

Input

Type:

String

The

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

card

serial

number

to

which

the

request

is

directed.

This

parameter

may

be

used

instead

of

the

target_pci_coprocessor.

The

length

is

8

bytes.

request_block_length

Direction:

Input/Output

Type:

Integer

Length

of

CPRB

and

the

request

block

in

the

request_block

field.

The

maximum

length

allowed

is

5,500

bytes.

request_block

Direction:

Input

Type:

String

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

command

or

query

request

for

the

target

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

This

is

the

complete

CPRB

and

request

block

to

be

processed

by

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

request_data_block_length

Direction:

Input

Type:

Integer

Length

of

request

data

block

in

the

request_data_block

field.

The

maximum

length

allowed

is

6,400

bytes.

The

length

field

must

be

a

multiple

of

4.

PCI

Interface

(CSFPCI)

Chapter

11.

Trusted

Key

Entry

Workstation

Interfaces

371

request_data_block

Direction:

Input

Type:

String

The

data

that

accompanies

the

request_block

field.

reply_block_length

Direction:

Input/Output

Type:

Integer

Length

of

CPRB

and

the

reply

block

in

the

reply_block

field.

The

maximum

length

allowed

is

5,500

bytes.

This

field

is

updated

on

output

with

the

actual

length

of

the

reply_block

field.

reply_block

Direction:

Output

Type:

String

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

reply

from

the

target

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

This

is

the

CPRB

and

reply

block

that

has

been

processed

by

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

reply_data_block_length

Direction:

Input/Output

Type:

Integer

Length

of

reply

block

in

the

reply_data_block

field.

The

maximum

length

allowed

is

6,400

bytes.

This

field

is

updated

on

output

with

the

actual

length

of

the

reply_data_block

field.

This

length

field

must

be

a

multiple

of

4.

For

the

ACPOINTS

keyword,

the

minimum

length

is

2572

bytes.

reply_data_block

Direction:

Output

Type:

String

The

data

that

accompanies

the

reply_block

field.

masks_length

Direction:

Input

Type:

Integer

Length

of

the

reply

data

being

returned

in

the

masks_data

field.

The

length

must

be

32

bytes.

This

field

is

only

valid

when

the

input

rule_array

keyword

is

PCIMASKS,

XCPMASK,

or

ACTIVECP.

For

all

other

rule_array

keywords,

this

field

is

ignored.

masks_data

Direction:

Output

Type:

String

The

data

being

returned

for

all

requests.

The

first

8

bytes

indicate

the

count

of

the

PCI

cards

online.

The

second

8

bytes

indicate

a

bit

mask

of

the

actual

PCI

cards

brought

online.

The

third

8

bytes

indicate

the

count

of

the

PCI

cards

active.

The

fourth

8

bytes

indicate

a

bit

mask

of

the

actual

PCI

cards

that

are

active.

For

the

ACTIVECP

keyword,

if

the

PCI

card

initialization

failed,

the

appropriate

return

code

and

reason

code

is

issued

and

the

masks_data

field

will

contain

zeros.

PCI

Interface

(CSFPCI)

372

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restriction

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

Usage

Note

The

target_pci_coprocessor,

the

target_pci_coprocessor_serial_number,

the

request_block,

the

reply_block,

the

request_block_data_block,

and

the

reply_block_data_block,

are

recorded

in

SMF

Record

Type

82,

subtype

16.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

160.

PCI

Interface

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

PCI

X

Cryptographic

Coprocessor

PKSC

Interface

Callable

Service

(CSFPKSC)

Restriction:

This

service

is

not

supported

on

the

IBM

Eserver

zSeries

990.

TKE

uses

this

callable

service

to

send

a

request

to

a

specific

cryptographic

module

and

receive

a

corresponding

response

when

processing

is

complete.

The

service

is

synchronous.

Note

that

the

return

and

reason

codes

reflect

the

success

or

failure

of

CSFPKSC’s

interaction

with

the

cryptographic

module

rather

than

the

success

or

failure

of

the

cryptographic

module

request.

The

response

block

contains

the

results

of

the

cryptographic

module

request.

Format

CALL

CSFPKSC(

return_code,

reason_code,

exit_data_length,

exit_data,

target_crypto_module,

request_length,

request,

response)

PCI

Interface

(CSFPCI)

Chapter

11.

Trusted

Key

Entry

Workstation

Interfaces

373

|
|

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

target_crypto_module

Direction:

Input

Type:

Integer

Cryptographic

module

to

which

this

request

is

directed.

Value

is

0

or

1.

request_length

Direction:

Input

Type:

Integer

Length

of

request

message

in

the

request

field.

The

maximum

length

allowed

is

1024

bytes.

request

Direction:

Input

Type:

String

PKSC

command

or

query

request

for

the

target

cryptographic

module.

This

is

the

complete

architected

command

or

query

for

the

cryptographic

module

to

process.

response

Direction:

Output

Type:

String

Area

where

the

PKSC

response

from

the

target

cryptographic

module

is

returned

to

the

caller.

The

area

returned

can

be

up

to

512

bytes.

PKSC

Interface

(CSFPKSC)

374

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Restrictions

The

caller

must

be

in

task

mode,

not

in

SRB

mode.

The

format

and

content

of

the

PKSC

request

and

response

areas

are

proprietary

IBM

hardware

information

that

may

be

licensed.

Customers

interested

in

this

information

may

contact

the

IBM

Director

of

Licensing.

For

the

address,

refer

to

“Notices”

on

page

535.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

161.

PKSC

Interface

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

PCI

Cryptographic

Coprocessor

IBM

Eserver

zSeries

990

IBM

Eserver

zSeries

890

This

service

is

not

supported.

PKSC

Interface

(CSFPKSC)

Chapter

11.

Trusted

Key

Entry

Workstation

Interfaces

375

PKSC

Interface

(CSFPKSC)

376

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

This

chapter

describes

the

callable

services

that

support

the

ANSI

X9.17

key

management

standard:

v

“ANSI

X9.17

EDC

Generate

(CSNAEGN)”

v

“ANSI

X9.17

Key

Export

(CSNAKEX)”

on

page

379

v

“ANSI

X9.17

Key

Import

(CSNAKIM)”

on

page

384

v

“ANSI

X9.17

Key

Translate

(CSNAKTR)”

on

page

389

v

“ANSI

X9.17

Transport

Key

Partial

Notarize

(CSNATKN)”

on

page

394

These

services

are

not

supported

on

an

IBM

Eserver

zSeries

990.

The

following

callable

services,

that

are

described

in

other

sections

of

this

book,

also

support

the

ANSI

X9.17

key

management

standard:

v

“Key

Generate

(CSNBKGN)”

on

page

86

v

“Key

Part

Import

(CSNBKPI)”

on

page

102

v

“Key

Token

Build

(CSNBKTB)”

on

page

117

ANSI

X9.17

EDC

Generate

(CSNAEGN)

Use

the

ANSI

X9.17

EDC

generate

callable

service

to

generate

an

error

detection

code

(EDC)

on

a

text

string.

The

service

calculates

the

EDC

by

by

using

a

key

value

of

X'0123456789ABCDEF'

to

generate

a

MAC

on

the

specified

text

string,

as

defined

by

the

ANSI

X9.17

standard.

Restriction:

This

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Format

CALL

CSNAEGN(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

text_length,

text,

chaining_vector,

EDC)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

©

Copyright

IBM

Corp.

1997,

2004

377

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

must

be

0.

rule_array

Direction:

Input

Type:

String

Keywords

that

provide

control

information

to

the

callable

service.

Currently

there

are

no

keywords

that

are

defined

for

this

variable,

but

you

must

declare

the

variable.

To

do

so,

declare

an

area

of

blanks

of

any

length.

text_length

Direction:

Input

Type:

Integer

The

length

of

the

user-supplied

text

parameter

for

which

the

service

should

calculate

the

EDC.

text

Direction:

Input

Type:

String

The

application-supplied

text

field

for

which

the

service

is

to

generate

the

EDC.

chaining_vector

Direction:

Input/Output

Type:

String

An

18-byte

string

that

ICSF

uses

as

a

system

work

area.

The

chaining

vector

permits

data

to

be

chained

from

one

call

to

another.

ICSF

ignores

the

information

in

this

field,

but

you

must

declare

an

18-byte

string.

EDC

Direction:

Output

Type:

String

ANSI

X9.17

EDC

Generate

(CSNAEGN)

378

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

A

9-byte

field

where

the

callable

service

returns

the

EDC

generated

as

two

groups

of

four

ASCII-encoded

hexadecimal

characters

that

are

separated

by

an

ASCII

space

character.

Usage

Notes

The

ANSI

X9.17

standard

states

that

for

EDC,

before

the

service

generates

the

MAC

the

caller

must

first

edit

the

input

text

according

to

section

4.3

of

ANSI

X9.9-1982.

It

is

the

caller’s

responsibility

to

do

the

editing

before

calling

the

ANSI

X9.17

EDC

generate

service.

If

the

supplied

text

is

not

a

multiple

of

8,

the

service

pads

the

text

with

X'00'

up

to

a

multiple

of

8,

as

specified

in

ANSI

X9.9-1.

To

use

this

service

you

must

have

the

ANSI

system

keys

installed

in

the

CKDS.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

162.

ANSI

X9.17

EDC

generate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

ANSI

X9.17

Key

Export

(CSNAKEX)

Use

the

ANSI

X9.17

key

export

callable

service

to

export

a

DATA

key

or

a

pair

of

DATA

keys,

along

with

an

ANSI

key-encrypting

key

(AKEK),

using

the

ANSI

X9.17

protocol.

This

service

converts

a

single

DATA

key,

or

combines

two

DATA

keys,

into

a

single

MAC

key.

You

can

use

the

MAC

key

in

either,

or

both,

the

MAC

generation,

or

MAC

verification

service

to

authenticate

the

service

message.

In

addition,

this

service

also

supports

the

export

of

a

CCA

IMPORTER

or

EXPORTER

KEK.

If

you

export

only

DATA

keys,

the

DATA

keys

are

exported

encrypted

under

the

specified

transport

AKEK.

You

have

the

option

of

applying

the

ANSI

X9.17

key

offset

or

key

notarization

process

to

the

transport

AKEK.

If

you

export

both

DATA

keys

and

an

AKEK,

the

DATA

keys

are

exported

encrypted

under

the

key-encrypting

key

that

is

also

being

exported.

The

AKEK

is

exported

encrypted

under

the

specified

transport

AKEK.

You

have

the

option

of

applying

the

ANSI

X9.17

key

offset

or

key

notarization

process

to

the

transport

AKEK.

The

ANSI

X9.17

key

offset

process

is

applied

to

the

source

AKEK.

Use

the

CKT

keyword

to

ANSI

X9.17

EDC

Generate

(CSNAEGN)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

379

|
|

specify

whether

to

use

an

offset

of

0

or

1.

Use

an

offset

of

0

when

sending

the

DATA

key

to

a

key

translation

center

along

with

a

transport

AKEK.

Note:

You

must

create

the

cryptographic

service

message

and

maintain

the

offset

counter

value

that

is

associated

with

the

AKEK.

Restriction:

This

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Format

CALL

CSNAKEX(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

origin_identifier,

destination_identifier,

source_data_key_1_identifier,

source_data_key_2_identifier,

source_key_encrypting_key_identifier,

transport_key_identifier,

outbound_KEK_count,

target_data_key_1,

target_data_key_2,

target_key_encrypting_key,

MAC_key_token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

assigned

to

it

that

indicates

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

ANSI

X9.17

Key

Export

(CSNAKEX)

380

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

can

be

0

to

4.

If

you

specify

0,

the

callable

service

does

not

perform

either

notarization

or

offset.

rule_array

Direction:

Input

Type:

String

Zero

to

four

keywords

that

provide

control

information

to

the

callable

service.

See

the

list

of

keywords

in

Table

163.

The

keywords

must

be

in

8

to

32

bytes

of

contiguous

storage.

Left-justify

each

keyword

in

its

own

8-byte

location

and

pad

on

the

right

with

blanks.

You

must

specify

this

parameter

even

if

you

specify

no

keyword.

Table

163.

Keywords

for

ANSI

X9.17

Key

Export

Rule

Array

Keyword

Meaning

Notarization

and

Offset

Rule

(optional

with

no

defaults)

CPLT-NOT

Complete

ANSI

X9.17

notarization

using

the

value

obtained

from

the

outbound_KEK_count

parameter.

The

transport

key

that

the

transport_key_identifier

specifies

must

be

partially

notarized.

NOTARIZE

Perform

notarization

processing

using

the

values

obtained

from

the

origin_identifier,

destination_identifier,

and

outbound_KEK_count

parameters.

OFFSET

Perform

ANSI

X9.17

key

offset

processing

using

the

origin

counter

value

obtained

from

the

outbound_KEK_count

parameter.

Parity

Rule

(optional)

ENFORCE

Stop

processing

if

any

source

keys

do

not

have

odd

parity.

This

is

the

default

value.

IGNORE

Ignore

the

parity

of

the

source

key.

Source

Key

Rule

(optional)

CCA-EXP

Export

a

CCA

EXPORTER

KEK.

Requires

NOCV

keys

to

be

enabled.

CCA-IMP

Export

a

CCA

IMPORTER

KEK.

Requires

NOCV

keys

to

be

enabled.

1-KD

Export

one

DATA

key.

This

is

the

default

parameter.

1-KD+KK

Export

one

DATA

key

and

a

single-length

AKEK.

1-KD+*KK

Export

one

DATA

key

and

a

double-length

AKEK.

2-KD

Export

two

DATA

keys.

2-KD+KK

Export

two

DATA

keys

and

a

single-length

AKEK.

2-KD+*KK

Export

two

DATA

keys

and

a

double-length

AKEK.

Data

Key

Offset

Value

(optional)

ANSI

X9.17

Key

Export

(CSNAKEX)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

381

Table

163.

Keywords

for

ANSI

X9.17

Key

Export

Rule

Array

(continued)

Keyword

Meaning

CKT

Valid

only

when

a

key-encrypting

key

is

being

exported

along

with

a

DATA

key.

If

this

keyword

is

specified,

any

DATA

keys

being

exported

are

encrypted

under

the

key-encrypting

key

using

an

offset

value

of

0.

If

this

keyword

is

not

specified

(this

is

the

default),

any

DATA

keys

being

exported

are

encrypted

under

the

key-encrypting

key

using

an

offset

value

of

1.

The

CKT

keyword

is

not

valid

with

CCA-IMP

or

CCA-EXP

keywords.

origin_identifier

Direction:

Input

Type:

String

This

parameter

is

valid

if

the

NOTARIZE

keyword

is

specified.

It

specifies

an

area

that

contains

a

16-byte

string

that

contains

the

origin

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

This

parameter

must

be

a

minimum

of

four,

non-space

characters.

ICSF

ignores

this

parameter

if

you

specify

the

OFFSET

or

CPLT-NOT

keyword

in

the

rule_array

parameter.

destination_identifier

Direction:

Input

Type:

String

This

parameter

is

valid

if

the

NOTARIZE

keyword

is

specified.

It

specifies

an

area

that

contains

a

16-byte

string.

The

16-byte

string

contains

the

destination

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

This

parameter

must

be

a

minimum

of

four,

non-space

characters.

ICSF

ignores

this

parameter

if

you

specify

the

OFFSET

or

CPLT-NOT

keyword

in

the

rule_array

parameter.

source_data_key_1_identifier

Direction:

Input/Output

Type:

String

A

64-byte

area

that

contains

an

internal

token,

or

the

label

of

a

CKDS

entry

that

contains

a

DATA

key.

ICSF

ignores

this

field

if

you

specify

CCA-EXP

or

CCA-IMP

in

the

rule_array

parameter.

source_data_key_2_identifier

Direction:

Input/Output

Type:

String

A

64-byte

area

that

contains

an

internal

token,

or

the

label

of

a

CKDS

entry

that

contains

a

DATA

key.

This

parameter

is

valid

only

if

you

specify

2-KD,

2-KD+KK,

or

2-KD+*KK

as

the

source

key

rule

keyword

on

the

rule_array

parameter.

ICSF

ignores

this

parameter

if

you

specify

other

source

key

rule

keywords,

or

if

you

specify

CCA-EXP

or

CCA-IMP

in

the

rule_array

parameter.

source_key_encrypting_key_identifier

Direction:

Input/Output

Type:

String

ANSI

X9.17

Key

Export

(CSNAKEX)

382

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

A

64-byte

area

that

contains

an

internal

token,

or

the

label

of

a

CKDS

entry

that

contains

either

an

AKEK,

a

CCA

IMPORTER,

or

a

CCA

EXPORTER

key.

If

this

parameter

contains

an

AKEK,

you

must

specify

1-KD+KK,

2-KD+KK,

1-KD+*KK,

or

2-KD+*KK

for

the

source

key

rule

on

the

rule_array

parameter.

If

this

parameter

contains

a

CCA

IMPORTER

or

CCA

EXPORTER

key,

you

must

specify

CCA-IMP

or

CCA-EXP,

respectively,

for

the

source

key

rule

on

the

rule_array

parameter.

ICSF

ignores

this

field

if

you

specify

any

other

source

key

rule

keywords.

transport_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

area

that

contains

either

an

internal

token

or

a

label

that

refers

to

an

internal

token

for

an

AKEK.

outbound_KEK_count

Direction:

Input

Type:

String

An

8-byte

area

that

contains

an

ASCII

count

that

is

used

in

the

notarization

process.

The

count

is

an

ASCII

character

string,

left-justified,

and

padded

on

the

right

by

ASCII

space

characters.

ICSF

interprets

a

single

ASCII

space

character

as

a

zero

counter.

The

maximum

value

is

99999999.

target_data_key_1

Direction:

Output

Type:

String

A

16-byte

area

where

the

exported

data

key

1

is

returned.

The

enciphered

key

is

an

ASCII-encoded

hexadecimal

string.

target_data_key_2

Direction:

Output

Type:

String

A

16-byte

area

where

the

exported

data

key

2

is

returned.

The

enciphered

key

is

an

ASCII-encoded

hexadecimal

string.

This

key

is

returned

if

2-KD,

2-KD+KK,

or

2-KD+*KK

is

specified

in

the

rule_array

parameter.

target_key_encrypting_key

Direction:

Output

Type:

String

If

the

rule_array

parameter

specifies

1-KD+KK,

2-KD+KK,

1-KD+*KK,

or

2-KD+*KK,

this

parameter

specifies

a

32-byte

area

that

contains

the

exported

AKEK.

If

the

rule_array

parameter

specifies

CCA-IMP

or

CCA-EXP,

this

parameter

specifies

a

32-byte

area

that

contains

the

exported

key-encrypting

key

(KEK).

The

enciphered

key

is

an

ASCII-encoded

hexadecimal

string.

If

the

rule_array

parameter

specifies

1-KD+KK

or

2-KD+KK,

the

16-byte

ASCII-encoded

output

is

left-justified

in

the

field

and

the

rest

of

the

field

remains

unchanged.

MAC_key_token

Direction:

Output

Type:

String

ANSI

X9.17

Key

Export

(CSNAKEX)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

383

A

64-byte

area

that

contains

an

internal

token

for

a

MAC

key

that

is

intended

for

use

in

the

MAC

generation

or

MAC

verification

process.

This

field

is

the

EXCLUSIVE

OR

of

the

two

supplied

DATA

keys

when

the

source

key

rule

in

the

rule_array

parameter

specifies

2-KD,

2-KD+KK,

or

2-KD+*KK.

When

the

source

key

rule

specifies

1-KD,

the

DATA

key

is

converted

to

a

MAC

key

and

returned

as

an

internal

token

in

this

field.

Usage

Notes

You

must

install

the

ANSI

system

keys

in

the

CKDS

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

164.

ANSI

X9.17

key

export

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

ANSI

X9.17

Key

Import

(CSNAKIM)

Use

the

ANSI

X9.17

key

import

callable

service

to

import

a

DATA

key

or

a

pair

of

DATA

keys,

along

with

an

ANSI

key-encrypting

key

(AKEK),

using

the

ANSI

X9.17

protocol.

This

service

converts

a

single

DATA

key,

or

combines

two

DATA

keys,

into

a

single

MAC

key.

The

MAC

key

can

be

used

in

either,

or

both,

the

MAC

generation

or

the

MAC

verification

service

to

authenticate

the

service

message.

In

addition,

this

service

also

supports

the

import

of

the

KEK

to

a

CCA

IMPORTER

or

EXPORTER

KEK,

as

well

as

an

AKEK.

If

you

are

importing

only

DATA

keys,

this

service

assumes

that

the

DATA

keys

are

encrypted

under

the

specified

transport

AKEK.

You

have

the

option

of

applying

the

ANSI

X9.17

key

offset

or

key

notarization

process

to

the

transport

AKEK.

If

you

are

importing

both

DATA

keys

and

an

AKEK,

this

service

assumes

that

the

AKEK

is

encrypted

under

the

specified

transport

AKEK.

This

service

also

assumes

that

the

DATA

keys

are

encrypted

under

the

source

AKEK

that

is

also

being

imported.

You

have

the

option

of

applying

the

ANSI

X9.17

key

offset

or

key

notarization

process

to

the

transport

AKEK.

ICSF

applies

the

ANSI

X9.17

key

offset

process

to

the

source

AKEK

with

an

offset

of

1.

ANSI

X9.17

Key

Export

(CSNAKEX)

384

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Note:

You

must

create

the

cryptographic

service

message

and

maintain

the

offset

counter

value

that

is

associated

with

the

AKEK.

Restriction:

This

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Format

CALL

CSNAKIM(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

origin_identifier,

destination_identifier,

source_data_key_1,

source_data_key_2,

source_key_encrypting_key,

inbound_KEK_count,

transport_key_identifier,

target_data_key_1,

target_data_key_2,

target_key_encrypting_key,

MAC_key_token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

ANSI

X9.17

Key

Import

(CSNAKIM)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

385

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

can

be

0

to

3.

If

you

specify

0,

ICSF

does

not

perform

either

notarization

or

offset.

rule_array

Direction:

Input

Type:

String

Zero

to

three

keywords

that

provide

control

information

to

the

callable

service.

See

the

list

of

keywords

in

Table

165.

The

keywords

must

be

in

8

to

24

bytes

of

contiguous

storage.

Each

of

the

keywords

must

be

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

You

must

specify

this

parameter

even

is

you

do

not

specify

a

keyword.

Table

165.

Keywords

for

ANSI

X9.17

Key

Import

Rule

Array

Keyword

Meaning

Notarization

and

Offset

Rule

(optional

with

no

defaults)

CPLT-NOT

Complete

ANSI

X9.17

notarization

using

the

value

obtained

from

the

inbound_KEK_count

parameter.

The

transport

key

that

the

transport_key_identifier

specifies

must

be

partially

notarized.

NOTARIZE

Perform

notarization

processing

using

the

values

obtained

from

the

origin_identifier,

destination_identifier,

and

inbound_KEK_count

parameters.

OFFSET

Perform

ANSI

X9.17

key

offset

processing

using

the

origin

counter

value

obtained

from

the

inbound_KEK_count

parameter.

Parity

Rule

(optional)

ENFORCE

Stop

processing

if

any

source

keys

do

not

have

odd

parity.

This

is

the

default

value.

IGNORE

Ignore

the

parity

of

the

source

key.

Source

Key

Rule

(optional)

CCA-EXP

Import

a

key-encrypting

key

as

a

CCA

EXPORTER.

Requires

NOCV

keys

to

be

enabled.

CCA-IMP

Import

a

key-encrypting

key

as

a

CCA

IMPORTER.

Requires

NOCV

keys

to

be

enabled.

1-KD

Import

one

DATA

key.

This

is

the

default

parameter.

1-KD+KK

Import

one

DATA

key

and

a

single-length

AKEK.

1-KD+*KK

Import

one

DATA

key

and

a

double-length

AKEK.

2-KD

Import

two

DATA

keys.

2-KD+KK

Import

two

DATA

keys

and

a

single-length

AKEK.

2-KD+*KK

Import

two

DATA

keys

and

a

double-length

AKEK.

origin_identifier

Direction:

Input

Type:

String

ANSI

X9.17

Key

Import

(CSNAKIM)

386

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

This

parameter

is

valid

if

you

specify

the

NOTARIZE

keyword

in

the

rule_array

parameter.

It

specifies

an

area

that

contains

a

16-byte

string

that

contains

the

origin

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

The

string

must

be

a

minimum

of

four,

non-space

characters.

This

parameter

is

ignored

if

the

OFFSET

or

CPLT-NOT

keyword

is

specified.

destination_identifier

Direction:

Input

Type:

String

This

parameter

is

valid

if

you

specify

the

NOTARIZE

keyword

in

the

rule_array

parameter.

It

specifies

an

area

that

contains

a

16-byte

string

that

contains

the

destination

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

It

must

be

a

minimum

of

four

non-space

characters.

This

parameter

is

ignored

if

the

OFFSET

or

CPLT-NOT

keyword

is

specified.

source_data_key_1

Direction:

Input

Type:

String

A

16-byte

area

that

contains

the

enciphered

DATA

key

to

be

imported.

You

must

supply

the

DATA

key

as

an

ASCII-encoded

hexadecimal

string.

The

field

is

ignored

if

the

rule_array

parameter

specifies

CCA-IMP

or

CCA-EXP.

source_data_key_2

Direction:

Input

Type:

String

A

16-byte

area

that

contains

the

second

enciphered

DATA

key

to

be

imported.

This

parameter

is

valid

only

if

the

rule_array

parameter

specifies

KK,

or

2-KD+*KK.

You

must

supply

the

key

as

an

ASCII-encoded

hexadecimal

string.

This

field

is

ignored

if

the

rule_array

parameter

specifies

other

source

key

rules.

source_key_encrypting_key

Direction:

Input

Type:

String

A

16-

or

32-byte

area

that

contains

an

enciphered

AKEK,

if

the

rule_array

parameter

specifies

either

1-KD+KK,

2-KD+KK,

1-KD+*KK,

or

2-KD+*KK.

This

parameter

specifies

a

KEK,

if

the

rule_array

parameter

specifies

either

CCA-IMP

or

CCA-EXP.

The

area

is

16

bytes

if

the

rule_array

parameter

specifies

a

single-length

AKEK

(1-KD+KK

or

2-KD+KK).

The

area

is

32

bytes

if

the

rule_array

parameter

specifies

a

double-length

AKEK

(1-KD+*KK

or

2-KD+*KK).

You

must

supply

the

key

as

an

ASCII-encoded

hexadecimal

string.

This

field

is

ignored

if

the

rule_array

parameter

specifies

1-KD

or

2-KD.

inbound_KEK_count

Direction:

Input

Type:

String

An

8-byte

area

that

contains

an

ASCII

count

for

use

in

the

notarization

process.

The

count

is

an

ASCII

character

string,

left-justified,

and

padded

on

the

right

by

space

characters.

ICSF

interprets

a

single

space

character

as

a

zero

counter.

The

maximum

value

is

99999999.

ANSI

X9.17

Key

Import

(CSNAKIM)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

387

transport_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

area

that

contains

an

internal

token

or

a

label

that

refers

to

an

internal

token

for

an

AKEK.

target_data_key_1

Direction:

Output

Type:

String

A

64-byte

area

where

the

imported

data

key

1

is

returned

as

an

ICSF

internal

key

token.

ICSF

does

not

support

the

direct

import

by

label.

target_data_key_2

Direction:

Output

Type:

String

A

64-byte

area

where

the

imported

data

key

2

is

returned

as

an

ICSF

internal

key

token.

ICSF

does

not

support

the

direct

import

by

label.

This

key

is

returned

if

2-KD,

2-KD+KK,

or

2-KD+*KK

is

specified

in

the

rule_array

parameter.

target_key_encrypting_key

Direction:

Output

Type:

String

A

64-byte

area

where

the

imported

key-encrypting

key

is

returned

as

an

ICSF

internal

key

token.

If

the

rule_array

parameter

specifies

1-KD+KK,

1-KD+*KK,

2-KD+KK,

or

2-KD+*KK,

the

internal

key

token

contains

an

AKEK.

If

the

rule_array

parameter

specifies

either

CCA-IMP

or

CCA-EXP,

the

internal

token

contains

a

CCA

IMPORTER

or

a

CCA

EXPORTER,

respectively.

MAC_key_token

Direction:

Output

Type:

String

A

64-byte

area

that

contains

an

internal

token

for

a

MAC

key

that

is

intended

for

use

in

the

MAC

generation

or

MAC

verification

function.

This

field

is

the

EXCLUSIVE

OR

of

the

two

imported

DATA

keys

if

the

source

key

rule

in

the

rule_array

parameter

specifies

2-KD,

2-KD+KK,

or

2-KD+*KK.

If

the

source

key

rule

in

the

rule_array

parameter

specifies

1-KD,

ICSF

converts

the

DATA

key

to

a

MAC

key

and

returns

it

as

an

internal

token

in

this

field.

Usage

Notes

You

must

install

the

ANSI

system

keys

in

the

CKDS

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

ANSI

X9.17

Key

Import

(CSNAKIM)

388

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

166.

ANSI

X9.17

key

import

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

ANSI

X9.17

Key

Translate

(CSNAKTR)

Use

the

ANSI

X9.17

key

translate

callable

service

to

translate

a

key

from

encryption

under

one

AKEK

to

encryption

under

another

AKEK.

In

a

single

service

call

you

can

translate

either

one

or

two

encrypted

DATA

keys,

or

a

single

encrypted

key-encrypting

key.

In

addition,

this

service

also

imports

the

supplied

DATA

keys.

If

the

rule_array

parameter

specifies

2-KD,

this

service

exclusive-ORs

the

two

imported

DATA

keys

and

converts

the

result

into

a

MAC

key,

which

it

returns

in

the

MAC_key_token

field.

The

MAC

key

is

used

to

perform

MAC

processing

on

the

service

message.

If

the

rule_array

specifies

keywords

1-KD

and

2-KD,

ICSF

translates

only

DATA

keys.

The

service

uses

the

inbound

transport

key-encrypting

key

to

decrypt

the

DATA

keys,

and

uses

the

outbound

transport

key-encrypting

key

to

reencrypt

the

DATA

keys.

The

service

uses

the

ANSI

X9.17

key

offset

process

during

decryption

or

importing.

The

service

can

use

the

ANSI

X9.17

notarization

process

during

reencryption

or

exporting

of

the

DATA

keys.

If

the

rule_array

parameter

specifies

1-KD+KK

or

1-KD+*KK

,

the

service

translates

only

the

AKEK.

The

service

uses

the

inbound

transport

key-encrypting

key

to

decrypt

or

import

the

input

AKEK,

applying

the

ANSI

X9.17

offset

process.

The

service

uses

the

outbound

transport

key-encrypting

key

to

reencipher

or

export

the

AKEK,

with

or

without

applying

the

optional

ANSI

X9.17

notarization

process.

ICSF

uses

the

inbound

key-encrypting

key

that

is

being

translated

to

import

the

supplied

DATA

key,

applying

the

ANSI

X9.17

offset

processing

only

with

an

offset

of

0.

The

DATA

key

is

imported

as

above

then

converted

to

a

MAC

key

token

and

returned

in

the

MAC_key_token

field.

Restriction:

This

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

ANSI

X9.17

Key

Import

(CSNAKIM)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

389

|
|

Format

CALL

CSNAKTR(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

inbound_KEK_count,

inbound_transport_key_identifier,

inbound_data_key_1,

inbound_data_key_2,

inbound_key_encrypting_key,

outbound_origin_identifier,

outbound_destination_identifier,

outbound_KEK_count,

outbound_transport_key_identifier,

outbound_data_key_1,

outbound_data_key_2,

outbound_key_encrypting_key,

MAC_key_token)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

ANSI

X9.17

Key

Translate

(CSNAKTR)

390

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

The

value

can

be

0

to

3.

If

you

specify

0,

the

service

does

not

perform

notarization

or

offset.

rule_array

Direction:

Input

Type:

String

Zero

to

three

keywords

that

provide

control

information

to

the

callable

service.

See

the

list

of

keywords

in

Table

167.

The

keywords

must

be

in

8

to

24

bytes

of

contiguous

storage.

Each

of

the

keywords

must

be

left-justified

in

its

own

8-byte

location

and

padded

on

the

right

with

blanks.

You

must

specify

this

parameter

even

if

do

not

specify

any

keywords.

Table

167.

Keywords

for

ANSI

X9.17

Key

Translate

Rule

Array

Keyword

Meaning

Notarization

Rule

(optional

with

no

defaults)

CPLT-NOT

Complete

ANSI

X9.17

notarization

using

the

value

obtained

from

the

outbound_KEK_count

parameter.

The

outbound

transport

key

specified

must

be

partially

notarized.

NOTARIZE

Perform

notarization

processing

using

the

values

obtained

from

the

outbound_origin_identifier,

the

outbound_destination_identifier,and

the

outbound_KEK_count.

Parity

Rule

(optional)

ENFORCE

Stop

processing

if

any

source

keys

do

not

have

odd

parity.

This

is

the

default

value.

IGNORE

Ignore

the

parity

of

the

source

key.

Source

Key

Rule

(optional)

1-KD

Import

and

translate

one

DATA

key.

This

is

the

default

parameter.

1-KD+KK

Import

and

translate

one

DATA

key

and

a

single-length

AKEK.

1-KD+*KK

Import

and

translate

one

DATA

key

and

a

double-length

AKEK.

2-KD

Import

and

translate

two

DATA

keys.

inbound_KEK_count

Direction:

Input

Type:

String

An

8-byte

area

that

contains

an

ASCII

count

for

use

in

the

offset

process.

The

count

is

an

ASCII

character

string,

left-justified,

and

padded

on

the

right

by

space

characters.

ICSF

interprets

a

single

space

character

as

a

zero

counter.

The

maximum

value

is

99999999.

inbound_transport_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

area

that

contains

either

an

internal

token,

or

a

label

that

refers

to

an

internal

token

for

an

AKEK.

ANSI

X9.17

Key

Translate

(CSNAKTR)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

391

inbound_data_key_1

Direction:

Input

Type:

String

A

16-byte

area

that

contains

the

enciphered

DATA

key

that

the

service

is

importing

and

translating.

You

must

specify

the

DATA

key

as

an

ASCII-encoded

hexadecimal

string.

inbound_data_key_2

Direction:

Input

Type:

String

A

16-byte

area

that

contains

the

second

enciphered

DATA

key

that

the

service

is

importing

and

translating.

This

field

is

valid

if

the

rule_array

parameter

specifies

2-KD.

You

must

supply

the

key

as

an

ASCII-encoded

hexadecimal

string.

This

field

is

ignored

if

the

rule_array

parameter

specifies

other

source

key

rules.

inbound_key_encrypting_key

Direction:

Input

Type:

String

A

16-

or

32-byte

area

that

contains

an

enciphered

AKEK

that

the

service

is

to

translate.

The

area

is

16

bytes

if

the

rule_array

parameter

specifies

a

source

key

rule

of

single-length

AKEK.

The

area

is

32

bytes

if

the

source

key

rule

specifies

a

double-length

AKEK

(1-KD+*KK).

You

must

supply

the

key

as

an

ASCII-encoded

hexadecimal

string.

ICSF

ignores

this

field

if

the

rule_array

specifies

either

1-KD

or

2-KD.

outbound_origin_identifier

Direction:

Input

Type:

String

This

parameter

is

valid

if

the

rule_array

parameter

specifies

a

keyword

of

NOTARIZE.

It

specifies

an

area

that

contains

a

16-byte

string

that

contains

the

origin

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

The

string

must

be

a

minimum

of

four

non-space

characters.

ICSF

ignores

this

field

if

the

rule_array

parameter

specifies

a

keyword

of

CPLT-NOT.

outbound_destination_identifier

Direction:

Input

Type:

String

This

parameter

is

valid

if

the

rule_array

parameter

specifies

a

keyword

of

NOTARIZE.

It

specifies

an

area

that

contains

a

16-byte

string

that

contains

the

destination

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

The

string

must

be

a

minimum

of

four

non-space

characters.

This

parameter

is

ignored

if

the

rule_array

parameter

specifies

a

keyword

of

CPLT-NOT.

outbound_KEK_count

Direction:

Input

Type:

String

ANSI

X9.17

Key

Translate

(CSNAKTR)

392

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

An

8-byte

area

that

contains

an

ASCII

count

for

use

in

the

notarization

process.

The

count

is

an

ASCII

character

string,

left-justified,

and

padded

on

the

right

by

space

characters.

ICSF

interprets

a

single

space

character

as

a

zero

counter.

The

maximum

value

is

99999999.

outbound_transport_key_identifier

Direction:

Input/Output

Type:

String

A

64-byte

area

that

contains

either

an

internal

token,

or

a

label

that

refers

to

an

internal

token

for

an

AKEK.

outbound_data_key_1

Direction:

Output

Type:

String

A

16-byte

area

where

the

service

returns

the

translated

data

key

1

an

ASCII-encoded

hexadecimal

string.

The

service

returns

the

key

only

if

the

rule_array

specifies

1-KD

or

2-KD.

ICSF

ignores

this

field

if

the

rule_array

parameter

specifies

either

1-KD+KK

or

1-KD+*KK.

outbound_data_key_2

Direction:

Output

Type:

String

A

16-byte

area

where

the

service

returns

the

translated

data

key

2

as

an

ASCII-encoded

hexadecimal

string.

The

service

returns

the

key

only

if

the

rule_array

parameter

specifies

2-KD.

ICSF

ignores

this

field

if

the

rule_array

parameter

specifies

1-KD,

1-KD+KK,

or

1-KD+*KK.

outbound_key_encrypting_key

Direction:

Output

Type:

String

A

16-

or

32-byte

area

that

contains

the

enciphered,

translated

AKEK.

The

area

is

16

bytes

if

the

rule_array

parameter

specifies

a

single-length

AKEK

(1-KD+KK).

The

area

is

32

bytes

if

the

rule_array

parameter

specifies

a

double-length

AKEK

(1-KD+*KK).

The

service

returns

the

key

as

an

ASCII-encoded

hexadecimal

string.

ICSF

ignores

this

field

if

the

rule_array

parameter

specifies

either

1-KD

or

2-KD.

MAC_key_token

Direction:

Output

Type:

String

A

64-byte

area

that

contains

an

internal

token

for

a

MAC

key

that

is

intended

for

use

in

the

MAC

generation

or

MAC

verification

process.

This

field

is

the

EXCLUSIVE

OR

of

the

two

imported

DATA

keys

when

the

rule_array

parameter

specifies

2-KD

for

the

source

key

rule.

If

the

rule_array

parameter

specifies

1-KD,

the

service

returns

the

imported

key

in

this

field

as

an

ICSF

internal

key

token.

Usage

Notes

You

must

install

the

ANSI

system

keys

in

the

CKDS

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

ANSI

X9.17

Key

Translate

(CSNAKTR)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

393

Table

168.

ANSI

X9.17

key

translate

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

ANSI

X9.17

Transport

Key

Partial

Notarize

(CSNATKN)

Use

the

ANSI

X9.17

transport

key

partial

notarize

callable

service

to

preprocess

an

ANSI

X9.17

transport

key-encrypting

key

with

origin

and

destination

identifiers.

ICSF

completes

the

notarization

process

when

you

use

the

partially

notarized

key

in

the

ANSI

X9.17

key

export,

ANSI

X9.17

key

import,

or

ANSI

X9.17

key

translate

services

and

specify

the

CPLT-NOT

rule_array

keyword.

Note:

You

cannot

reverse

the

partial

notarization

process.

If

you

want

to

keep

the

original

value

of

the

AKEK,

you

must

record

the

value.

Restriction:

This

service

is

not

supported

on

an

IBM

Eserver

zSeries

990.

Format

CALL

CSNATKN(

return_code,

reason_code,

exit_data_length,

exit_data,

rule_array_count,

rule_array,

origin_identifier,

destination_identifier,

source_transport_key_identifier,

target_transport_key_identifier)

Parameters

return_code

Direction:

Output

Type:

Integer

The

return

code

specifies

the

general

result

of

the

callable

service.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

return

codes.

ANSI

X9.17

Key

Translate

(CSNAKTR)

394

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

reason_code

Direction:

Output

Type:

Integer

The

reason

code

specifies

the

result

of

the

callable

service

that

is

returned

to

the

application

program.

Each

return

code

has

different

reason

codes

that

are

assigned

to

it

that

indicate

specific

processing

problems.

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes”

lists

the

reason

codes.

exit_data_length

Direction:

Input/Output

Type:

Integer

The

length

of

the

data

that

is

passed

to

the

installation

exit.

The

length

can

be

from

X'00000000'

to

X'7FFFFFFF'

(2

gigabytes).

The

data

is

identified

in

the

exit_data

parameter.

exit_data

Direction:

Input/Output

Type:

String

The

data

that

is

passed

to

the

installation

exit.

rule_array_count

Direction:

Input

Type:

Integer

The

number

of

keywords

you

supplied

in

the

rule_array

parameter.

Currently

no

rule_array

keywords

are

defined;

thus,

this

field

must

be

set

to

0.

rule_array

Direction:

Input

Type:

String

Currently,

no

rule_array

keywords

are

defined

for

this

service.

You

must

still

specify

this

parameter

for

possible

future

use.

origin_identifier

Direction:

Input

Type:

String

A

16-byte

string

that

contains

the

origin

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

The

string

must

be

a

minimum

of

four

non-space

characters.

destination_identifier

Direction:

Input

Type:

String

A

16-byte

string

that

contains

the

destination

identifier

that

is

defined

in

the

ANSI

X9.17

standard.

The

string

must

be

ASCII

characters,

left-justified,

and

padded

on

the

right

by

space

characters.

The

string

must

be

a

minimum

of

four

non-space

characters.

source_transport_key_identifier

Direction:

Input/Output

Type:

String

ANSI

X9.17

Transport

Key

Partial

Notarize

(CSNATKN)

Chapter

12.

Managing

Keys

According

to

the

ANSI

X9.17

Standard

395

A

64-byte

area

that

contains

either

an

internal

token,

or

a

label

of

an

internal

token

for

an

AKEK

that

permits

notarization.

target_transport_key_identifier

Direction:

Output

Type:

String

A

64-byte

area

where

the

internal

token

of

a

partially

notarized

AKEK

will

be

returned.

This

AKEK

cannot

be

used

directly

as

a

notarizing

KEK

until

the

notarization

process

has

been

completed.

To

do

this,

specify

CPLT-NOT

as

the

rule_array

keyword

in

any

service

in

which

you

intend

to

use

this

key

as

a

notarizing

KEK.

Usage

Notes

You

must

install

the

ANSI

system

keys

in

the

CKDS

to

use

this

service.

The

following

table

lists

the

required

cryptographic

hardware

for

each

server

type

and

describes

restrictions

for

this

callable

service.

Table

169.

ANSI

X9.17

transport

key

partial

notarize

required

hardware

Server

Required

cryptographic

hardware

Restrictions

S/390

G5

Enterprise

Server

S/390

G6

Enterprise

Server

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

800

IBM

Eserver

zSeries

900

Cryptographic

Coprocessor

Feature

IBM

Eserver

zSeries

990IBM

Eserver

zSeries

890

This

callable

service

is

not

supported.

ANSI

X9.17

Transport

Key

Partial

Notarize

(CSNATKN)

396

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

This

appendix

includes

the

following

information:

v

Return

codes

and

reason

codes

issued

on

the

completion

of

a

call

to

an

ICSF

callable

service

v

Return

codes

and

reason

codes

issued

on

the

completion

of

a

process

on

a

PCI

Cryptographic

Accelerator,

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

(referred

to

as

cryptographic

accelerators

or

coprocessors)

.

v

ICSF

return

and

reason

codes

can

be

specified

in

the

installation

options

data

set

on

the

REASONCODES

parameter.

If

the

REASONCODES

option

is

not

specified,

the

default

of

REASONCODES(ICSF)

is

used.

A

REASONCODES

line

in

the

description

indicates

a

conversion

was

done

as

a

result

of

the

REASONCODES

option

in

the

installation

options

data

set.

If

you

specified

REASONCODES(ICSF)

and

your

service

was

processed

on

a

PCICC

or

PCIXCC,

a

TSS

reason

code

may

be

returned

if

there

is

no

1–1

corresponding

ICSF

reason

code.

Return

Codes

and

Reason

Codes

This

section

describes

return

codes

and

reason

codes.

The

TSS

return

and

reason

codes

have

been

merged

with

the

ICSF

codes

in

this

release.

If

there

is

a

REASONCODES

line

in

the

description,

it

will

indicate

an

alternate

reason

code

you

should

investigate.

Each

return

code

returns

unique

reason

codes

to

your

application

program.

The

reason

codes

associated

with

each

return

code

are

described

in

the

following

sections.

The

reason

code

tables

present

the

hexadecimal

code

followed

by

the

decimal

code

in

parenthesis.

Return

Codes

Table

170

lists

return

codes

from

the

ICSF

callable

services.

Table

170.

Return

Codes

Return

Code

Hex

(Decimal)

Description

Return

Code

0

(0)

The

call

to

the

service

was

successfully

processed.

See

the

reason

code

for

more

information.

Return

Code

4

(4)

The

call

to

the

service

was

successfully

processed,

but

some

minor

event

occurred

during

processing.

See

the

reason

code

for

more

information.

User

action:

Review

the

reason

code.

Return

Code

8

(8)

The

call

to

the

service

was

unsuccessful.

The

parameters

passed

into

the

call

are

unchanged,

except

for

the

return

code

and

reason

code.

There

are

rare

examples

where

output

areas

are

filled,

but

their

contents

are

not

guaranteed

to

be

accurate.

These

are

described

under

the

appropriate

reason

code

descriptions.

The

reason

code

identifies

which

error

was

found.

User

action:

Review

the

reason

code,

correct

the

problem,

and

retry

the

call.

©

Copyright

IBM

Corp.

1997,

2004

397

|
|
|

Table

170.

Return

Codes

(continued)

Return

Code

Hex

(Decimal)

Description

Return

Code

C

(12)

The

call

to

the

service

could

not

be

processed

because

ICSF

was

not

active,

ICSF

found

something

wrong

in

its

environment,

a

TSS

security

product

is

not

available,

or

a

processing

error

occurred

in

a

TSS

product.

The

parameters

passed

into

the

call

are

unchanged,

except

for

the

return

code

and

reason

code.

User

action:

Review

the

reason

code

and

take

the

appropriate

action.

Return

Code

10

(16)

The

call

to

the

service

could

not

be

processed

because

ICSF

found

something

seriously

wrong

in

its

environment

or

a

processing

error

occurred

in

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

The

parameters

passed

into

the

call

are

unchanged,

except

for

the

return

code

and

reason

code.

User

action:

Review

the

reason

code

and

contact

your

system

programmer.

Reason

Codes

for

Return

Code

0

(0)

Table

171

lists

reason

codes

returned

from

callable

services

that

give

return

code

0.

Table

171.

Reason

Codes

for

Return

Code

0

(0)

Reason

Code

Hex

(Decimal)

Description

0

(0)

The

call

to

the

ICSF

callable

service

was

successfully

processed.

No

error

was

encountered.

User

action:

None.

2(2)

The

call

to

the

ICSF

callable

service

was

successfully

processed.

A

minor

error

was

detected.

A

key

used

in

the

service

did

not

have

odd

parity.

This

key

could

be

one

provided

by

you

as

a

parameter

or

be

one

(perhaps

of

many)

that

was

retrieved

from

the

in-storage

CKDS.

User

action:

Refer

to

the

reason

code

obtained

when

the

key

passed

to

this

service

was

transformed

into

operational

form

using

clear

key

import,

multiple

clear

key

import,

key

import,

secure

key

import,

or

multiple

secure

key

import

callable

services.

Check

if

any

of

the

services

prepared

an

even

parity

key.

If

one

of

these

service

reported

an

even

parity

key,

you

need

to

know

which

key

is

affected.

If

none

of

these

services

identified

an

even

parity

key,

then

the

even

parity

key

detected

was

found

on

the

CKDS.

Report

this

to

your

administrator.

REASONCODES:

ICSF

4(4)

4

(4)

The

call

to

the

ICSF

callable

service

was

successfully

processed.

A

minor

error

was

detected.

A

key

used

in

the

service

did

not

have

odd

parity.

This

key

could

be

one

provided

by

you

as

a

parameter

or

be

one

(perhaps

of

many)

that

was

retrieved

from

the

in-storage

CKDS.

User

action:

Refer

to

the

reason

code

obtained

when

the

key

passed

to

this

service

was

transformed

into

operational

form

using

clear

key

import,

multiple

clear

key

import,

key

import,

secure

key

import,

or

multiple

secure

key

import

callable

services.

Check

if

any

of

the

services

prepared

an

even

parity

key.

If

one

of

these

service

reported

an

even

parity

key,

you

need

to

know

which

key

is

affected.

If

none

of

these

services

identified

an

even

parity

key,

then

the

even

parity

key

detected

was

found

on

the

CKDS.

Report

this

to

your

administrator.

REASONCODES:TSS

2(2)

398

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

171.

Reason

Codes

for

Return

Code

0

(0)

(continued)

Reason

Code

Hex

(Decimal)

Description

8

(8)

The

key

record

read

callable

service

attempted

to

read

a

NULL

key

record.

The

returned

key

token

contains

only

binary

zeros.

User

action:

None

required.

2710

(10000)

The

call

to

the

callable

service

was

successfully

processed.

The

keys

in

one

or

more

key

identifiers

have

been

reenciphered

from

encipherment

under

the

old

master

key

to

encipherment

under

the

current

master

key.

User

action:

If

you

obtained

your

operational

token

from

a

file,

replace

the

token

in

the

file

with

the

token

just

returned

from

ICSF.

Management

of

internal

tokens

is

a

user

responsibility.

Consider

the

possible

case

where

the

token

for

this

call

was

fetched

from

a

file,

and

where

this

reason

code

is

ignored.

For

the

next

invocation

of

the

service,

the

token

will

be

fetched

from

the

file

again,

and

the

service

will

give

this

reason

code

again.

If

this

continues

until

the

master

key

is

changed

again,

then

the

next

use

of

the

internal

token

will

fail.

2711

(10001)

The

call

to

the

callable

service

was

successfully

processed.

The

keys

in

one

or

more

key

identifiers

were

encrypted

under

the

old

master

key.

The

callable

service

was

unable

to

reencipher

the

key.

Reason

Codes

for

Return

Code

4

(4)

Table

172

lists

reason

codes

returned

from

callable

services

that

give

return

code

4.

Table

172.

Reason

Codes

for

Return

Code

4

(4)

Reason

Code

Hex

(Decimal)

Description

0

(0)

Master

key

verification

warning.

There

is

a

possible

mismatch

between

the

master

key

verification

pattern

in

the

CKDS

and

the

system

master

key

verification

pattern.

User

action:

Ensure

that

you

specified

the

correct

CKDS.

If

you

specified

the

correct

CKDS,

check

to

see

if

the

data

set

has

been

corrupted.

01

(01)

The

verification

test

failed.

REASONCODES:

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

FA0

(4000),

1F40

(8000),

1F44

(8004),

2328

(9000),

232C

(9004),

2AF8

(11000),

or

36B8

(14008).

013(019)

This

is

a

combination

reason

code

value.

The

call

to

the

Encrypted

PIN

verify

(PINVER)

callable

service

was

successfully

processed.

However,

the

trial

PIN

that

was

supplied

does

not

match

the

PIN

in

the

PIN

block.

User

action:

The

PIN

is

incorrect.

If

you

expected

the

reason

code

to

be

zero,

check

that

you

are

using

the

correct

key.

REASONCODES:

ICSF

BD4

(3028)

In

addition,

a

key

in

a

key

identifier

token

has

been

reenciphered.

User

action:

See

reason

code

10000

(return

code

0)

for

more

detail

about

the

key

reencipherment.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

399

Table

172.

Reason

Codes

for

Return

Code

4

(4)

(continued)

Reason

Code

Hex

(Decimal)

Description

014

(020)

The

input

text

length

was

odd

rather

than

even.

The

right

nibble

of

the

last

byte

is

padded

with

X'00'.

User

action:

None

REASONCODES:

ICSF

7D0

(2000)

0A6

(166)

The

control

vector

is

not

valid

because

of

parity

bits,

anti-variant

bits,

inconsistent

KEK

bits,

or

because

bits

59

to

62

are

not

zero.

0B3

(179)

The

control

vector

keywords

that

are

in

the

rule

array

are

ignored.

1AD

(429)

The

digital

signature

verify

ICSF

callable

service

completed

successfully

but

the

supplied

digital

signature

failed

verification.

User

action:

None

REASONCODES:

ICSF

2AF8

(11000)

7D0

(2000)

The

input

text

length

was

odd

rather

than

even.

The

right

nibble

of

the

last

byte

is

padded

with

X'00'.

User

action:

None

REASONCODES:

TSS

014

(020)

BBA

(3002)

The

call

to

the

CVV

Verify

callable

service

was

successfully

processed.

However,

the

trial

CVV

that

was

supplied

does

not

match

the

generated

CVV.

In

addition,

a

key

in

the

key

identifier

has

been

reenciphered.

REASONCODES:

See

reason

code

4000

(return

code

4)

for

more

details

about

the

incorrect

CVV.

See

reason

code

10000

(return

code

0)

for

more

details

about

the

key

reencipherment.

BD4

(3028)

The

call

to

the

Encrypted

PIN

verify

(PINVER)

callable

service

was

successfully

processed.

However,

the

trial

PIN

that

was

supplied

does

not

match

the

PIN

in

the

PIN

block.

User

action:

The

PIN

is

incorrect.

If

you

expected

the

reason

code

to

be

zero,

check

that

you

are

using

the

correct

key.

REASONCODES:

TSS

013

(019)

BD8

(3032)

This

is

a

combination

reason

code

value.

The

call

to

the

Encrypted

PIN

verify

(PINVER)

callable

service

was

successfully

processed.

However,

the

trial

PIN

that

was

supplied

does

not

match

the

PIN

in

the

PIN

block.

In

addition,

a

key

in

a

key

identifier

token

has

been

reenciphered.

REASONCODES:

See

reason

code

3028

(return

code

4)

for

more

detail

about

the

incorrect

PIN.

See

reason

code

10000

(return

code

0)

for

more

detail

about

the

key

reencipherment.

FA0

(4000)

The

CVV

did

not

verify.

User

action:

Regenerate

the

CVV.

REASONCODES:

TSS

01

(01)

400

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

172.

Reason

Codes

for

Return

Code

4

(4)

(continued)

Reason

Code

Hex

(Decimal)

Description

1F40

(8000)

The

call

to

the

MAC

verification

(MACVER)

callable

service

was

successfully

processed.

However,

the

trial

MAC

that

you

supplied

does

not

match

that

of

the

message

text.

User

action:

The

message

text

may

have

been

modified,

such

that

its

contents

cannot

be

trusted.

If

you

expected

the

reason

code

to

be

zero,

check

that

you

are

using

the

correct

key.

Check

that

all

segments

of

the

message

were

presented

and

in

the

correct

sequence.

Also

check

that

the

trial

MAC

corresponds

to

the

message

being

authenticated.

REASONCODES:

TSS

01

(01)

1F44

(8004)

This

is

a

combination

reason

code

value.

The

call

to

the

MAC

verification

(MACVER)

callable

service

was

successfully

processed.

However,

the

trial

MAC

that

was

supplied

does

not

match

the

message

text

provided.

In

addition,

a

key

in

a

key

identifier

token

has

been

reenciphered.

User

action:

See

reason

code

8000

(return

code

4)

for

more

detail

about

the

incorrect

MAC.

See

reason

code

10000

(return

code

0)

for

more

detail

about

the

key

reencipherment.

REASONCODES:

TSS

01

(01)

2328

(9000)

The

call

to

the

key

test

service

processed

successfully,

but

the

key

test

pattern

was

not

verified.

User

action:

Investigate

why

the

key

failed.

After

determining

this,

you

can

reinstall

or

regenerate

the

key.

REASONCODES:

TSS

01

(01)

232C

(9004)

This

is

a

combination

reason

code

value.

The

call

to

the

key

test

service

processed

successfully,

but

the

key

test

pattern

was

not

verified.

Also,

the

key

token

has

been

reenciphered.

User

action:

Investigate

why

the

key

failed.

After

determining

this,

you

can

reinstall

or

regenerate

the

key.

REASONCODES:

TSS

01

(01)

2AF8

(11000)

The

digital

signature

verify

ICSF

callable

service

completed

successfully

but

the

supplied

digital

signature

failed

verification.

User

action:

None

REASONCODES:

TSS

1AD

(429)

36B8

(14008)

The

PKDS

record

failed

the

authentication

test.

User

action:

The

record

has

changed

since

ICSF

wrote

it

to

the

PKDS.

The

user

action

is

application

dependent.

REASONCODES:

TSS

01

(01)

Reason

Codes

for

Return

Code

8

(8)

Table

173

on

page

402

lists

reason

codes

returned

from

callable

services

that

give

return

code

8.

Most

of

these

reason

codes

indicate

that

the

call

to

the

service

was

unsuccessful.

No

cryptographic

processing

took

place.

Therefore,

no

output

parameters

were

filled.

Exceptions

to

this

are

noted

in

the

descriptions.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

401

Table

173.

Reason

Codes

for

Return

Code

8

(8)

Reason

Code

Hex

(Decimal)

Description

00C

(012)

A

key

identifier

was

passed

to

a

service

or

token.

It

is

checked

in

detail

to

ensure

that

it

is

a

valid

token,

and

that

the

fields

within

it

are

valid

values.

There

is

a

token

validation

value

(TVV)

in

the

token,

which

is

a

non-cryptographic

value.

This

value

was

again

computed

from

the

rest

of

the

token,

and

compared

to

the

stored

TVV.

If

these

two

values

are

not

the

same,

this

reason

code

is

returned.

User

action:

The

contents

of

the

token

have

been

altered

because

it

was

created

by

ICSF

or

TSS.

Review

your

program

to

see

how

this

could

have

been

caused.

016

(022)

The

ID

number

in

the

request

field

is

not

valid.

The

PAN

data

is

incorrect

for

VISA

CVV.

017

(023)

Offset

length

not

correct

for

data

to

be

inserted.

018

(024)

A

key

identifier

was

passed

to

a

service.

The

master

key

verification

pattern

in

the

token

shows

that

the

key

was

created

with

a

master

key

that

is

neither

the

current

master

key

nor

the

old

master

key.

Therefore,

it

cannot

be

reenciphered

to

the

current

master

key.

User

action:

Re-import

the

key

from

its

importable

form

(if

you

have

it

in

this

form),

or

repeat

the

process

you

used

to

create

the

operational

key

form.

If

you

cannot

do

one

of

these,

you

cannot

repeat

any

previous

cryptographic

process

that

you

performed

with

this

token.

REASONCODES:

ICSF

2714

(10004)

019

(025)

A

length

parameter

has

an

incorrect

value.

The

value

in

the

length

parameter

could

have

been

zero

(when

a

positive

value

was

required)

or

a

negative

value.

If

the

supplied

value

was

positive,

it

could

have

been

larger

than

your

installation’s

defined

maximum,

or

for

MDC

generation

with

no

padding,

it

could

have

been

less

than

16

or

not

an

even

multiple

of

8.

User

action:

Check

the

length

you

specified.

If

necessary,

check

your

installation’s

maximum

length

with

your

ICSF

administrator.

Correct

the

error.

01D

(029)

A

key

identifier

was

passed

to

a

service

or

token.

It

is

checked

in

detail

to

ensure

that

it

is

a

valid

token,

and

that

the

fields

within

it

are

valid

values.

There

is

a

token

validation

value

(TVV)

in

the

token,

which

is

a

non-cryptographic

value.

This

value

was

again

computed

from

the

rest

of

the

token,

and

compared

to

the

stored

TVV.

If

these

two

values

are

not

the

same,

this

reason

code

is

returned.

User

action:

The

contents

of

the

token

have

been

altered

because

it

was

created

by

ICSF

or

TSS.

Review

your

program

to

see

how

this

could

have

been

caused.

REASONCODES:

ICSF

2710

(10000)

01E

(030)

A

key

label

was

supplied

for

a

key

identifier

parameter.

This

label

is

the

label

of

a

key

in

the

in-storage

CKDS

or

the

PKDS.

Either

the

key

could

not

be

found,

or

a

key

record

with

that

label

and

the

specific

type

required

by

the

ICSF

callable

service

could

not

be

found.

For

a

retained

key

label,

this

error

code

is

also

returned

if

the

key

is

not

found

in

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

specified

in

the

PKDS

record.

User

action:

Check

with

your

administrator

if

you

believe

that

this

key

should

be

in

the

in-storage

CKDS

or

the

PKDS.

The

administrator

may

be

able

to

bring

it

into

storage.

If

this

key

cannot

be

in

storage,

use

a

different

label.

REASONCODES:

ICSF

271C

(10012)

01F

(031)

The

control

vector

did

not

specify

a

DATA

key.

REASONCODES:

ICSF

272C

(10028)

402

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

020

(032)

You

called

the

key

record

create

callable

service,

but

the

key_label

parameter

syntax

was

incorrect.

User

action:

Correct

key_label

syntax.

REASONCODES:

ICSF

3EA0

(16032)

021

(033)

The

rule_array

parameter

contents

or

a

parameter

value

is

not

correct.

User

action:

Refer

to

the

rule_array

parameter

described

in

this

document

under

the

appropriate

callable

service

for

the

correct

value.

REASONCODES:

ICSF

7E0

(2016)

022

(034)

A

rule_array

keyword

combination

is

not

valid.

REASONCODES:

ICSF

7E0

(2016)

023

(035)

The

rule_array_count

parameter

contains

a

number

that

is

not

valid.

User

action:

Refer

to

the

rule_array_count

parameter

described

in

this

document

under

the

appropriate

callable

service

for

the

correct

value.

REASONCODES:

ICSF

7DC

(2012)

027

(039)

A

control

vector

violation

occurred.

REASONCODES:

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

272C

(10028),

2730

(10032),

2734

(10036),

2744

(10052),

2768

(10088),

278C

(10124),

3E90

(16016),

2724

(10020).

028

(040)

The

service

code

does

not

contain

numerical

data.

REASONCODES:

ICSF

BE0

(3040)

029

(041)

The

key_form

parameter

is

neither

IM

nor

OP.

Most

constants,

these

included,

can

be

supplied

in

lower

or

uppercase.

Note

that

this

parameter

is

4

bytes

long,

so

the

value

IM

or

OP

is

not

valid.

They

must

be

padded

on

the

right

with

blanks.

User

action:

Review

the

value

provided

and

change

it

to

IM

or

OP,

as

required.

02A

(042)

The

expiration

date

is

not

numeric

(X'F0'

through

X'F9').

The

parameter

must

be

character

representations

of

numerics

or

hexadecimal

data.

User

action:

Review

the

numeric

parameters

or

fields

required

in

the

service

that

you

called

and

change

to

the

format

and

values

required.

REASONCODES:

ICSF

BE0

(3040)

02B

(043)

The

key_length

parameter

passed

to

the

key

generate

callable

service

holds

a

value

that

is

not

valid.

User

action:

Review

the

value

provided

and

change

it

as

appropriate.

REASONCODES:

See

also

the

ICSF

reason

code

80C

(2060)

or

2710

(10000)

for

additional

information.

02C

(044)

The

key

record

create

callable

service

requires

that

the

key

created

not

already

exist

in

the

CKDS.

A

key

of

the

same

label

was

found.

User

action:

Make

sure

the

application

specifies

the

correct

label.

If

the

label

is

correct,

contact

your

ICSF

security

administrator

or

system

programmer.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

403

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

02D

(045)

An

input

character

is

not

in

the

code

table.

User

action:

Correct

the

code

table

or

the

source

text.

02F

(047)

A

source

key

token

is

unusable

because

it

contains

data

that

is

not

valid

or

undefined.

REASONCODES:

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

83C

(2108),

2754

(10068),

2758

(10072),

275C

(10076),

2AFC

(11004),

2B04

(11012),

2B08

(11016),

2B10

(11024).

Please

see

those

reason

codes

for

additional

information.

030

(048)

One

or

more

keys

has

a

master

key

verification

pattern

that

is

not

valid.

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

2714

(10004)

and

2B0C

(11020)

Please

see

those

reason

codes

for

additional

information.

031

(049)

Key

identifiers

contain

a

version

number.

The

version

number

in

a

supplied

key

identifier

(internal

or

external)

is

inconsistent

with

one

or

more

fields

in

the

key

identifier,

making

the

key

identifier

unusable.

User

action:

Use

a

token

containing

the

required

version

number.

REASONCODES:

ICSF

2738

(10040)

033

(051)

The

encipher

and

decipher

callable

services

sometime

require

text

(plaintext

or

ciphertext)

to

have

a

length

that

is

an

exact

multiple

of

8

bytes.

Padding

schemes

always

create

ciphertext

with

a

length

that

is

an

exact

multiple

of

8.

If

you

want

to

decipher

ciphertext

that

was

produced

by

a

padding

scheme,

and

the

text

length

is

not

an

exact

multiple

of

8,

then

an

error

has

occurred.

The

CBC

mode

of

enciphering

requires

a

text

length

that

is

an

exact

multiple

of

8.

The

ciphertext

translate

callable

service

cannot

process

ciphertext

whose

length

is

not

an

exact

multiple

of

8.

User

action:

Review

the

requirements

of

the

service

you

are

using.

Either

adjust

the

text

you

are

processing

or

use

another

process

rule.

038

(056)

The

master

key

verification

pattern

in

the

OCV

is

not

valid.

03D

(061)

The

keyword

supplied

with

the

key_type

parameter

is

not

valid.

REASONCODES:

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

2720

(10016),

2740

(10048),

274C

(10060).

Please

see

those

reason

codes

for

additional

information.

03E

(062)

The

source

key

was

not

found.

REASONCODES:

ICSF

271C

(10012)

03F

(063)

This

check

is

based

on

the

first

byte

in

the

key

identifier

parameter.

The

key

identifier

provided

is

either

an

internal

token,

where

an

external

or

null

token

was

required;

or

an

external

or

null

token,

where

an

internal

token

was

required.

The

token

provided

may

be

none

of

these,

and,

therefore,

the

parameter

is

not

a

key

identifier

at

all.

Another

cause

is

specifying

a

key_type

of

IMP-PKA

for

a

key

in

importable

form.

User

action:

Check

the

type

of

key

identifier

required

and

review

what

you

have

provided.

Also

check

that

your

parameters

are

in

the

required

sequence.

REASONCODES:

ICSF

7F8

(2040)

404

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

040

(064)

The

supplied

private

key

can

be

used

only

for

digital

signature.

Key

management

services

are

disallowed.

User

action:

Supply

a

key

with

key

management

enabled.

OR

This

service

requires

an

RSA

private

key

that

is

for

signature

use.

The

specified

key

may

be

used

for

key

management

purposes

only.

User

action:

Re-invoke

the

service

with

a

supported

private

key.

041

(065)

The

RSA

public

or

private

key

specified

a

modulus

length

that

is

incorrect

for

this

service.

User

action:

Re-invoke

the

service

with

an

RSA

key

with

the

proper

modulus

length.`

REASONCODES:

ICSF

2B18

(11032)

and

2B58

(11096)

042

(066)

The

recovered

encryption

block

was

not

a

valid

PKCS-1.2

or

zero-pad

format.

(The

format

is

verified

according

to

the

recovery

method

specified

in

the

rule-array.)

If

the

recovery

method

specified

was

PKCS-1.2,

refer

to

PKCS-1.2

for

the

possible

error

in

parsing

the

encryption

block.

User

action:

Ensure

that

the

parameters

passed

to

CSNDSYI

are

correct.

Possible

causes

for

this

error

are

incorrect

values

for

the

RSA

private

key

or

incorrect

values

in

the

RSA_enciphered_key

parameter,

which

must

be

formatted

according

to

PKCS-1.2

or

zero-pad

rules

when

created.

REASONCODES:

ICSF

2B20

(11040)

043

(067)

DES

or

RSA

encryption

failed.

044

(068)

DES

or

RSA

decryption

failed.

048

(072)

The

value

specified

for

length

parameter

for

a

key

token,

key,

or

text

field

is

not

valid.

User

action:

Correct

the

appropriate

length

field

parameter.

REASONCODES:

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

2AF8

(11000)

and

2B14

(11028).

Please

see

those

reason

codes

for

additional

information.

05A

(90)

Access

is

denied

for

this

request.

User

action:

If

access

to

the

service

is

to

be

allowed,

enable

the

required

access

control

point(s)

via

the

TKE.

064

(100)

A

request

was

made

to

the

Clear

PIN

generate

or

Encrypted

PIN

verify

callable

service,

and

the

PIN_length

parameter

has

a

value

outside

the

valid

range.

The

valid

range

is

from

4

to

16,

inclusive.

User

action:

Correct

the

value

in

the

PIN_length

parameter

to

be

within

the

valid

range

from

4

to

16.

REASONCODES:

ICSF

BBC

(3004)

065

(101)

A

request

was

made

to

the

Clear

PIN

generate

callable

service,

and

the

PIN_check_length

parameter

has

a

value

outside

the

valid

range.

The

valid

range

is

from

4

to

16,

inclusive.

User

action:

Correct

the

value

in

the

PIN_check_length

parameter

to

be

within

the

valid

range

from

4

to

16.

REASONCODES:

ICSF

BC0

(3008)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

405

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

066

(102)

The

value

of

the

decimalization

table

is

not

valid.

REASONCODES:

ICSF

BE0

(3040)

067

(103)

The

value

of

the

validation

date

is

not

valid.

REASONCODES:

ICSF

BE0

(3040)

068

(104)

The

value

of

the

customer-selected

PIN

is

not

valid

or

the

PIN

length

does

not

match

the

value

specified.

REASONCODES:

ICSF

BE0

(3040)

069

(105)

A

request

was

made

to

the

Clear

PIN

generate

callable

service,

and

the

PIN_check_length

parameter

has

a

value

outside

the

valid

range.

The

valid

range

is

from

4

to

16,

inclusive.

User

action:

Correct

the

value

in

the

PIN_check_length

parameter

to

be

within

the

valid

range

from

4

to

16.

REASONCODES:

ICSF

BE0

(3040)

06A

(106)

A

request

was

made

to

the

Encrypted

PIN

translate

or

the

Encrypted

PIN

verify

callable

service,

and

the

PIN

block

value

in

the

input_PIN_profile

or

output_PIN_profile

parameter

has

a

value

that

is

not

valid.

User

action:

Correct

the

PIN

block

value.

06B

(107)

A

request

was

made

to

the

Encrypted

PIN

translate

callable

service

and

the

format

control

value

in

the

input_PIN_profile

or

output_PIN_profile

parameter

has

a

value

that

is

not

valid.

The

valid

values

are

NONE

or

PBVC.

User

action:

Correct

the

format

control

value

to

either

NONE

or

PBVC.

06C

(108)

The

value

of

the

PAD

data

is

not

valid.

REASONCODES:

ICSF

B08

(3016)

06D

(109)

The

extraction

method

keyword

is

not

valid.

06E

(110)

The

value

of

the

PAD

data

is

not

numeric

character

date.

REASONCODES:

ICSF

BE0

(3040)

06F

(111)

A

request

was

made

to

the

Encrypted

PIN

translate

callable

service.

The

sequence_number

parameter

was

required,

but

was

not

the

integer

value

99999.

User

action:

Specify

the

integer

value

99999.

074

(116)

A

request

was

made

to

the

Clear

PIN

generate

callable

service.

The

clear_PIN

supplied

as

part

of

the

data_array

parameter

for

an

GBP-PINO

request

begins

with

a

zero

(0).

This

value

is

not

valid.

User

action:

Correct

the

clear_PIN

value.

REASONCODES:

ICSF

BBC

(3004)

079

(121)

The

source_key_identifier

or

inbound_key_identifier

you

supplied

in

an

ANSI

X9.17

service

is

not

a

valid

ASCII

hexadecimal

string.

User

action:

Check

that

you

specified

a

valid

ASCII

string

for

the

source_key_identifier

or

inbound_key_identifier

parameter.

406

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

07A

(122)

The

outbound_KEK_count

or

inbound_KEK_count

you

supplied

is

not

a

valid

ASCII

hexadecimal

string.

User

action:

Check

that

you

specified

a

valid

ASCII

hexadecimal

string

for

the

outbound_KEK_count

or

inbound_KEK_count

parameter.

09A

(154)

This

check

is

based

on

the

first

byte

in

the

key

identifier

parameter.

The

key

identifier

provided

is

either

an

internal

token,

where

an

external

or

null

token

was

required;

or

an

external

or

null

token,

where

an

internal

token

was

required.

The

token

provided

may

be

none

of

these,

and,

therefore,

the

parameter

is

not

a

key

identifier

at

all.

Another

cause

is

specifying

a

key_type

of

IMP-PKA

for

a

key

in

importable

form.

User

action:

Check

the

type

of

key

identifier

required

and

review

what

you

have

provided.

Also

check

that

your

parameters

are

in

the

required

sequence.

REASONCODES:

ICSF

7F8

(2040)

09B

(155)

The

value

that

the

generated_key_identifier

parameter

specifies

is

not

valid,or

it

is

not

consistent

with

the

value

that

the

key_form

parameter

specifies.

09C

(156)

A

keyword

is

not

valid

with

the

specified

parameters.

REASONCODES:

ICSF

2790

(10128)

09D

(157)

The

rule_array

parameter

contents

are

incorrect.

User

action:

Refer

to

the

rule_array

parameter

described

in

this

document

under

the

appropriate

callable

service

for

the

correct

value.

REASONCODES:

ICSF

7E0

(2016)

0A0

(160)

The

key_type

and

the

key_length

are

not

consistent.

User

action:

Review

the

key_type

parameter

provided

and

match

it

with

the

key_length

parameter.

A4

(164)

Two

parameters

(perhaps

the

plaintext

and

ciphertext

areas,

or

text_in

and

text_out

areas)

overlap

each

other.

That

is,

some

part

of

these

two

areas

occupy

the

same

address

in

memory.

This

condition

cannot

be

processed.

User

action:

Determine

which

two

areas

are

responsible,

and

redefine

their

positions

in

memory.

0A5

(165)

The

contents

of

a

chaining

vector

passed

to

a

callable

service

are

not

valid.

If

you

called

the

MAC

generation

callable

service,

or

the

MDC

generation

callable

service

with

a

MIDDLE

or

LAST

segmenting

rule,

the

count

field

has

a

number

that

is

not

valid.

If

you

called

the

MAC

verification

callable

service,

then

this

will

have

been

a

MIDDLE

or

LAST

segmenting

rule.

User

action:

Check

to

ensure

that

the

chaining

vector

is

not

modified

by

your

program.

The

chaining

vector

returned

by

ICSF

should

only

be

used

to

process

one

message

set,

and

not

intermixed

between

alternating

message

sets.

This

means

that

if

you

receive

and

process

two

or

more

independent

message

streams,

each

should

have

its

own

chaining

vector.

Similarly,

each

message

stream

should

have

its

own

key

identifier.

If

you

use

the

same

chaining

vector

and

key

identifier

for

alternating

message

streams,

you

will

not

get

the

correct

processing

performed.

REASONCODES:

ICSF

7F4

(2036)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

407

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

0B5

(181)

This

check

is

based

on

the

first

byte

in

the

key

identifier

parameter.

The

key

identifier

provided

is

either

an

internal

token,

where

an

external

or

null

token

was

required;

or

an

external

or

null

token,

where

an

internal

token

was

required.

The

token

provided

may

be

none

of

these,

and,

therefore,

the

parameter

is

not

a

key

identifier

at

all.

Another

cause

is

specifying

a

key_type

of

IMP-PKA

for

a

key

in

importable

form.

User

action:

Check

the

type

of

key

identifier

required

and

review

what

you

have

provided.

Also

check

that

your

parameters

are

in

the

required

sequence.

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

7F8

(2040),

2B24

(11044)

and

3E98

(16024).

Please

see

those

reason

codes

for

additional

information.

0B7

(183)

A

cross-check

of

the

control

vector

the

key

type

implies

has

shown

that

it

does

not

correspond

with

the

control

vector

present

in

the

supplied

internal

key

identifier.

User

action:

Change

either

the

key

type

or

key

identifier.

REASONCODES:

ICSF

273C

(10044)

0B8

(184)

An

input

pointer

is

null.

0CC

(204)

A

memory

allocation

failed.

154

(340)

One

of

the

input

control

vectors

has

odd

parity.

157

(343)

Either

the

data

block

or

the

buffer

for

the

block

is

too

small.

159

(345)

Insufficient

storage

space

exists

for

the

data

in

the

data

block

buffer.

15A

(346)

The

requested

command

is

not

valid

in

the

current

state

of

the

cryptographic

hardware

component.

176

(374)

Less

data

was

supplied

than

expected

or

less

data

exists

than

was

requested.

REASONCODES:

ICSF

7D4

(2004)

and

ICSF

7E0

(2016)

181

(385)

The

cryptographic

hardware

component

reported

that

the

data

passed

as

part

of

the

command

is

not

valid

for

that

command.

197

(407)

A

PIN

block

consistency

check

error

occurred.

REASONCODES:

ICSF

BC8

(3016)

25D

(605)

The

number

of

output

bytes

is

greater

than

the

number

that

is

permitted.

2BF

(703)

A

new

master

key

value

was

found

to

be

one

of

the

weak

DES

keys.

2C0

(704)

The

new

master

key

would

have

the

same

master

key

verification

pattern

as

the

current

master

key.

2C1

(705)

The

same

key-encrypting

key

was

specified

for

both

exporter

keys.

408

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

2C2

(706)

While

deciphering

ciphertext

that

had

been

created

using

a

padding

technique,

it

was

found

that

the

last

byte

of

the

plaintext

did

not

contain

a

valid

count

of

pad

characters.

Note

that

all

cryptographic

processing

has

taken

place,

and

the

clear_text

parameter

contains

the

deciphered

text.

User

action:

The

text_length

parameter

was

not

reduced.

Therefore,

it

contains

the

length

of

the

base

message,

plus

the

length

of

the

padding

bytes

and

the

count

byte.

Review

how

the

message

was

padded

before

it

was

enciphered.

The

count

byte

that

is

not

valid

was

created

before

the

message’s

encipherment.

You

may

need

to

check

whether

the

ciphertext

was

not

created

using

a

padding

scheme.

Otherwise,

check

with

the

creator

of

the

ciphertext

on

the

method

used

to

create

it.

You

could

also

look

at

the

plaintext

to

review

the

padding

scheme

used,

if

any.

REASONCODES:

ICSF

7EC

(2028)

2CA

(714)

A

reserved

parameter

was

not

a

null

pointer

or

an

expected

value.

REASONCODES:

ICSF

844

(2116)

2CB

(715)

You

supplied

a

pad_character

that

is

not

valid

for

a

Transaction

Security

System

compatibility

parameter

for

which

ICSF

supports

only

one

value;

or,

you

supplied

a

KEY

keyword

and

a

non-zero

master_key_version_number

in

the

Key

Token

Build

service;

or,

you

supplied

a

non-zero

regeneration

data

length

for

a

DSS

key

in

the

PKA

Generate

service.

User

action:

Check

that

you

specified

the

valid

value

for

the

TSS

compatibility

parameter.

REASONCODES:

ICSF

834

(2100)

2CF

(719)

The

RSA-OAEP

block

did

not

verify

after

the

decompose.

The

block

type

is

incorrect

(must

be

X'03').

User

action:

Recreate

the

RSA-OAEP

block.

REASONCODES:

ICSF

2B38

(11064)

2D0

(720)

The

RSA-OAEP

block

did

not

verify

after

the

decompose.

The

random

number

I

is

not

correct

(must

be

non-zero

with

the

high-order

bit

equal

to

zero).

User

action:

Recreate

the

RSA-OAEP

block.

REASONCODES:

ICSF

2B40

(11072)

2D1

(721)

The

RSA-OAEP

block

did

not

verify

after

the

decompose.

The

verification

code

is

not

correct

(must

be

all

zeros).

User

action:

Recreate

the

RSA-OAEP

block.

REASONCODES:

ICSF

2BC3

(11068)

2F8

(760)

The

RSA

public

or

private

key

specified

a

modulus

length

that

is

incorrect

for

this

service.

User

action:

Re-invoke

the

service

with

an

RSA

key

with

the

proper

modulus

length.

REASONCODES:

ICSF

2B48

(11080)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

409

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

302

(770)

A

reserved

field

in

a

parameter,

probably

a

key

identifier,

has

a

value

other

than

zero.

User

action:

Key

identifiers

should

not

be

changed

by

application

programs

for

other

uses.

Review

any

processing

you

are

performing

on

key

identifiers

and

leave

the

reserved

fields

in

them

at

zero.

This

reason

code

also

corresponds

to

the

following

ICSF

reason

codes:

7E8

(2024)

and

2B00

(11008).

Please

see

those

reason

codes

for

additional

information.

REASONCODES:

ICSF

2B00

(11008)

30F

(783)

The

command

is

not

permitted

by

the

Function

Control

Vector

value.

REASONCODES:

ICSF

Return

code

12,

reason

code

2B0C

(11020)

401

(1025)

Registered

public

key

or

retained

private

key

name

already

exists.

405

(1029)

There

is

an

error

in

the

Environment

Identification

data.

41A

(1050)

A

KEK

RSA-enciphered

at

this

node

(EID)

cannot

be

imported

at

this

same

node.

7D1

(2001)

TKE:

DH

generator

is

greater

than

the

modulus.

7D2

(2002)

TKE:

DH

registers

are

not

in

a

valid

state

for

the

requested

operation.

7D3

(2003)

TKE:

TSN

does

not

match

TSN

in

pending

change

buffer.

7D4

(2004)

A

length

parameter

has

an

incorrect

value.

The

value

in

the

length

parameter

could

have

been

zero

(when

a

positive

value

was

required)

or

a

negative

value.

If

the

supplied

value

was

positive,

it

could

have

been

larger

than

your

installation’s

defined

maximum,

or

for

MDC

generation

with

no

padding,

it

could

have

been

less

than

16

or

not

an

even

multiple

of

8.

User

action:

Check

the

length

you

specified.

If

necessary,

check

your

installation’s

maximum

length

with

your

ICSF

administrator.

Correct

the

error.

REASONCODES:

TSS

019

(025)

7D5

(2005)

TKE:

PCB

data

exceeds

maximum

data

length.

7D8

(2008)

Two

parameters

(perhaps

the

plaintext

and

ciphertext

areas,

or

text_in

and

text_out

areas)

overlap

each

other.

That

is,

some

part

of

these

two

areas

occupy

the

same

address

in

memory.

This

condition

cannot

be

processed.

User

action:

Determine

which

two

areas

are

responsible,

and

redefine

their

positions

in

memory.

REASONCODES:

TSS

0A4

(164)

7D9

(2009)

TKE:

ACI

can

not

load

both

loads

and

profiles

in

one

call.

7DA

(2010)

TKE:

ACI

can

only

load

one

role

or

one

profile

at

a

time.

7DB

(2011)

TKE:

DH

transport

key

algorithm

match.

7DC

(2012)

The

rule_array_count

parameter

contains

a

number

that

is

not

valid.

User

action:

Refer

to

the

rule_array_count

parameter

described

in

this

document

under

the

appropriate

callable

service

for

the

correct

value.

REASONCODES:

TSS

023

(035)

7DD

(2013)

TKE:

Length

of

hash

pattern

for

keypart

is

not

valid

for

DH

transport

key

algorithm

specified.

7DE

(2014)

TKE:

PCB

buffer

is

empty.

7DF

(2015)

An

error

occurred

in

the

Domain

Manager.

410

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

7E0

(2016)

The

rule_array

parameter

contents

are

incorrect.

User

action:

Refer

to

the

rule_array

parameter

described

in

this

document

under

the

appropriate

callable

service

for

the

correct

value.

7E2

(2018)

The

form

parameter

specified

in

the

random

number

generate

callable

service

should

be

ODD,

EVEN,

or

RANDOM.

One

of

these

values

was

not

supplied.

User

action:

Change

your

parameter

to

use

one

of

the

required

values

for

the

form

parameter.

REASONCODES:

TSS

021

(033)

7E3

(2019)

TKE:

Signature

in

request

CPRB

did

not

verify.

7E4

(2020)

TKE:

TSN

in

request

CPRB

is

not

valid.

7E8

(2024)

A

reserved

field

in

a

parameter,

probably

a

key

identifier,

has

a

value

other

than

zero.

User

action:

Key

identifiers

should

not

be

changed

by

application

programs

for

other

uses.

Review

any

processing

you

are

performing

on

key

identifiers

and

leave

the

reserved

fields

in

them

at

zero.

7EB

(2027)

TKE:

DH

transport

key

hash

pattern

doesn’t

match.

7EC

(2028)

While

deciphering

ciphertext

that

had

been

created

using

a

padding

technique,

it

was

found

that

the

last

byte

of

the

plaintext

did

not

contain

a

valid

count

of

pad

characters.

Note

that

all

cryptographic

processing

has

taken

place,

and

the

clear_text

parameter

contains

the

deciphered

text.

User

action:

The

text_length

parameter

was

not

reduced.

Therefore,

it

contains

the

length

of

the

base

message,

plus

the

length

of

the

padding

bytes

and

the

count

byte.

Review

how

the

message

was

padded

before

it

was

enciphered.

The

count

byte

that

is

not

valid

was

created

before

the

message’s

encipherment.

You

may

need

to

check

whether

the

ciphertext

was

not

created

using

a

padding

scheme.

Otherwise,

check

with

the

creator

of

the

ciphertext

on

the

method

used

to

create

it.

You

could

also

look

at

the

plaintext

to

review

the

padding

scheme

used,

if

any.

REASONCODES:

TSS

2C2

(706)

7ED

(2029)

TKE:

Request

data

block

hash

does

not

match

hash

in

CPRB.

7EE

(2030)

TKE:

DH

supplied

hash

length

is

not

correct.

7EF

(2031)

Reply

data

block

too

large.

7F0

(2032)

The

key_form,

key_type_1,

and

key_type_2

parameters

for

the

key

generate

callable

service

form

a

combination,

a

three-element

string.

This

combination

is

checked

against

all

valid

combinations.

Your

combination

was

not

found

among

this

list.

User

action:

Check

the

allowable

combinations

described

for

each

parameter

in

Key

Generate

callable

service

and

correct

the

appropriate

parameter(s).

7F1

(2033)

TKE:

Change

type

does

not

match

PCB

change

type.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

411

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

7F4

(2036)

The

contents

of

a

chaining

vector

passed

to

a

callable

service

are

not

valid.

If

you

called

the

MAC

generation

callable

service,

or

the

MDC

generation

callable

service

with

a

MIDDLE

or

LAST

segmenting

rule,

the

count

field

has

a

number

that

is

not

valid.

If

you

called

the

MAC

verification

callable

service,

then

this

will

have

been

a

MIDDLE

or

LAST

segmenting

rule.

User

action:

Check

to

ensure

that

the

chaining

vector

is

not

modified

by

your

program.

The

chaining

vector

returned

by

ICSF

should

only

be

used

to

process

one

message

set,

and

not

intermixed

between

alternating

message

sets.

This

means

that

if

you

receive

and

process

two

or

more

independent

message

streams,

each

should

have

its

own

chaining

vector.

Similarly,

each

message

stream

should

have

its

own

key

identifier.

If

you

use

the

same

chaining

vector

and

key

identifier

for

alternating

message

streams,

you

will

not

get

the

correct

processing

performed.

REASONCODES:

TSS

0A5

(165)

7F6

(2038)

No

RSA

private

key

information

was

provided

in

the

supplied

token.

User

action:

Check

that

the

token

supplied

was

of

the

correct

type

for

the

service.

7F8

(2040)

This

check

is

based

on

the

first

byte

in

the

key

identifier

parameter.

The

key

identifier

provided

is

either

an

internal

token,

where

an

external

or

null

token

was

required;

or

an

external

or

null

token,

where

an

internal

token

was

required.

The

token

provided

may

be

none

of

these,

and,

therefore,

the

parameter

is

not

a

key

identifier

at

all.

Another

cause

is

specifying

a

key_type

of

IMP-PKA

for

a

key

in

importable

form.

User

action:

Check

the

type

of

key

identifier

required

and

review

what

you

have

provided.

Also

check

that

your

parameters

are

in

the

required

sequence.

REASONCODES:

TSS

03F

(063)

and

TSS

09A

(154)

7FC

(2044)

The

caller

must

be

in

task

mode,

not

SRB

mode.

800

(2048)

The

key_form

is

not

valid

for

the

key_type

User

action:

Review

the

key_form

and

key_type

parameters.

For

a

key_type

of

IMP-PKA,

the

secure

key

import

callable

service

supports

only

a

key_form

of

OP.

802

(2050)

A

UKPT

keyword

was

specified,

but

there

is

an

error

in

the

PIN_profile

key

serial

number.

User

action:

Correct

the

PIN

profile

key

serial

number.

803(2051)

Invalid

message

length

in

OAEP-decoded

information.

User

action:

??

804

(2052)

A

single-length

key,

passed

to

the

secure

key

import

callable

service

in

the

clear_key

parameter,

must

be

padded

on

the

right

with

binary

zeros.

The

fact

that

it

is

a

single-length

key

is

identified

by

the

key_form

parameter,

which

identifies

the

key

as

being

DATA,

MACGEN,

MACVER,

and

so

on.

User

action:

If

you

are

providing

a

single-length

key,

pad

the

parameter

on

the

right

with

zeros.

Alternatively,

if

you

meant

to

pass

a

double-length

key,

correct

the

key_form

parameter

to

a

valid

double-length

key

type.

805(2053)

No

message

found

in

OAEP-decoded

information.

User

action:

??

806(2054)

Invalid

RSA

enciphered

key

cryptogram;

OAEP

optional

encoding

parameters

failed

validation.

User

action:

??

412

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||

|

||

|

||
|

|

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

808

(2056)

The

key_form

parameter

is

neither

IM

nor

OP.

Most

constants,

these

included,

can

be

supplied

in

lower

or

uppercase.

Note

that

this

parameter

is

4

bytes

long,

so

the

value

IM

or

OP

is

not

valid.

They

must

be

padded

on

the

right

with

blanks.

User

action:

Review

the

value

provided

and

change

it

to

IM

or

OP,

as

required.

REASONCODES:

TSS

029

(041)

80C

(2060)

The

key_length

parameter

passed

to

the

key

generate

callable

service

holds

a

value

that

is

not

valid.

User

action:

Review

the

value

provided

and

change

it

as

appropriate.

REASONCODES:

TSS

02B

(043)

810

(2064)

The

key_type

and

the

key_length

are

not

consistent.

User

action:

Review

the

key_type

parameter

provided

and

match

it

with

the

key_length

parameter.

REASONCODES:

TSS

0A0

(160)

813

(2067)

TKE:

A

key

part

register

is

in

an

invalid

state.

This

includes

the

case

where

an

attempt

is

made

to

load

a

FIRST

key

part,

but

a

register

already

contains

a

key

or

key

part

with

the

same

key

name.

User

action:

Supply

a

different

label

name

for

the

key

part

register

or

clear

the

existing

key

part

register

with

the

same

label

name.

814

(2068)

You

supplied

a

key

identifier

or

token

to

the

key

generate,

key

import,

multiple

secure

key

import,

key

export,

or

key

record

write

callable

service.

This

key

identifier

holds

an

importer

or

exporter

key,

and

the

NOCV

bit

is

on

in

the

token.

Only

programs

running

in

supervisor

state

or

in

a

system

key

(key

0–7)

may

provide

a

key

identifier

with

this

bit

set

on.

Your

program

was

not

running

in

supervisor

state

or

a

system

key.

User

action:

Either

use

a

different

key

identifier,

or

else

run

in

supervisor

state

or

a

system

key.

815

(2069)

TKE:

The

control

vector

in

the

key

part

register

does

not

match

the

control

vector

in

the

key

structure.

816

(2070)

TKE:

All

key

part

registers

are

already

in

use.

User

action:

Either

free

existing

key

part

registers

by

loading

keys

from

ICSF

or

clearing

selected

key

part

registers

from

TKE

or

select

another

PCIXCC

for

loading

the

key

part

register.

817

(2071)

TKE:

The

key

part

hash

pattern

supplied

does

not

match

the

hash

pattern

of

the

key

part

currently

in

the

register.

818

(2072)

A

request

was

made

to

the

key

generate

callable

service

to

generate

double-length

keys

of

SINGLE

effective

length,

in

the

IMEX

form.

This

request

is

valid

only

if

the

kek_key_identifier_1

parameter

identifies

a

NOCV

importer,

and

the

caller

(wrongly)

supplies

a

CV

importer.

The

combination

of

IMEX

for

the

key_form

parameter

and

a

CV

importer

key-encrypting

key

can

only

be

used

for

single-length

keys.

User

action:

Either

use

a

key

identifier

that

holds

(or

identifies)

a

NOCV

importer,

or

specify

a

single-length

key

in

the

key_type

parameter.

81B(2075)

TKE:

The

length

of

the

key

part

received

is

different

from

the

length

of

the

accumulated

value

already

in

the

key

part

register.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

413

||
|
|

|
|

||
|

||

|
|
|

||
|

||
|

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

81C

(2076)

A

request

was

made

to

the

key

import

callable

service

to

import

a

single-length

key.

However,

the

right

half

of

the

key

in

the

source_key_identifier

parameter

is

not

zeros.

Therefore,

it

appears

to

identify

the

right

half

of

a

double-length

key.

This

combination

is

not

valid.

This

error

does

not

occur

if

you

are

using

the

word

TOKEN

in

the

key_type

parameter.

User

action:

Check

that

you

specified

the

value

in

the

key_type

parameter

correctly,

and

that

you

are

using

the

correct

or

corresponding

source_key_identifier

parameter.

81D(2077)

TKE:

An

error

occurred

storing

or

retrieving

the

key

part

register

data.

User

action:

Verify

that

the

selected

PCIXCC

is

functioning

correctly

and

retry

the

operation.

824

(2084)

The

key

token

is

not

valid

for

the

CSNBTCK

service.

If

the

source_key_identifier

is

an

external

token,

then

the

kek_key_identifier

cannot

be

marked

as

CDMF.

User

action:

Correct

the

appropriate

key

identifiers.

828

(2088)

The

origin_identifier

or

destination_identifier

you

supplied

is

not

a

valid

ASCII

hexadecimal

string.

User

action:

Check

that

you

specified

a

valid

ASCII

string

for

the

origin_identifier

or

destination_identifier

parameter.

82C

(2092)

The

source_key_identifier

or

inbound_key_identifier

you

supplied

in

an

ANSI

X9.17

service

is

not

a

valid

ASCII

hexadecimal

string.

User

action:

Check

that

you

specified

a

valid

ASCII

string

for

the

source_key_identifier

or

inbound_key_identifier

parameter.

REASONCODES:

TSS

079

(121)

830

(2096)

The

outbound_KEK_count

or

inbound_KEK_count

you

supplied

is

not

a

valid

ASCII

hexadecimal

string.

User

action:

Check

that

you

specified

a

valid

ASCII

hexadecimal

string

for

the

outbound_KEK_count

or

inbound_KEK_count

parameter.

REASONCODES:

TSS

07A

(122)

834

(2100)

You

supplied

a

pad_character

that

is

not

valid

for

a

Transaction

Security

System

compatibility

parameter

for

which

ICSF

supports

only

one

value;

or,

you

supplied

a

KEY

keyword

and

a

non-zero

master_key_version_number

in

the

Key

Token

Build

service;

or,

you

supplied

a

non-zero

regeneration

data

length

for

a

DSS

key

in

the

PKA

Generate

service.

User

action:

Check

that

you

specified

the

valid

value

for

the

TSS

compatibility

parameter.

REASONCODES:

TSS

2CB

(715)

838

(2104)

An

input

character

is

not

in

the

code

table.

User

action:

Correct

the

code

table

or

the

source

text.

REASONCODES:

TSS

02D

(045)

83C

(2108)

An

unused

field

must

be

binary

zeros,

and

an

unused

key

identifier

field

generally

must

be

zeros.

User

action:

Correct

the

parameter

list.

REASONCODES:

TSS

02F

(047)

414

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||

|
|

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

840

(2112)

The

length

is

incorrect

for

the

key

type.

User

action:

Check

the

key

length

parameter.

DATA

keys

may

have

a

length

of

8,

16,

or

24.

DATAXLAT

and

MAC

keys

must

have

a

length

of

8.

All

other

keys

should

have

a

length

of

16.

Also

check

that

the

parameters

are

in

the

required

sequence.

844

(2116)

Parameter

contents

or

a

parameter

value

is

not

correct.

User

action:

Specify

a

valid

value

for

the

parameter.

REASONCODES:

TSS

021

(033)

BB9

(3001)

HCR7703

and

higher

systems

-

SET

block

decompose

service

was

called

with

an

encrypted

OAEP

block

with

a

block

contents

identifier

that

indicates

a

PIN

block

is

present.

No

PIN

encrypting

key

was

supplied

to

process

the

PIN

block.

The

block

contents

identifier

is

returned

in

the

block_contents_identifier

parameter.

OR

HCRP220

or

lower

systems

-

A

PKDS

access

has

been

attempted

for

a

PKA

token

which

exceeds

the

maximum

PKA

token

size

of

1024

bytes.

This

can

occur

if

systems

are

sharing

a

PKDS

and

not

all

of

the

sharing

systems

support

PKA

tokens

larger

than

1024

bytes.

User

action:

HCR7703

and

higher

systems

-

Supply

a

PIN

encrypting

key

and

resubmit

the

job.

HCRP220

and

lower

systems

-

Check

the

key

label

supplied.

The

label

must

represent

a

PKDS

record

representing

a

PKA

token

of

length

less

than

or

equal

to

1024

bytes.

BBC

(3004)

A

request

was

made

to

the

Clear

PIN

generate

or

Encrypted

PIN

verify

callable

service,

and

the

PIN_length

parameter

has

a

value

outside

the

valid

range.

The

valid

range

is

from

4

to

16,

inclusive.

User

action:

Correct

the

value

in

the

PIN_length

parameter

to

be

within

the

valid

range

from

4

to

16.

REASONCODES:

TSS

064

(100)

BBE

(3006)

The

UDX

verb

in

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

is

not

authorized

to

be

executed.

BC0

(3008)

A

request

was

made

to

the

Clear

PIN

generate

callable

service,

and

the

PIN_check_length

parameter

has

a

value

outside

the

valid

range.

The

valid

range

is

from

4

to

16,

inclusive.

User

action:

Correct

the

value

in

the

PIN_check_length

parameter

to

be

within

the

valid

range

from

4

to

16.

REASONCODES:

TSS

065

(101)

BC4

(3012)

A

request

was

made

to

the

Clear

PIN

generate

callable

service

to

generate

a

VISA-PVV

PIN,

and

the

trans_sec_parm

field

has

a

value

outside

the

valid

range.

The

field

being

checked

in

the

trans_sec_parm

is

the

key

index,

in

the

12th

byte.

This

trans_sec_parm

field

is

part

of

the

data_array

parameter.

User

action:

Correct

the

value

in

the

key

index,

held

within

the

trans_sec_parm

field

in

the

data_array

parameter,

to

hold

a

number

from

the

valid

range.

REASONCODES:

TSS

069

(105)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

415

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

BC8

(3016)

A

request

was

made

to

the

Encrypted

PIN

translate

or

the

Encrypted

PIN

verify

callable

service,

and

the

PIN

block

value

in

the

input_PIN_profile

or

output_PIN_profile

parameter

has

a

value

that

is

not

valid.

User

action:

Correct

the

PIN

block

value.

REASONCODES:

TSS

06A

(106)

BD0

(3024)

A

request

was

made

to

the

Encrypted

PIN

translate

callable

service

and

the

format

control

value

in

the

input_PIN_profile

or

output_PIN_profile

parameter

has

a

value

that

is

not

valid.

The

valid

values

are

NONE

or

PBVC.

User

action:

Correct

the

format

control

value

to

either

NONE

or

PBVC.

REASONCODES:

TSS

06B

(107)

BD4

(3028)

A

request

was

made

to

the

Clear

PIN

generate

callable

service.

The

clear_PIN

supplied

as

part

of

the

data_array

parameter

for

an

GBP-PINO

request

begins

with

a

zero

(0).

This

value

is

not

valid.

User

action:

Correct

the

clear_PIN

value.

REASONCODES:

TSS

074

(116)

BDC

(3036)

A

request

was

made

to

the

Encrypted

PIN

translate

callable

service.

The

sequence_number

parameter

was

required,

but

was

not

the

integer

value

99999.

User

action:

Specify

the

integer

value

99999.

REASONCODES:

TSS

06F

(111)

BE0

(3040)

The

PAN,

expiration

date,

service

code,

decimalization

table

data,

validation

data,

or

pad

data

is

not

numeric

(X'F0'

through

X'F9').

The

parameter

must

be

character

representations

of

numerics

or

hexadecimal

data.

User

action:

Review

the

numeric

parameters

or

fields

required

in

the

service

that

you

called

and

change

to

the

format

and

values

required.

REASONCODES:

TSS

028

(040),

TSS

02A

(042),

TSS

066

(102),

TSS

067

(103),

TSS

068

(104),

TSS

069

(105),

TSS

06E

(110)

FA0

(4000)

The

encipher

and

decipher

callable

services

sometime

require

text

(plaintext

or

ciphertext)

to

have

a

length

that

is

an

exact

multiple

of

8

bytes.

Padding

schemes

always

create

ciphertext

with

a

length

that

is

an

exact

multiple

of

8.

If

you

want

to

decipher

ciphertext

that

was

produced

by

a

padding

scheme,

and

the

text

length

is

not

an

exact

multiple

of

8,

then

an

error

has

occurred.

The

CBC

mode

of

enciphering

requires

a

text

length

that

is

an

exact

multiple

of

8.

The

ciphertext

translate

callable

service

cannot

process

ciphertext

whose

length

is

not

an

exact

multiple

of

8.

User

action:

Review

the

requirements

of

the

service

you

are

using.

Either

adjust

the

text

you

are

processing

or

use

another

process

rule.

REASONCODES:

TSS

033

(051)

1388

(5000)

Target

cryptographic

module

is

not

available

in

the

configuration.

User

action:

Correct

the

target

cryptographic

module

parameter

and

resubmit.

138C

(5004)

Format

of

the

cryptographic

request

message

is

not

valid.

User

action:

Correct

the

request

and

resubmit

it.

416

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

1390

(5008)

Length

of

the

cryptographic

request

message

is

not

valid.

User

action:

Message

length

of

request

must

be

nonzero,

a

multiple

of

eight,

and

less

than

the

system

maximum.

Correct

the

request

and

resubmit

it.

2710

(10000)

A

key

identifier

was

passed

to

a

service

or

token.

It

is

checked

in

detail

to

ensure

that

it

is

a

valid

token,

and

that

the

fields

within

it

are

valid

values.

There

is

a

token

validation

value

(TVV)

in

the

token,

which

is

a

non-cryptographic

value.

This

value

was

again

computed

from

the

rest

of

the

token,

and

compared

to

the

stored

TVV.

If

these

two

values

are

not

the

same,

this

reason

code

is

returned.

User

action:

The

contents

of

the

token

have

been

altered

because

it

was

created

by

ICSF

or

TSS.

Review

your

program

to

see

how

this

could

have

been

caused.

REASONCODES:

TSS

00C

(012)

and

)1D

(029)

2714

(10004)

A

key

identifier

was

passed

to

a

service.

The

master

key

verification

pattern

in

the

token

shows

that

the

key

was

created

with

a

master

key

that

is

neither

the

current

master

key

nor

the

old

master

key.

Therefore,

it

cannot

be

reenciphered

to

the

current

master

key.

User

action:

Re-import

the

key

from

its

importable

form

(if

you

have

it

in

this

form),

or

repeat

the

process

you

used

to

create

the

operational

key

form.

If

you

cannot

do

one

of

these,

you

cannot

repeat

any

previous

cryptographic

process

that

you

performed

with

this

token.

REASONCODES:

TSS

030

(048)

271C

(10012)

A

key

label

was

supplied

for

a

key

identifier

parameter.

This

label

is

the

label

of

a

key

in

the

in-storage

CKDS

or

the

PKDS.

Either

the

key

could

not

be

found,

or

a

key

record

with

that

label

and

the

specific

type

required

by

the

ICSF

callable

service

could

not

be

found.

For

a

retained

key

label,

this

error

code

is

also

returned

if

the

key

is

not

found

in

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

specified

in

the

PKDS

record.

User

action:

Check

with

your

administrator

if

you

believe

that

this

key

should

be

in

the

in-storage

CKDS

or

the

PKDS.

The

administrator

may

be

able

to

bring

it

into

storage.

If

this

key

cannot

be

in

storage,

use

a

different

label.

REASONCODES:

TSS

01E

(030)

2720

(10016)

You

specified

a

value

for

a

key_type

parameter

that

is

not

an

ICSF-defined

name.

User

action:

Review

the

ICSF

key

types

and

use

the

appropriate

one.

REASONCODES:

TSS

03D

(061)

2724

(10020)

You

specified

the

word

TOKEN

for

a

key_type

parameter,

but

the

corresponding

key

identifier,

which

implies

the

key

type

to

use,

has

a

value

that

is

not

valid

in

the

control

vector

field.

Therefore,

a

valid

key

type

cannot

be

determined.

User

action:

Review

the

value

that

you

stored

in

the

corresponding

key

identifier.

Check

that

the

value

for

key_type

is

obtained

from

the

appropriate

key_identifier

parameter.

REASONCODES:

TSS

027

(039)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

417

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

272C

(10028)

Either

the

left

half

of

the

control

vector

in

a

key

identifier

(internal

or

external)

equates

to

a

key

type

that

is

not

valid

for

the

service

you

are

using,

or

the

value

is

not

that

of

any

ICSF

control

vector.

For

example,

an

exporter

key-encrypting

key

is

not

valid

in

the

key

import

callable

service.

User

action:

Determine

which

key

identifier

is

in

error

and

use

the

key

identifier

that

is

required

by

the

service.

REASONCODES:

TSS

027

(039)

2730

(10032)

Either

the

right

half

of

the

control

vector

in

a

key

identifier

(internal

or

external)

equates

to

a

key

type

that

is

not

valid

for

the

service

you

are

using,

or

the

value

is

not

that

of

any

ICSF

control

vector.

For

example,

an

exporter

key-encrypting

key

is

not

valid

in

the

key

import

callable

service.

User

action:

Determine

which

key

identifier

is

in

error

and

use

the

key

identifier

that

is

required

by

the

service.

REASONCODES:

TSS

027

(039)

2734

(10036)

Either

the

complete

control

vector

(CV)

in

a

key

identifier

(internal

or

external)

equates

to

a

key

type

that

is

not

valid

for

the

service

you

are

using,

or

the

value

is

not

that

of

any

ICSF

control

vector.

The

difference

between

this

and

reason

codes

10028

and

10032

is

that

each

half

of

the

control

vector

is

valid,

but

as

a

combination,

the

whole

is

not

valid.

For

example,

the

left

half

of

the

control

vector

may

be

the

importer

key-encrypting

key

and

the

right

half

may

be

the

input

PIN-encrypting

(IPINENC)

key.

User

action:

Determine

which

key

identifier

is

in

error

and

use

the

key

identifier

that

is

required

by

the

service.

REASONCODES:

TSS

027

(039)

2738

(10040)

Key

identifiers

contain

a

version

number.

The

version

number

in

a

supplied

key

identifier

(internal

or

external)

is

inconsistent

with

one

or

more

fields

in

the

key

identifier,

making

the

key

identifier

unusable.

User

action:

Use

a

token

containing

the

required

version

number.

REASONCODES:

TSS

031

(049)

273C

(10044)

A

cross-check

of

the

control

vector

the

key

type

implies

has

shown

that

it

does

not

correspond

with

the

control

vector

present

in

the

supplied

internal

key

identifier.

User

action:

Change

either

the

key

type

or

key

identifier.

REASONCODES:

TSS

0B7

(183)

2740

(10048)

The

key_type

parameter

does

not

contain

one

of

the

valid

types

for

the

service

or

the

keyword

TOKEN.

User

action:

Check

the

supplied

parameter

with

the

ICSF

key

types.

If

you

supplied

the

keyword

TOKEN,

check

that

you

have

padded

it

on

the

right

with

blanks.

REASONCODES:

TSS

03D

(061)

2744

(10052)

A

null

key

identifier

was

supplied

and

the

key_type

parameter

contained

the

word

TOKEN.

This

combination

of

parameters

is

not

valid.

User

action:

Use

either

a

null

key

identifier

or

the

word

TOKEN,

not

both.

REASONCODES:

TSS

027

(039)

418

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

2748

(10056)

You

called

the

key

import

callable

service.

The

importer

key-encrypting

key

is

a

NOCV

importer

and

you

specified

TOKEN

for

the

key_type

parameter.

This

combination

is

not

valid.

User

action:

Specify

a

value

in

the

key_type

parameter

for

the

operational

key

form.

274C

(10060)

You

called

the

key

export

callable

service.

A

label

was

supplied

in

the

key_identifier

parameter

for

the

key

to

be

exported

and

the

key_type

was

TOKEN.

This

combination

is

not

valid

because

the

service

needs

a

key

type

in

order

to

retrieve

a

key

from

the

CKDS.

User

action:

Specify

the

type

of

key

to

be

exported

in

the

key_type

parameter.

REASONCODES:

TSS

03D

(061)

2754

(10068)

A

flag

in

a

key

identifier

indicates

the

master

key

verification

pattern

(MKVP)

is

not

present

in

an

internal

key

token.

This

setting

is

not

valid.

User

action:

Use

a

token

containing

the

required

flag

values.

REASONCODES:

TSS

02F

(047)

2758

(10072)

A

flag

in

a

key

identifier

indicates

the

encrypted

key

is

not

present

in

an

external

token.

This

setting

is

not

valid.

User

action:

Use

a

token

containing

the

required

flag

values.

REASONCODES:

TSS

02F

(047)

275C

(10076)

A

flag

in

a

key

identifier

indicates

the

control

vector

is

not

present.

This

setting

is

not

valid.

User

action:

Use

a

token

containing

the

required

flag

values.

REASONCODES:

TSS

02F

(047)

2760

(10080)

An

ICSF

private

flag

in

a

key

identifier

has

been

set

to

a

value

that

is

not

valid.

User

action:

Use

a

token

containing

the

required

flag

values.

Do

not

modify

ICSF

or

the

reserved

flags

for

your

own

use.

2768

(10088)

If

you

supplied

a

label

in

the

key_identifier

parameter,

a

record

with

the

supplied

label

was

found

in

the

CKDS,

but

the

key

type

(CV)

is

not

valid

for

the

service.

If

you

supplied

an

internal

key

token

for

the

key_identifier

parameter,

it

contained

a

key

type

that

is

not

valid.

User

action:

Check

with

your

ICSF

administrator

if

you

believe

that

this

key

should

be

in

the

in-storage

CKDS.

The

administrator

may

be

able

to

bring

it

into

storage.

If

this

key

cannot

be

in

storage,

use

a

different

label.

REASONCODES:

TSS

027

(039)

276C

(10092)

You

supplied

a

source

key

that

does

not

have

odd

parity

and

specified

ENFORCE

as

the

parity

rule

on

the

rule_array

parameter

for

either

the

ANSI

X9.17

key

export,

ANSI

X9.17

key

import,

or

ANSI

X9.17

key

translate

callable

service.

User

action:

Either

supply

an

ODD

parity

key

or

change

the

rule_array

parameter

to

specify

a

parity

rule

of

IGNORE.

2770

(10096)

The

transport

key

you

specified

is

a

single-length

key,

which

cannot

be

used

to

encrypt

a

double-length

AKEK

or

(*KK).

User

action:

Use

a

double-length

AKEK

for

the

transport

key.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

419

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

2774

(10100)

You

specified

a

transport

key

that

cannot

be

notarized

and

specified

the

keyword

NOTARIZE

in

the

rule_array

parameter.

The

transport

key

may

have

already

been

partially

notarized.

User

action:

Use

a

transport

key

that

allows

notarization

or

change

the

rule_array

parameter

keyword

to

CPLT-NOT.

2778

(10104)

The

AKEK

you

specified

is

either

partially

notarized

or

is

a

partial

AKEK,

which

is

not

valid

for

this

service.

User

action:

Use

a

correct

AKEK

that

is

not

partially

notarized.

A

partially

notarized

key

can

be

used

as

a

transport

key

if

you

specify

CPLT-NOT

in

the

rule_array

parameter.

277C

(10108)

You

did

not

supply

a

partial

AKEK

for

the

key_identifier

parameter

of

the

key

part

import

service.

User

action:

Correct

the

key_id

parameter.

2780

(10112)

The

transport

key

you

specified

has

not

been

partially

notarized

and

you

have

specified

CPTL-NOT

for

the

rule_array

parameter.

User

action:

Use

a

transport

key

that

has

been

partially

notarized

or

change

the

rule_array

parameter.

2784

(10116)

You

attempted

to

export

an

AKEK

with

a

CCA

key

export

service,

which

is

not

supported.

User

action:

Use

the

ANSI

X9.17

key

export

callable

service

(CSNAKEX).

2788

(10120)

The

internal

key

token

you

supplied,

or

the

key

token

that

was

retrieved

by

the

label

you

supplied,

contains

a

flag

setting

or

data

encryption

algorithm

bit

that

is

not

valid

for

this

service.

User

action:

Ensure

that

you

supply

a

key

token,

or

label,

for

a

non-ANSI

key

type.

278C

(10124)

The

key

identifier

you

supplied

cannot

be

exported

because

there

is

a

prohibit-export

restriction

on

the

key.

User

action:

Use

the

correct

key

for

the

service.

REASONCODES:

TSS

027

(039)

2790

(10128)

The

keyword

you

supplied

in

the

rule_array

parameter

is

not

consistent

or

not

valid

with

another

parameter

you

specified.

For

example,

the

keyword

SINGLE

is

not

valid

with

the

key

type

of

EXPORTER

in

the

key

token

build

callable

service.

User

action:

Correct

either

the

rule_array

parameter

or

the

other

parameter.

REASONCODES:

TSS

09C

(156)

2AF8

(11000)

The

value

specified

for

length

parameter

for

a

key

token,

key,

or

text

field

is

not

valid.

User

action:

Correct

the

appropriate

length

field

parameter.

REASONCODES:

TSS

048

(072)

2AFC

(11004)

The

hash

value

(of

the

secret

quantities)

in

the

private

key

section

of

the

internal

token

failed

validation.

The

values

in

the

token

are

corrupted.

You

cannot

use

this

key.

User

action:

Recreate

the

token

using

the

appropriate

combination

of

the

PKA

key

token

build,

PKA

key

generate,

and

PKA

key

import

callable

services.

REASONCODES:

TSS

02F

(047)

420

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

2B00

(11008)

The

public

or

private

key

values

are

not

valid.

(For

example,

the

modulus

or

an

exponent

is

zero.)

You

cannot

use

the

key.

User

action:

You

may

need

to

recreate

the

token

using

the

PKA

key

token

build

or

PKA

key

import

callable

service

or

regenerate

the

key

values

on

another

platform.

REASONCODES:

TSS

302

(770)

2B04

(11012)

The

internal

or

external

private

key

token

contains

flags

that

are

not

valid.

User

action:

You

may

need

to

recreate

the

token

using

the

PKA

key

token

build

or

PKA

key

import

callable

service.

REASONCODES:

TSS

02F

(047)

2B08

(11016)

The

calculated

hash

of

the

public

information

in

the

PKA

token

does

not

match

the

hash

in

the

private

section

of

the

token.

The

values

in

the

token

are

corrupted.

User

action:

Verify

the

public

key

section

and

the

key

name

section

of

the

token.

If

the

token

is

still

rejected,

then

you

need

to

recreate

the

token

using

the

appropriate

combination

of

the

PKA

key

token

build,

PKA

key

generate,

and

PKA

key

import

callable

services.

REASONCODES:

TSS

02F

(047)

2B0C

(11020)

The

hash

pattern

of

the

PKA

master

key

(SMK

or

KMMK)

in

the

supplied

internal

PKA

private

key

token

does

not

match

the

current

system’s

PKA

master

key.

This

indicates

the

system

PKA

master

key

has

changed

since

the

token

was

created.

You

cannot

use

the

token.

User

action:

Recreate

the

token

using

the

appropriate

combination

of

the

PKA

key

token

build,

PKA

key

generate,

and

PKA

key

import

callable

services.

REASONCODES:

TSS

030

(048)

2B10

(11024)

The

PKA

tokens

have

incomplete

values,

for

example,

a

PKA

public

key

token

without

modulus.

User

action:

Recreate

the

key.

REASONCODES:

TSS

02F

(047)

2B14

(11028)

The

modulus

of

the

PKA

key

is

too

short

for

processing

the

hash

or

PKCS

block.

User

action:

Either

use

a

PKA

key

with

a

larger

modulus

size,

use

a

hash

algorithm

that

generates

a

smaller

hash

(digital

signature

services),

or

specify

a

shorter

DATA

key

size

(symmetric

key

export,

symmetric

key

generate).

REASONCODES:

TSS

048

(072)

2B18

(11032)

The

supplied

private

key

can

be

used

only

for

digital

signature.

Key

management

services

are

disallowed.

User

action:

Supply

a

key

with

key

management

enabled.

REASONCODES:

TSS

040

(064)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

421

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

2B20

(11040)

The

recovered

encryption

block

was

not

a

valid

PKCS-1.2

or

zero-pad

format.

(The

format

is

verified

according

to

the

recovery

method

specified

in

the

rule-array.)

If

the

recovery

method

specified

was

PKCS-1.2,

refer

to

PKCS-1.2

for

the

possible

error

in

parsing

the

encryption

block.

User

action:

Ensure

that

the

parameters

passed

to

CSNDSYI

are

correct.

Possible

causes

for

this

error

are

incorrect

values

for

the

RSA

private

key

or

incorrect

values

in

the

RSA_enciphered_key

parameter,

which

must

be

formatted

according

to

PKCS-1.2

or

zero-pad

rules

when

created.

REASONCODES:

TSS

042

(066)

2B24

(11044)

The

first

section

of

a

supplied

PKA

token

was

not

a

private

or

public

key

section.

User

action:

Recreate

the

key.

REASONCODES:

TSS

0B5(181)

2B28

(11048)

The

eyecatcher

on

the

PKA

internal

private

token

is

not

valid.

User

action:

Reimport

the

private

token

using

the

PKA

key

import

callable

service.

2B2C

(11052)

An

incorrect

PKA

token

was

supplied.

The

service

requires

a

private

key

token.

User

action:

Supply

a

PKA

private

key

token

as

input.

2B30

(11056)

The

input

PKA

token

contains

length

fields

that

are

not

valid.

User

action:

Recreate

the

key

token.

2B38

(11064)

The

RSA-OAEP

block

did

not

verify

after

the

decompose.

The

block

type

is

incorrect

(must

be

X'03').

User

action:

Recreate

the

RSA-OAEP

block.

REASONCODES:

TSS

2CF

(719)

2B3C

(11068)

The

RSA-OAEP

block

did

not

verify

after

the

decompose.

The

verification

code

is

not

correct

(must

be

all

zeros).

User

action:

Recreate

the

RSA-OAEP

block.

REASONCODES:

TSS

2D1

(721)

2B40

(11072)

The

RSA-OAEP

block

did

not

verify

after

the

decompose.

The

random

number

I

is

not

correct

(must

be

non-zero

with

the

high-order

bit

equal

to

zero).

User

action:

Recreate

the

RSA-OAEP

block.

REASONCODES:

TSS

2D0

(720)

2B48

(11080)

The

RSA

public

or

private

key

specified

a

modulus

length

that

is

incorrect

for

this

service.

User

action:

Re-invoke

the

service

with

an

RSA

key

with

the

proper

modulus

length.

REASONCODES:

See

reason

codes

041(065)

and

2F8

(760)

2B4C

(11084)

This

service

requires

an

RSA

public

key

and

the

key

identifier

specified

is

not

a

public

key.

User

action:

Re-invoke

the

service

with

an

RSA

public

key.

2B50

(11088)

This

service

requires

an

RSA

private

key

that

is

for

signature

use

only.

User

action:

Re-invoke

the

service

with

a

supported

private

key.

422

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

2B54

(11092)

There

was

an

invalid

subsection

in

the

PKA

token.

User

action:

Correct

the

PKA

token.

2B58

(11096)

This

service

requires

an

RSA

private

key

that

is

for

signature

use.

The

specified

key

may

be

used

for

key

management

purposes

only.

User

action:

Re-invoke

the

service

with

a

supported

private

key.

REASONCODES:

TSS

040

(064)

3E80

(16000)

RACF

failed

your

request

to

use

this

service.

User

action:

Contact

your

ICSF

or

RACF

administrator

if

you

need

this

service.

3E84

(16004)

RACF

failed

your

request

to

use

the

key

label.

User

action:

Contact

your

ICSF

or

RACF

administrator

if

you

need

this

key.

3E8C

(16012)

You

requested

the

conversion

service,

but

you

are

not

running

in

an

authorized

state.

User

action:

You

must

be

running

in

supervisor

state

to

use

the

conversion

service.

Contact

your

ICSF

administrator.

3E90

(16016)

The

input/output

field

contained

a

valid

internal

token

with

the

NOCV

bit

on

or

encryption

algorithm

mark,

but

the

key

type

was

incorrect

or

did

not

match

the

type

of

the

generated

or

imported

key.

Processing

failed.

User

action:

Correct

the

calling

application.

REASONCODES:

TSS

027

(039)

3E94

(16020)

You

requested

dynamic

CKDS

update

services

for

a

system

key,

which

is

not

allowed.

User

action:

Correct

the

calling

application.

REASONCODES:

TSS

0B5

(181)

3E98

(16024)

You

called

the

key

record

write

callable

service,

but

the

key

token

you

supplied

is

not

valid.

User

action:

Check

with

your

ICSF

administrator

if

you

believe

that

this

key

should

be

in

the

in-storage

CKDS.

The

administrator

may

be

able

to

bring

it

into

storage.

If

this

key

cannot

be

in

storage,

use

a

different

label.

3EA0

(16032)

Invalid

syntax

for

CKDS

or

PKDS

label

name.

User

action:

Correct

key_label

syntax.

REASONCODES:

TSS

020

(032)

3EA4

(16036)

The

key

record

create

callable

service

requires

that

the

key

created

not

already

exist

in

the

CKDS

or

PKDS.

A

key

of

the

same

label

was

found.

User

action:

Make

sure

the

application

specifies

the

correct

label.

If

the

label

is

correct,

contact

your

ICSF

security

administrator

or

system

programmer.

REASONCODES:

TSS

02C

(044)

3EA8

(16040)

Data

in

the

PKDS

record

did

not

match

the

expected

data.

This

occurs

if

the

record

does

not

contain

a

null

PKA

token

and

CHECK

was

specified.

User

action:

If

the

record

is

to

be

overwritten

regardless

of

its

content,

specify

OVERLAY.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

423

|

|

|

Table

173.

Reason

Codes

for

Return

Code

8

(8)

(continued)

Reason

Code

Hex

(Decimal)

Description

3EAC

(16044)

One

or

more

key

labels

specified

as

input

to

the

PKA

key

generate

or

PKA

key

import

service

incorrectly

refer

to

a

retained

private

key.

If

generating

a

retained

private

key,

this

error

may

result

from

one

of

the

following

conditions:

v

The

private

key

name

of

the

retained

private

key

being

generated

is

the

same

as

an

existing

PKDS

record,

but

the

PKDS

record

label

was

not

specified

as

the

input

skeleton

(source)

key

identifier.

v

The

label

specified

in

the

generated_key_token

parameter

as

the

target

for

the

retained

private

key

was

not

the

same

as

the

private

key

name

If

generating

or

importing

a

non-retained

key,

this

error

occurs

when

the

label

specified

as

the

target

key

specifies

a

retained

private

key.

The

retained

private

key

cannot

be

over-written.

User

action:

Make

sure

the

application

specifies

the

correct

label.

If

the

label

is

correct,

contact

your

ICSF

security

administrator

or

system

programmer.

3EB0

(16048)

Retained

keys

on

the

PKDS

cannot

be

deleted

or

updated

using

the

PKDS

key

record

delete

or

PKDS

key

record

write

callable

services,

respectively.

User

action:

Use

the

retained

key

delete

callable

service

to

delete

retained

keys.

Reason

code

0,

return

code

308(776)

RACF

failed

your

request

to

use

this

service.

User

action:

Contact

your

ICSF

or

RACF

administrator

if

you

need

this

service.

Reason

code

1,

return

code

308(776)

RACF

failed

your

request

to

use

the

key

label.

User

action:

Contact

your

ICSF

or

RACF

administrator

if

you

need

this

key.

06E

(110)-PAN,

028

(040)-ser.

code,

02A

(042)-exp.

date,

066

(102)-dec

table,

067

(103)-val.

table,

06C

(198)-pad

data

The

PAN,

expiration

date,

service

code,

decimalization

table

data,

validation

data,

or

pad

data

is

not

numeric

(X'F0'

through

X'F9').

The

parameter

must

be

character

representations

of

numerics

or

hexadecimal

data.

User

action:

Review

the

numeric

parameters

or

fields

required

in

the

service

that

you

called

and

change

to

the

format

and

values

required.

Reason

Codes

for

Return

Code

C

(12)

Table

174

lists

reason

codes

returned

from

callable

services

that

give

return

code

12.

These

reason

codes

indicate

that

the

call

to

the

callable

service

was

not

successful.

Either

cryptographic

processing

did

not

take

place,

or

the

last

cryptographic

unit

was

switched

offline.

Therefore,

no

output

parameters

were

filled.

Note:

The

higher-order

halfword

of

the

reason

code

field

for

return

code

C

(12)

may

contain

additional

coding.

See

reason

codes

273C

and

2740

in

the

following

table.

For

example,

in

the

reason

code

42738,

the

4

is

an

SVC

99

error

code

and

the

2738

is

listed

in

the

table

below.

Table

174.

Reason

Codes

for

Return

Code

C

(12)

Reason

Code

Hex

(Decimal)

Description

0

(0)

ICSF:

ICSF

is

not

available.

Either

ICSF

was

not

started,

or

ICSF

has

started,

but

does

not

have

access

to

any

cryptographic

units.

Your

request

cannot

be

processed.

User

action:

Check

the

availability

of

ICSF

with

your

ICSF

administrator.

424

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

174.

Reason

Codes

for

Return

Code

C

(12)

(continued)

Reason

Code

Hex

(Decimal)

Description

4

(4)

The

CKDS

or

PKDS

management

service

you

called

is

not

available

because

it

has

been

disallowed

by

the

ICSF

User

Control

Functions

panel.

User

action:

Contact

the

security

administrator

or

system

programmer

to

determine

why

the

CKDS

or

PKDS

management

services

have

been

disallowed.

8

(8)

The

service

or

algorithm

is

not

available

on

current

hardware.

Your

request

cannot

be

processed.

User

action:

Correct

the

calling

program

or

run

on

applicable

hardware.

C

(12)

The

service

that

you

called

is

unavailable

because

the

installation

exit

for

that

service

had

previously

failed.

User

action:

Contact

your

ICSF

administrator

or

system

programmer.

10

(16)

A

requested

installation

service

routine

could

not

be

found.

Your

request

was

not

processed.

User

action:

Contact

your

ICSF

administrator

or

system

programmer.

1C

(28)

Cryptographic

asynchronous

processor

failed.

User

action:

Contact

your

IBM

support

center.

20

(32)

Cryptographic

asynchronous

instruction

was

not

executed.

User

action:

Ensure

cryptographic

services

are

enabled.

32

(50)

An

ICSF

PKA

service

could

not

be

performed

because

ICSF

is

being

terminated.

Any

of

the

PKA

services

can

issue

this.

User

action:

Review

the

reason

code.

0C5

(197)

I/O

error

reading

or

writing

to

the

DASD

copy

of

the

CKDS

or

PKDS

in

use

by

ICSF.

User

action:

Contact

your

ICSF

security

administrator

or

system

programmer.

The

RPL

feedback

code

will

be

placed

in

the

high-order

halfword

of

the

reason

code

field.

144

(324)

There

was

insufficient

coprocessor

memory

available

to

process

your

request.

This

could

include

the

Flash

EPROM

used

to

store

keys,

profiles

and

other

application

data.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

2FC

(764)

The

PKA

master

key

is

not

in

a

valid

state.

User

action:

Contact

your

ICSF

administrator.

REASONCODES:

ICSF

2B08

(11016)

819

(2073)

The

PCI

X

Cryptographic

Coprocessor

has

been

disabled

on

the

Support

Element.

It

must

be

enabled

on

the

Support

Element

before

TKE

can

access

it.

User

action:

Permit

the

selected

PCIXCC

for

TKE

Commands

on

the

Support

Element

and

then

re-open

the

Host

on

TKE.

178C

(6028)

ESTAE

could

not

be

established

in

common

I/O

routines.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

7D6

(2006)

TKE:

PCB

service

error.

7D7

(2007)

TKE:

Change

type

in

PCB

is

not

recognized.

7DF

(2015)

Domain

in

CPRB

not

enabled

by

EMB

mask.

7E1

(2017)

MKVP

mismatch

on

Set

MK.

7E5

(2021)

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

adapter

disabled.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

425

||
|

|
|

Table

174.

Reason

Codes

for

Return

Code

C

(12)

(continued)

Reason

Code

Hex

(Decimal)

Description

7E9

(2025)

Enforcement

mask

error.

7F3

(2035)

Intrusion

latch

has

been

tripped.

Services

disabled.

7F5

(2037)

The

domain

specified

is

not

valid.

7FB

(2043)

OA

certificate

not

found.

1790

(6032)

The

dynamic

allocation

of

the

DASD

copy

of

the

CKDS

or

PKDS

in

use

by

ICSF

failed.

User

action:

Contact

your

ICSF

security

administrator

or

system

programmer.

The

SVC

99

error

code

will

be

placed

in

the

high-order

halfword

of

the

reason

code

field.

1794

(6036)

A

dynamic

deallocation

error

occurred

when

closing

and

deallocating

a

CKDS

or

PKDS.

User

action:

Contact

your

security

administrator

or

system

programmer.

The

SVC

99

error

code

will

be

placed

in

the

high-order

halfword

of

the

reason

code

field.

2724

(10020)

A

key

retrieved

from

the

in-storage

CKDS

failed

the

MAC

verification

(MACVER)

check

and

is

unusable.

User

action:

Contact

your

ICSF

administrator.

2728

(10024)

A

key

retrieved

from

the

in-storage

CKDS

or

a

key

to

be

written

to

the

PKDS

was

rejected

for

use

by

the

installation

exit.

User

action:

Contact

your

ICSF

administrator

or

system

programmer.

272C

(10028)

You

cannot

use

the

secure

key

import

or

multiple

secure

key

import

callable

services

because

the

cryptographic

unit

is

not

enabled

for

processing.

The

cryptographic

unit

is

not

in

special

secure

mode

or

is

disabled

in

the

environment

control

mask

(ECM).

User

action:

Contact

your

ICSF

administrator

(your

administrator

can

enable

the

processing

mode

or

the

ECM).

2734

(10036)

More

than

one

key

with

the

same

label

was

found

in

the

CKDS

or

PKDS.

This

function

requires

a

unique

key

per

label.

The

probable

cause

may

be

the

use

of

an

incorrect

label

pointing

to

a

key

type

that

allows

multiple

keys

per

label.

User

action:

Make

sure

the

application

specifies

the

correct

label.

If

the

label

is

correct,

contact

your

ICSF

security

administrator

or

system

programmer

to

verify

the

contents

of

the

CKDS

or

PKDS.

273C

(10044)

OPEN

of

the

PKDS

in

use

by

ICSF

failed.

User

action:

Contact

your

ICSF

security

administrator

or

system

programmer.

2740

(10048)

I/O

error

reading

or

writing

to

the

DASD

copy

of

the

CKDS

or

PKDS

in

use

by

ICSF.

User

action:

Contact

your

ICSF

security

administrator

or

system

programmer.

The

RPL

feedback

code

will

be

placed

in

the

high-order

halfword

of

the

reason

code

field.

REASONCODES:

TSS

0C5

(197)

2744

(10052)

Automatic

REFRESH

to

free

storage

in

the

linear

section

of

the

CKT

failed.

User

action:

Contact

your

ICSF

security

administrator

or

system

programmer

and

request

that

a

REFRESH

be

done.

274C

(10060)

The

I/O

subtask

terminated

for

an

unexpected

reason

before

completing

the

request.

No

dynamic

CKDS

or

PKDS

update

services

are

possible

at

this

point.

User

action:

Contact

your

system

programmer

who

can

investigate

the

problem

and

restart

the

I/O

subtask

by

stopping

and

restarting

ICSF.

426

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

174.

Reason

Codes

for

Return

Code

C

(12)

(continued)

Reason

Code

Hex

(Decimal)

Description

2B04

(11012)

This

function

is

disabled

in

the

environment

control

mask

(ECM).

User

action:

Contact

your

ICSF

administrator.

2B08

(11016)

The

PKA

master

key

is

not

in

a

valid

state.

User

action:

Contact

your

ICSF

administrator.

REASONCODES:

TSS

0FC

(764)

2B0C

(11020)

The

modulus

of

the

public

or

private

key

is

larger

than

allowed

and

configured

in

the

CCC

or

FCV.

You

cannot

use

this

key

on

this

system.

User

action:

Regenerate

the

key

with

a

smaller

modulus

size.

2B10

(11024)

The

system

administrator

has

used

the

ICSF

User

Control

Functions

panel

to

disable

the

PKA

functions.

User

action:

Wait

until

administrator

functions

are

complete

and

the

PKA

functions

are

again

enabled.

2B18

(11032)

A

CAMQ

is

valid

for

PKSC

but

not

for

PKA.

User

action:

Contact

your

ICSF

administrator.

2B1C

(11036)

A

PKDS

is

not

available

for

processing.

User

action:

Contact

your

ICSF

administrator.

2B20

(11040)

The

PKDS

Control

Record

hash

pattern

is

not

valid.

User

action:

Contact

your

ICSF

administrator.

2B24

(11044)

The

PKDS

could

not

be

accessed.

User

action:

Contact

your

ICSF

administrator.

2B28

(11048)

The

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

failed.

User

action:

Contact

your

IBM

support

center.

2B2C

(11052)

The

specific

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

requested

for

service

is

temporarily

unavailable.

PKDS

could

not

be

accessed.

The

specific

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

may

be

attempting

some

recovery

action.

If

recovery

action

is

successful,

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

will

be

made

available.

If

the

recovery

action

fails,

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

will

be

made

permanently

unavailable.

User

action:

Retry

the

function.

2B30

(11056)

The

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

failed.

The

response

from

the

processor

was

incomplete.

User

action:

Contact

your

IBM

support

center.

2B34

(11060)

The

service

could

not

be

performed

because

the

required

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

was

not

active.

User

action:

If

the

service

required

a

specific

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor,

verify

that

the

value

specified

is

correct.

Reissue

the

request

when

the

required

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor

is

available.

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

427

Table

174.

Reason

Codes

for

Return

Code

C

(12)

(continued)

Reason

Code

Hex

(Decimal)

Description

2B38

(11064)

Service

could

not

be

performed

because

of

a

hardware

error

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

2EDC

(11996)

The

Integrated

Cryptographic

Feature

is

not

available

for

CKDS

initialization

because

the

cryptographic

unit

is

not

in

special

secure

mode.

User

action:

Contact

your

ICSF

administrator.

2EE0

(12000)

You

cannot

use

the

Clear

PIN

generate

callable

service

because

the

cryptographic

unit

is

not

enabled

for

processing.

The

cryptographic

unit

is

not

in

special

secure

mode.

User

action:

Contact

your

ICSF

administrator

who

can

enable

the

processing

mode.

2EE4

(12004)

An

error

occurred

in

a

latch

manager

call.

User

action:

Contact

your

ICSF

security

administrator

or

system

programmer.

8CB4

(36020)

A

refresh

of

the

CKDS

failed

because

the

DASD

copy

of

the

CKDS

is

enciphered

under

the

wrong

master

key.

This

may

have

resulted

from

an

automatic

refresh

during

processing

of

the

key

record

create

callable

service.

User

action:

Contact

your

ICSF

administrator.

Reason

Codes

for

Return

Code

10

(16)

Table

175

lists

reason

codes

returned

from

callable

services

that

give

return

code

16.

Table

175.

Reason

Codes

for

Return

Code

10

(16)

Reason

Code

Hex

(Decimal)

Description

4

(4)

ICSF:

Your

call

to

an

ICSF

callable

service

resulted

in

an

abnormal

ending.

The

request

parameter

block

failed

consistency

checking.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

150

(336)

An

error

occurred

in

the

cryptographic

hardware

component.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

REASONCODES:

ICSF

4

(4)

22C

(556)

The

request

parameter

block

failed

consistency

checking.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

REASONCODES:

ICSF

4

(4)

2C4

(708)

Inconsistent

data

was

returned

from

the

cryptographic

engine.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

REASONCODES:

ICSF

4

(4)

2C5

(709)

Cryptographic

engine

internal

error;

could

not

access

the

master

key

data.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

REASONCODES:

ICSF

4

(4)

428

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

175.

Reason

Codes

for

Return

Code

10

(16)

(continued)

Reason

Code

Hex

(Decimal)

Description

2C8

(712)

An

unexpected

error

occurred

in

the

Master

Key

manager.

User

action:

Contact

your

system

programmer

or

the

IBM

Support

Center.

REASONCODES:

ICSF

4

(4)

Appendix

A.

ICSF

and

TSS

Return

and

Reason

Codes

429

430

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

B.

Key

Token

Formats

For

debugging

purposes,

this

appendix

provides

the

formats

for

DES

internal,

external,

and

null

key

tokens

and

for

PKA

key

tokens.

Format

of

the

DES

Internal

Key

Token

Table

176

shows

the

format

for

a

DES

internal

key

token.

Table

176.

Internal

Key

Token

Format

Bytes

Description

0

X'01'

(flag

indicating

this

is

an

internal

key

token)

1–3

Implementation-dependent

bytes

(X'000000'

for

ICSF)

4

Key

token

version

number

(X'00'

or

X'01')

5

Reserved

(X'00')

6

Flag

byte

Bit

Meaning

When

Set

On

0

Encrypted

key

and

master

key

verification

pattern

(MKVP)

are

present.

1

Control

vector

(CV)

value

in

this

token

has

been

applied

to

the

key.

2

Key

is

used

for

no

control

vector

(NOCV)

processing.

Valid

for

transport

keys

only.

3

Key

is

an

ANSI

key-encrypting

key

(AKEK).

4

AKEK

is

a

double-length

key

(16

bytes).

Note:

When

bit

3

is

on

and

bit

4

is

off,

AKEK

is

a

single-length

key

(8

bytes).

5

AKEK

is

partially

notarized.

6

Key

is

an

ANSI

partial

key.

7

Export

prohibited.

7

Reserved

(X'00')

8–15

Master

key

verification

pattern

(MKVP)

16–23

A

single-length

key,

the

left

half

of

a

double-length

key,

or

Part

A

of

a

triple-length

key.

The

value

is

encrypted

under

the

master

key.

24–31

X'0000000000000000'

if

a

single-length

key,

or

the

right

half

of

a

double-length

operational

key,

or

Part

B

of

a

triple-length

operational

key.

The

right

half

of

the

double-length

key

or

Part

B

of

the

triple-length

key

is

encrypted

under

the

master

key.

32–39

The

control

vector

(CV)

for

a

single-length

key

or

the

left

half

of

the

control

vector

for

a

double-length

key.

40–47

X'0000000000000000'

if

a

single-length

key

or

the

right

half

of

the

control

vector

for

a

double-length

operational

key.

48–55

X'0000000000000000'

if

a

single-length

key

or

double-length

key,

or

Part

C

of

a

triple-length

operational

key.

Part

C

of

a

triple-length

key

is

encrypted

under

the

master

key.

56-58

Reserved

(X'000000')

59

bits

0

and

1

B'10'

Indicates

CDMF

DATA

or

KEK.

B'00'

Indicates

DES

for

DATA

keys

or

the

system

default

algorithm

for

a

KEK.

B'01'

Indicates

DES

for

a

KEK.

59

bits

2

and

3

B'00'

Indicates

single-length

key

(version

0

only).

B'01'

Indicates

double-length

key

(version

1

only).

B'10'

Indicates

triple-length

key

(version

1

only).

©

Copyright

IBM

Corp.

1997,

2004

431

Table

176.

Internal

Key

Token

Format

(continued)

Bytes

Description

59

bits

4

–7

B'0000'

60–63

Token

validation

value

(TVV).

Note:

A

key

token

stored

in

the

CKDS

will

not

have

an

MKVP

or

TVV.

Before

such

a

key

token

is

used,

the

MKVP

is

copied

from

the

CKDS

header

record

and

the

TVV

is

calculated

and

placed

in

the

token.

See

“Token

Validation

Value”

for

more

information.

Token

Validation

Value

ICSF

uses

the

token

validation

value

(TVV)

to

verify

that

a

token

is

valid.

The

TVV

prevents

a

key

token

that

is

not

valid

or

that

is

overlaid

from

being

accepted

by

ICSF.

It

provides

a

checksum

to

detect

a

corruption

in

the

key

token.

When

an

ICSF

callable

service

generates

a

key

token,

it

generates

a

TVV

and

stores

the

TVV

in

bytes

60-63

of

the

key

token.

When

an

application

program

passes

a

key

token

to

a

callable

service,

ICSF

checks

the

TVV.

To

generate

the

TVV,

ICSF

performs

a

twos

complement

ADD

operation

(ignoring

carries

and

overflow)

on

the

key

token,

operating

on

four

bytes

at

a

time,

starting

with

bytes

0-3

and

ending

with

bytes

56-59.

DES

External

Key

Token

Table

177

on

page

433

shows

the

format

for

a

DES

external

key

token.

432

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

177.

Format

of

External

Key

Tokens

Bytes

Description

0

X'02'

(flag

indicating

an

external

key

token)

1

Reserved

(X'00')

2–3

Implementation-dependent

bytes

(X'0000'

for

ICSF)

4

Key

token

version

number

(X'00'

or

X'01')

5

Reserved

(X'00')

6

Flag

byte

Bit

Meaning

When

Set

On

0

Encrypted

key

is

present.

1

Control

vector

(CV)

value

has

been

applied

to

the

key.

Other

bits

are

reserved

and

are

binary

zeros.

7

Reserved

(X'00')

8–15

Reserved

(X'0000000000000000')

16–23

Single-length

key

or

left

half

of

a

double-length

key,

or

Part

A

of

a

triple-length

key.

The

value

is

encrypted

under

a

transport

key.

24–31

X'0000000000000000'

if

a

single-length

key

or

right

half

of

a

double-length

key,

or

Part

B

of

a

triple-length

key.

The

right

half

of

a

double-length

key

or

Part

B

of

a

triple-length

key

is

encrypted

under

a

transport

(key-encrypting

key)

for

export

or

import.

32–39

Control

vector

(CV)

for

single-length

key

or

left

half

of

CV

for

double-length

key

40–47

X'0000000000000000'

if

single-length

key

or

right

half

of

CV

for

double-length

key

48–55

X'0000000000000000'

if

a

single-length

key,

double-length

key,

or

Part

C

of

a

triple-length

key.

56–58

Reserved

(X'000000')

59

bits

0

and

1

B'00'

59

bits

2

and

3

B'00'

Indicates

single-length

key

(version

0

only).

B'01'

Indicates

double-length

key

(version

1

only).

B'10'

Indicates

triple-length

key

(version

1

only).

59

bits

4–7

B'0000'

60-63

Token

validation

value

(see

“Token

Validation

Value”

on

page

432

for

a

description).

DES

Null

Key

Token

Table

178

on

page

434

shows

the

format

for

a

DES

null

key

token.

Appendix

B.

Key

Token

Formats

433

Table

178.

Format

of

Null

Key

Tokens

Bytes

Description

0

X'00'

(flag

indicating

this

is

a

null

key

token).

1–15

Reserved

(set

to

binary

zeros).

16–23

Single-length

encrypted

key,

or

left

half

of

double-length

encrypted

key,

or

Part

A

of

triple-length

encrypted

key.

24–31

X'0000000000000000'

if

a

single-length

encrypted

key,

the

right

half

of

double-length

encrypted

key,

or

Part

B

of

triple-length

encrypted

key.

32–39

X'0000000000000000'

if

a

single-length

encrypted

key

or

double-length

encrypted

key.

40–47

Reserved

(set

to

binary

zeros).

48–55

Part

C

of

a

triple-length

encrypted

key.

56–63

Reserved

(set

to

binary

zeros).

Format

of

the

RSA

Public

Key

Token

An

RSA

public

key

token

contains

the

following

sections:

v

A

required

token

header,

starting

with

the

token

identifier

X'1E'

v

A

required

RSA

public

key

section,

starting

with

the

section

identifier

X'04'

Table

179

presents

the

format

of

an

RSA

public

key

token.

All

length

fields

are

in

binary.

All

binary

fields

(exponents,

lengths,

and

so

on)

are

stored

with

the

high-order

byte

first

(left,

low-address,

S/390

format).

Table

179.

RSA

Public

Key

Token

Offset

(Dec)

Number

of

Bytes

Description

Token

Header

(required)

000

001

Token

identifier.

X'1E'

indicates

an

external

token.

001

001

Version,

X'00'.

002

002

Length

of

the

key

token

structure.

004

004

Ignored.

Should

be

zero.

RSA

Public

Key

Section

(required)

000

001

X'04',

section

identifier,

RSA

public

key.

001

001

X'00',

version.

002

002

Section

length,

12+xxx+yyy.

004

002

Reserved

field.

006

002

RSA

public

key

exponent

field

length

in

bytes,

“xxx”.

008

002

Public

key

modulus

length

in

bits.

010

002

RSA

public

key

modulus

field

length

in

bytes,

“yyy”.

012

xxx

Public

key

exponent

(this

is

generally

a

1-,

3-,

or

64-

to

256-byte

quantity),

e.

e

must

be

odd

and

1<e<n.

(Frequently,

the

value

of

e

is

2

16+1)

12+xxx

yyy

Modulus,

n.

434

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Format

of

the

DSS

Public

Key

Token

A

DSS

public

key

token

contains

the

following

sections:

v

A

required

token

header,

starting

with

the

token

identifier

X'1E'

v

A

required

DSS

public

key

section,

starting

with

the

section

identifier

X'03'

Table

180

presents

the

format

of

a

DSS

public

key

token.

All

length

fields

are

in

binary.

All

binary

fields

(exponents,

lengths,

and

so

on)

are

stored

with

the

high-order

byte

first

(left,

low-address,

S/390

format).

Table

180.

DSS

Public

Key

Token

Offset

(Dec)

Number

of

Bytes

Description

Token

Header

(required)

000

001

Token

identifier.

X'1E'

indicates

an

external

token.

001

001

Version,

X'00'.

002

002

Length

of

the

key

token

structure.

004

004

Ignored.

Should

be

zero.

DSS

Public

Key

Section

(required)

000

001

X'03',

section

identifier,

DSS

public

key.

001

001

X'00',

version.

002

002

Section

length,

14+ppp+qqq+ggg+yyy.

004

002

Size

of

p

in

bits.

The

size

of

p

must

be

one

of:

512,

576,

640,

704,

768,

832,

896,

960,

or

1024.

006

002

Size

of

the

p

field

in

bytes,

“ppp”.

008

002

Size

of

the

q

field

in

bytes,

“qqq”.

010

002

Size

of

the

g

field

in

bytes,

“ggg”.

012

002

Size

of

the

y

field

in

bytes,

“yyy”.

014

ppp

Prime

modulus

(large

public

modulus),

p.

014

+ppp

qqq

Prime

divisor

(small

public

modulus),

q.

2159<q<2160.

014

+ppp

+qqq

ggg

Public

key

generator,

g.

014

+ppp

+qqq

+ggg

yyy

Public

key,

y.

y=gx

mod(p);

1<y<p.

Format

of

RSA

Private

External

Key

Tokens

An

RSA

private

external

key

token

contains

the

following

sections:

v

A

required

PKA

token

header

starting

with

the

token

identifier

X'1E'

v

A

required

RSA

private

key

section

starting

with

one

of

the

following

section

identifiers:

–

X'02'

which

indicates

a

modulus-exponent

form

RSA

private

key

section

(not

optimized)

with

modulus

length

of

up

to

1024

bits

for

use

with

the

Cryptographic

Coprocessor

Feature

or

the

PCI

Cryptographic

Coprocessor.

–

X'08'

which

indicates

an

optimized

Chinese

Remainder

Theorem

form

private

key

section

with

modulus

bit

length

of

up

to

2048

bits

for

use

with

the

PCI

Cryptographic

Coprocessor
v

A

required

RSA

public

key

section,

starting

with

the

section

identifier

X'04'

v

An

optional

private

key

name

section,

starting

with

the

section

identifier

X'10'

Appendix

B.

Key

Token

Formats

435

Table

181

presents

the

basic

record

format

of

an

RSA

private

external

key

token.

All

length

fields

are

in

binary.

All

binary

fields

(exponents,

lengths,

and

so

on)

are

stored

with

the

high-order

byte

first

(left,

low-address,

S/390

format).

All

binary

fields

(exponents,

modulus,

and

so

on)

in

the

private

sections

of

tokens

are

right-justified

and

padded

with

zeros

to

the

left.

Table

181.

RSA

Private

External

Key

Token

Basic

Record

Format

Offset

(Dec)

Number

of

Bytes

Description

Token

Header

(required)

000

001

Token

identifier.

X'1E'

indicates

an

external

token.

The

private

key

is

either

in

cleartext

or

enciphered

with

a

transport

key-encrypting

key.

001

001

Version,

X'00'.

002

002

Length

of

the

key

token

structure.

004

004

Ignored.

Should

be

zero.

RSA

Private

Key

Section

(required)

v

For

1024-bit

Modulus-Exponent

form

refer

to

“RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

External

Form”

v

For

2048-bit

Chinese

Remainder

Theorem

form

refer

to

“RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Form”

on

page

437

RSA

Public

Key

Section

(required)

000

001

X'04',

section

identifier,

RSA

public

key.

001

001

X'00',

version.

002

002

Section

length,

12+xxx.

004

002

Reserved

field.

006

002

RSA

public

key

exponent

field

length

in

bytes,

“xxx”.

008

002

Public

key

modulus

length

in

bits.

010

002

RSA

public

key

modulus

field

length

in

bytes,

which

is

zero

for

a

private

token.

Note:

In

an

RSA

private

key

token,

this

field

should

be

zero.

The

RSA

private

key

section

contains

the

modulus.

012

xxx

Public

key

exponent,

e

(this

is

generally

a

1-,

3-,

or

64-

to

256-byte

quantity).

e

must

be

odd

and

1<e<n.

(Frequently,

the

value

of

e

is

216+1

(=65,537).

Private

Key

Name

(optional)

000

001

X'10',

section

identifier,

private

key

name.

001

001

X'00',

version.

002

002

Section

length,

X'0044'

(68

decimal).

004

064

Private

key

name

(in

ASCII),

left-justified,

padded

with

space

characters

(X'20').

An

access

control

system

can

use

the

private

key

name

to

verify

that

the

calling

application

is

entitled

to

use

the

key.

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

External

Form

This

RSA

private

key

token

and

the

external

X'02'

token

is

supported

on

the

Cryptographic

Coprocessor

Feature

and

PCI

Cryptographic

Coprocessor.

Table

182.

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

External

Format

Offset

(Dec)

Number

of

Bytes

Description

000

001

X'02',

section

identifier,

RSA

private

key,

modulus-exponent

format

(RSA-PRIV)

436

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

182.

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

External

Format

(continued)

Offset

(Dec)

Number

of

Bytes

Description

001

001

X'00',

version.

002

002

Length

of

the

RSA

private

key

section

X'016C'

(364

decimal).

004

020

SHA-1

hash

value

of

the

private

key

subsection

cleartext,

offset

28

to

the

section

end.

This

hash

value

is

checked

after

an

enciphered

private

key

is

deciphered

for

use.

024

004

Reserved;

set

to

binary

zero.

028

001

Key

format

and

security:

X'00'

Unencrypted

RSA

private

key

subsection

identifier.

X'82'

Encrypted

RSA

private

key

subsection

identifier.

029

001

Reserved,

binary

zero.

030

020

SHA-1

hash

of

the

optional

key-name

section.

If

there

is

no

key-name

section,

then

20

bytes

of

X'00'.

050

004

Key

use

flag

bits.

Bit

Meaning

When

Set

On

0

Key

management

usage

permitted.

1

Signature

usage

not

permitted.

All

other

bits

reserved,

set

to

binary

zero.

054

006

Reserved;

set

to

binary

zero.

060

024

Reserved;

set

to

binary

zero.

084

Start

of

the

optionally-encrypted

secure

subsection.

084

024

Random

number,

confounder.

108

128

Private-key

exponent,

d.

d=e-1

mod((p-1)(q-1)),

and

1<d<n

where

e

is

the

public

exponent.

End

of

the

optionally-encrypted

subsection;

the

confounder

field

and

the

private-key

exponent

field

are

enciphered

for

key

confidentiality

when

the

key

format

and

security

flags

(offset

28)

indicate

that

the

private

key

is

enciphered.

They

are

enciphered

under

a

double-length

transport

key

using

the

ede2

algorithm.

236

128

Modulus,

n.

n=pq

where

p

and

q

are

prime

and

1<n<2

1024.

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Form

This

RSA

private

key

token

is

supported

on

the

PCI

Cryptographic

Coprocessor.

Table

183.

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Format

Offset

(Dec)

Number

of

Bytes

Description

000

001

X'08',

section

identifier,

RSA

private

key,

CRT

format

(RSA-CRT)

001

001

X'00',

version.

002

002

Length

of

the

RSA

private-key

section,

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

+

xxx

+

nnn.

004

020

SHA-1

hash

value

of

the

private

key

subsection

cleartext,

offset

28

to

the

end

of

the

modulus.

024

004

Reserved;

set

to

binary

zero.

Appendix

B.

Key

Token

Formats

437

Table

183.

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Format

(continued)

Offset

(Dec)

Number

of

Bytes

Description

028

001

Key

format

and

security:

X'40'

Unencrypted

RSA

private-key

subsection

identifier,

Chinese

Remainder

form.

X'42'

Encrypted

RSA

private-key

subsection

identifier,

Chinese

Remainder

form.

029

001

Reserved;

set

to

binary

zero.

030

020

SHA-1

hash

of

the

optional

key-name

section

and

any

following

optional

sections.

If

there

are

no

optional

sections,

then

20

bytes

of

X'00'.

050

004

Key

use

flag

bits.

Bit

Meaning

When

Set

On

0

Key

management

usage

permitted.

1

Signature

usage

not

permitted.

All

other

bits

reserved,

set

to

binary

zero.

054

002

Length

of

prime

number,

p,

in

bytes:

ppp.

056

002

Length

of

prime

number,

q,

in

bytes:

qqq.

058

002

Length

of

dp,

in

bytes:

rrr.

060

002

Length

of

dq,

in

bytes:

sss.

062

002

Length

of

U,

in

bytes:

uuu.

064

002

Length

of

modulus,

n,

in

bytes:

nnn.

066

004

Reserved;

set

to

binary

zero.

070

002

Length

of

padding

field,

in

bytes:

xxx.

072

004

Reserved,

set

to

binary

zero.

076

016

Reserved,

set

to

binary

zero.

092

032

Reserved;

set

to

binary

zero.

124

Start

of

the

optionally-encrypted

secure

subsection.

124

008

Random

number,

confounder.

132

ppp

Prime

number,

p.

132

+

ppp

qqq

Prime

number,

q

132

+

ppp

+

qqq

rrr

dp

=

d

mod(p

-

1)

132

+

ppp

+

qqq

+

rrr

sss

dq

=

d

mod(q

-

1)

132

+

ppp

+

qqq

+

rrr

+

sss

uuu

U

=

q

–1mod(p).

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

xxx

X'00'

padding

of

length

xxx

bytes

such

that

the

length

from

the

start

of

the

random

number

above

to

the

end

of

the

padding

field

is

a

multiple

of

eight

bytes.

End

of

the

optionally-encrypted

secure

subsection;

all

of

the

fields

starting

with

the

confounder

field

and

ending

with

the

variable

length

pad

field

are

enciphered

for

key

confidentiality

when

the

key

format-and-security

flags

(offset

28)

indicate

that

the

private

key

is

enciphered.

They

are

enciphered

under

a

double-length

transport

key

using

the

TDES

(CBC

outer

chaining)

algorithm.

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

+

xxx

nnn

Modulus,

n.

n

=

pq

where

p

and

q

are

prime

and

2512<n<22048.

438

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Format

of

the

DSS

Private

External

Key

Token

A

DSS

private

external

key

token

contains

the

following

sections:

v

A

required

PKA

token

header,

starting

with

the

token

identifier

X'1E'

v

A

required

DSS

private

key

section,

starting

with

the

section

identifier

X'01'

v

A

required

DSS

public

key

section,

starting

with

the

section

identifier

X'03'

v

An

optional

private

key

name

section,

starting

with

the

section

identifier

X'10'

Table

184

presents

the

format

of

a

DSS

private

external

key

token.

All

length

fields

are

in

binary.

All

binary

fields

(exponents,

lengths,

and

so

on)

are

stored

with

the

high-order

byte

first

(left,

low-address,

S/390

format).

All

binary

fields

(exponents,

modulus,

and

so

on)

in

the

private

sections

of

tokens

are

right-justified

and

padded

with

zeros

to

the

left.

Table

184.

DSS

Private

External

Key

Token

Offset

(Dec)

Number

of

Bytes

Description

Token

Header

(required)

000

001

Token

identifier.

X'1E'

indicates

an

external

token.

The

private

key

is

enciphered

with

a

PKA

master

key.

001

001

Version,

X'00'.

002

002

Length

of

the

key

token

structure.

004

004

Ignored.

Should

be

zero.

DSS

Private

Key

Section

and

Secured

Subsection

(required)

000

001

X'01',

section

identifier,

DSS

private

key.

001

001

X'00',

version.

002

002

Length

of

the

DSS

private

key

section,

436,

X'01B4'.

004

020

SHA-1

hash

value

of

the

private

key

subsection

cleartext,

offset

28

to

the

section

end.

This

hash

value

is

checked

after

an

enciphered

private

key

is

deciphered

for

use.

024

004

Reserved;

set

to

binary

zero.

028

001

Key

security:

X'00'

Unencrypted

DSS

private

key

subsection

identifier.

X'81'

Encrypted

DSS

private

key

subsection

identifier.

029

001

Padding,

X'00'.

030

020

SHA-1

hash

of

the

key

token

structure

contents

that

follow

the

public

key

section.

If

no

sections

follow,

this

field

is

set

to

binary

zeros.

050

010

Reserved;

set

to

binary

zero.

060

048

Ignored;

set

to

binary

zero.

108

128

Public

key

generator,

g.

1<g<p.

236

128

Prime

modulus

(large

public

modulus),

p.

2L-1<p<2L

and

L

(the

modulus

length)

must

be

a

multiple

of

64.

364

020

Prime

divisor

(small

public

modulus),

q.

2159<q<2160.

384

004

Reserved;

set

to

binary

zero.

388

024

Random

number,

confounder.

Note:

This

field

and

the

next

two

fields

are

enciphered

for

key

confidentiality

when

the

key

security

flag

(offset

28)

indicates

the

private

key

is

enciphered.

412

020

Secret

DSS

key,

x;

x

is

random.

(See

the

preceding

note.)

Appendix

B.

Key

Token

Formats

439

Table

184.

DSS

Private

External

Key

Token

(continued)

Offset

(Dec)

Number

of

Bytes

Description

432

004

Random

number,

generated

when

the

secret

key

is

generated.

(See

the

preceding

note.)

DSS

Public

Key

Section

(required)

000

001

X'03',

section

identifier,

DSS

public

key.

001

001

X'00',

version.

002

002

Section

length,

14+yyy.

004

002

Size

of

p

in

bits.

The

size

of

p

must

be

one

of:

512,

576,

640,

704,

768,

832,

896,

960,

or

1024.

006

002

Size

of

the

p

field

in

bytes,

which

is

zero

for

a

private

token.

008

002

Size

of

the

q

field

in

bytes,

which

is

zero

for

a

private

token.

010

002

Size

of

the

g

field

in

bytes,

which

is

zero

for

a

private

token.

012

002

Size

of

the

y

field

in

bytes,

“yyy”.

014

yyy

Public

key,

y.

y=gx

mod(p)

Note:

p,

q,

and

y

are

defined

in

the

DSS

public

key

token.

Private

Key

Name

(optional)

000

001

X'10',

section

identifier,

private

key.

name

001

001

X'00',

version.

002

002

Section

length,

X'0044'

(68

decimal).

004

064

Private

key

name

(in

ASCII),

left-justified,

padded

with

space

characters

(X'20').

An

access

control

system

can

use

the

private

key

name

to

verify

that

the

calling

application

is

entitled

to

use

the

key.

Format

of

the

RSA

Private

Internal

Key

Token

An

RSA

private

internal

key

token

contains

the

following

sections:

v

A

required

PKA

token

header,

starting

with

the

token

identifier

X'1F'

v

basic

record

format

of

an

RSA

private

internal

key

token.

All

length

fields

are

in

binary.

All

binary

fields

(exponents,

lengths,

and

so

on)

are

stored

with

the

high-order

byte

first

(left,

low-address,

S/390

format).

All

binary

fields

(exponents,

modulus,

and

so

on)

in

the

private

sections

of

tokens

are

right-justified

and

padded

with

zeros

to

the

left.

Table

185.

RSA

Private

Internal

Key

Token

Basic

Record

Format

Offset

(Dec)

Number

of

Bytes

Description

Token

Header

(required)

000

001

Token

identifier.

X'1F'

indicates

an

internal

token.

The

private

key

is

enciphered

with

a

PKA

master

key.

001

001

Version,

X'00'.

002

002

Length

of

the

key

token

structure

excluding

the

internal

information

section.

004

004

Ignored;

should

be

zero.

440

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

185.

RSA

Private

Internal

Key

Token

Basic

Record

Format

(continued)

Offset

(Dec)

Number

of

Bytes

Description

RSA

Private

Key

Section

and

Secured

Subsection

(required)

v

For

1024-bit

X'02'

Modulus-Exponent

form

refer

to

“RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

Internal

Form

for

Cryptographic

Coprocessor

Feature”

on

page

442

v

For

1024-bit

X'06'

Modulus-Exponent

form

refer

to

“RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

Internal

Form

for

PCI

Cryptographic

Coprocessor”

on

page

442

v

For

2048-bit

X'08'

Chinese

Remainder

Theorem

form

refer

to

“RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

Internal

Form”

on

page

444

RSA

Public

Key

Section

(required)

000

001

X'04',

section

identifier,

RSA

public

key.

001

001

X'00',

version.

002

002

Section

length,

12+xxx.

004

002

Reserved

field.

006

002

RSA

public

key

exponent

field

length

in

bytes,

“xxx”.

008

002

Public

key

modulus

length

in

bits.

010

002

RSA

public

key

modulus

field

length

in

bytes,

which

is

zero

for

a

private

token.

012

xxx

Public

key

exponent

(this

is

generally

a

1,

3,

or

64

to

256-byte

quantity),

e.

e

must

be

odd

and

1<e<n.

(Frequently,

the

value

of

e

is

216+1

(=65,537).

Private

Key

Name

(optional)

000

001

X'10',

section

identifier,

private

key

name.

001

001

X'00',

version.

002

002

Section

length,

X'0044'

(68

decimal).

004

064

Private

key

name

(in

ASCII),

left-justified,

padded

with

space

characters

(X'20').

An

access

control

system

can

use

the

private

key

name

to

verify

that

the

calling

application

is

entitled

to

use

the

key.

Internal

Information

Section

(required)

000

004

Eye

catcher

'PKTN'.

004

004

PKA

token

type.

Bit

Meaning

When

Set

On

0

RSA

key.

1

DSS

key.

2

Private

key.

3

Public

key.

4

Private

key

name

section

exists.

5

Private

key

unenciphered.

6

Blinding

information

present.

7

Retained

private

key.

008

004

Address

of

token

header.

012

002

Total

length

of

total

structure

including

this

information

section.

014

002

Count

of

number

of

sections.

016

016

PKA

master

key

hash

pattern.

Appendix

B.

Key

Token

Formats

441

Table

185.

RSA

Private

Internal

Key

Token

Basic

Record

Format

(continued)

Offset

(Dec)

Number

of

Bytes

Description

032

001

Domain

of

retained

key.

033

008

Serial

number

of

processor

holding

retained

key.

041

007

Reserved.

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

Internal

Form

for

Cryptographic

Coprocessor

Feature

Table

186.

RSA

Private

Internal

Key

Token,

1024-bit

ME

Form

for

Cryptographic

Coprocessor

Feature

Offset

(Dec)

Number

of

Bytes

Description

000

001

X'02',

section

identifier,

RSA

private

key.

001

001

X'00',

version.

002

002

Length

of

the

RSA

private

key

section

X'016C'

(364

decimal).

004

020

SHA-1

hash

value

of

the

private

key

subsection

cleartext,

offset

28

to

the

section

end.

This

hash

value

is

checked

after

an

enciphered

private

key

is

deciphered

for

use.

024

004

Reserved;

set

to

binary

zero.

028

001

Key

format

and

security:

X'02'

RSA

private

key.

029

001

Format

of

external

key

from

which

this

token

was

derived:

X'21'

External

private

key

was

specified

in

the

clear.

X'22'

External

private

key

was

encrypted.

030

020

SHA-1

hash

of

the

key

token

structure

contents

that

follow

the

public

key

section.

If

no

sections

follow,

this

field

is

set

to

binary

zeros.

050

001

Key

use

flag

bits.

Bit

Meaning

When

Set

On

0

Key

management

usage

permitted.

1

Signature

usage

not

permitted.

All

other

bits

reserved,

set

to

binary

zero.

051

009

Reserved;

set

to

binary

zero.

060

048

Object

Protection

Key

(OPK)

encrypted

under

a

PKA

master

key—can

be

under

the

Signature

Master

Key

(SMK)

or

Key

Management

Master

Key

(KMMK)

depending

on

key

use.

108

128

Secret

key

exponent

d,

encrypted

under

the

OPK.

d=e-1

mod((p-1)(q-1))

236

128

Modulus,

n.

n=pq

where

p

and

q

are

prime

and

1<n<2

1024.

RSA

Private

Key

Token,

1024-bit

Modulus-Exponent

Internal

Form

for

PCI

Cryptographic

Coprocessor

Table

187.

RSA

Private

Internal

Key

Token,

1024-bit

ME

Form

for

PCI

Cryptographic

Coprocessor

Offset

(Dec)

Number

of

Bytes

Description

000

001

X'06',

section

identifier,

RSA

private

key

modulus-exponent

format

(RSA-PRIV).

001

001

X'00',

version.

442

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

187.

RSA

Private

Internal

Key

Token,

1024-bit

ME

Form

for

PCI

Cryptographic

Coprocessor

(continued)

Offset

(Dec)

Number

of

Bytes

Description

002

002

Length

of

the

RSA

private

key

section

X'0198'

(408

decimal)

+

rrr

+

iii

+

xxx.

004

020

SHA-1

hash

value

of

the

private

key

subsection

cleartext,

offset

28

to

and

including

the

modulus

at

offset

236.

024

004

Reserved;

set

to

binary

zero.

028

001

Key

format

and

security:

X'02'

RSA

private

key.

029

001

Format

of

external

key

from

which

this

token

was

derived:

X'21'

External

private

key

was

specified

in

the

clear.

X'22'

External

private

key

was

encrypted.

X'23'

Private

key

was

generated

using

regeneration

data.

X'24'

Private

key

was

randomly

generated.

030

020

SHA-1

hash

of

the

optional

key-name

section

and

any

following

optional

sections.

If

there

are

no

optional

sections,

this

field

is

set

to

binary

zeros.

050

004

Key

use

flag

bits.

Bit

Meaning

When

Set

On

0

Key

management

usage

permitted.

1

Signature

usage

not

permitted.

All

other

bits

reserved,

set

to

binary

zeros.

054

006

Reserved;

set

to

binary

zero.

060

048

Object

Protection

Key

(OPK)

encrypted

under

the

Asymmetric

Keys

Master

Key

using

the

ede3

algorithm.

108

128

Private

key

exponent

d,

encrypted

under

the

OPK

using

the

ede5

algorithm.

d=e-1mod((p-1)(q-1)),

and

1<d<n

where

e

is

the

public

exponent.

236

128

Modulus,

n.

n=pq

where

p

and

q

are

prime

and

2512<n<2

1024.

364

016

Asymmetric-Keys

Master

Key

hash

pattern.

380

020

SHA-1

hash

value

of

the

blinding

information

subsection

cleartext,

offset

400

to

the

end

of

the

section.

400

002

Length

of

the

random

number

r,

in

bytes:

rrr.

402

002

Length

of

the

random

number

r–1,

in

bytes:

iii.

404

002

Length

of

the

padding

field,

in

bytes:

xxx.

406

002

Reserved;

set

to

binary

zeros.

408

Start

of

the

encrypted

blinding

subsection

408

rrr

Random

number

r

(used

in

blinding).

408

+

rrr

iii

Random

number

r–1

(used

in

blinding).

408

+

rrr

+

iii

xxx

X'00'

padding

of

length

xxx

bytes

such

that

the

length

from

the

start

of

the

encrypted

blinding

subsection

to

the

end

of

the

padding

field

is

a

multiple

of

eight

bytes.

End

of

the

encrypted

blinding

subsection;

all

of

the

fields

starting

with

the

random

number

r

and

ending

with

the

variable

length

pad

field

are

encrypted

under

the

OPK

using

TDES

(CBC

outer

chaining)

algorithm.

Appendix

B.

Key

Token

Formats

443

RSA

Private

Key

Token,

2048-bit

Chinese

Remainder

Theorem

Internal

Form

This

RSA

private

key

token

is

supported

on

the

PCI

Cryptographic

Coprocessor.

Table

188.

RSA

Private

Internal

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Format

Offset

(Dec)

Number

of

Bytes

Description

000

001

X'08',

section

identifier,

RSA

private

key,

CRT

format

(RSA-CRT)

001

001

X'00',

version.

002

002

Length

of

the

RSA

private-key

section,

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

+

+ttt

+

iii

+

xxx

+

nnn.

004

020

SHA-1

hash

value

of

the

private-key

subsection

cleartext,

offset

28

to

the

end

of

the

modulus.

024

004

Reserved;

set

to

binary

zero.

028

001

Key

format

and

security:

X'08'

Encrypted

RSA

private-key

subsection

identifier,

Chinese

Remainder

form.

029

001

Key

derivation

method:

X'21'

External

private

key

was

specified

in

the

clear.

X'22'

External

private

key

was

encrypted.

X'23'

Private

key

was

generated

using

regeneration

data.

X'24'

Private

key

was

randomly

generated.

030

020

SHA-1

hash

of

the

optional

key-name

section

and

any

following

sections.

If

there

are

no

optional

sections,

then

20

bytes

of

X'00'.

050

004

Key

use

flag

bits:

Bit

Meaning

When

Set

On

0

Key

management

usage

permitted.

1

Signature

usage

not

permitted.

All

other

bits

reserved,

set

to

binary

zero.

054

002

Length

of

prime

number,

p,

in

bytes:

ppp.

056

002

Length

of

prime

number,

q,

in

bytes:

qqq.

058

002

Length

of

dp,

in

bytes:

rrr.

060

002

Length

of

dq,

in

bytes:

sss.

062

002

Length

of

U,

in

bytes:

uuu.

064

002

Length

of

modulus,

n,

in

bytes:

nnn.

066

002

Length

of

the

random

number

r,

in

bytes:

ttt.

068

002

Length

of

the

random

number

r–1,

in

bytes:

iii.

070

002

Length

of

padding

field,

in

bytes:

xxx.

072

004

Reserved,

set

to

binary

zero.

076

016

Asymmetric-Keys

Master

Key

hash

pattern.

092

032

Object

Protection

Key

(OPK)

encrypted

under

the

Asymmetric-Keys

Master

Key

using

the

TDES

(CBC

outer

chaining)

algorithm.

124

Start

of

the

encrypted

secure

subsection,

encrypted

under

the

OPK

using

TDES

(CBC

outer

chaining).

124

008

Random

number,

confounder.

132

ppp

Prime

number,

p.

444

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

188.

RSA

Private

Internal

Key

Token,

2048-bit

Chinese

Remainder

Theorem

External

Format

(continued)

Offset

(Dec)

Number

of

Bytes

Description

132

+

ppp

qqq

Prime

number,

q

132

+

ppp

+

qqq

rrr

dp

=

d

mod(p

-

1)

132

+

ppp

+

qqq

+

rrr

sss

dq

=

d

mod(q

-

1)

132

+

ppp

+

qqq

+

rrr

+

sss

uuu

U

=

q–1mod(p).

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

ttt

Random

number

r

(used

in

blinding).

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

+

ttt

iii

Random

number

r–1

(used

in

blinding).

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

+

ttt

+

iii

xxx

X'00'

padding

of

length

xxx

bytes

such

that

the

length

from

the

start

of

the

confounder

at

offset

124

to

the

end

of

the

padding

field

is

a

multiple

of

eight

bytes.

End

of

the

encrypted

secure

subsection;

all

of

the

fields

starting

with

the

confounder

field

and

ending

with

the

variable

length

pad

field

are

encrypted

under

the

OPK

using

TDES

(CBC

outer

chaining)

for

key

confidentiality.

132

+

ppp

+

qqq

+

rrr

+

sss

+

uuu

+

ttt

+

iii

+

xxx

nnn

Modulus,

n.

n

=

pq

where

p

and

q

are

prime

and

2512<n<22048.

Format

of

the

DSS

Private

Internal

Key

Token

A

DSS

private

internal

key

token

contains

the

following

sections:

v

A

required

PKA

token

header,

starting

with

the

token

identifier

X'1F'

v

A

required

DSS

private

key

section,

starting

with

the

section

identifier

X'01'

v

A

required

DSS

public

key

section,

starting

with

the

section

identifier

X'03'

v

An

optional

private

key

name

section,

starting

with

the

section

identifier

X'10'

v

A

required

internal

information

section,

starting

with

the

eyecatcher

'PKTN'

Table

189

presents

the

format

of

a

DSS

private

internal

token.

All

length

fields

are

in

binary.

All

binary

fields

(exponents,

lengths,

and

so

on)

are

stored

with

the

high-order

byte

first

(left,

low-address,

S/390

format).

All

binary

fields

(exponents,

modulus,

and

so

on)

in

the

private

sections

of

tokens

are

right-justified

and

padded

with

zeros

to

the

left.

Table

189.

DSS

Private

Internal

Key

Token

Offset

(Dec)

Number

of

Bytes

Description

Token

Header

(required)

000

001

Token

identifier.

X'1F'

indicates

an

internal

token.

The

private

key

is

enciphered

with

a

PKA

master

key.

001

001

Version,

X'00'.

002

002

Length

of

the

key

token

structure

excluding

the

internal

information

section.

004

004

Ignored;

should

be

zero.

DSS

Private

Key

Section

and

Secured

Subsection

(required)

000

001

X'01',

section

identifier,

DSS

private

key.

001

001

X'00',

version.

Appendix

B.

Key

Token

Formats

445

Table

189.

DSS

Private

Internal

Key

Token

(continued)

Offset

(Dec)

Number

of

Bytes

Description

002

002

Length

of

the

DSS

private

key

section,

436,

X'01B4'.

004

020

SHA-1

hash

value

of

the

private

key

subsection

cleartext,

offset

28

to

the

section

end.

This

hash

value

is

checked

after

an

enciphered

private

key

is

deciphered

for

use.

024

004

Reserved;

set

to

binary

zero.

028

001

Key

security:

X'01'

DSS

private

key.

029

001

Format

of

external

key

token:

X'10'

Private

key

generated

on

an

ICSF

host.

X'11'

External

private

key

was

specified

in

the

clear.

X'12'

External

private

key

was

encrypted.

030

020

SHA-1

hash

of

the

key

token

structure

contents

that

follow

the

public

key

section.

If

no

sections

follow,

this

field

is

set

to

binary

zeros.

050

010

Reserved;

set

to

binary

zero.

060

048

The

OPK

encrypted

under

a

PKA

master

key

(Signature

Master

Key

(SMK)).

108

128

Public

key

generator,

g.

1<g<p.

236

128

Prime

modulus

(large

public

modulus),

p.

2L-1<p<2L

for

512≤L≤1024,

and

L

(the

modulus

length)

must

be

a

multiple

of

64.

364

020

Prime

divisor

(small

public

modulus),

q.

2159<q<2160.

384

004

Reserved;

set

to

binary

zero.

388

024

Random

number,

confounder.

Note:

This

field

and

the

two

that

follow

are

enciphered

under

the

OPK.

412

020

Secret

DSS

key,

x.

x

is

random.

(See

the

preceding

note.)

432

004

Random

number,

generated

when

the

secret

key

is

generated.

(See

the

preceding

note.)

DSS

Public

Key

Section

(required)

000

001

X'03',

section

identifier,

DSS

public

key.

001

001

X'00',

version.

002

002

Section

length,

14+yyy.

004

002

Size

of

p

in

bits.

The

size

of

p

must

be

one

of:

512,

576,

640,

704,

768,

832,

896,

960,

or

1024.

006

002

Size

of

the

p

field

in

bytes,

which

is

zero

for

a

private

token.

008

002

Size

of

the

q

field

in

bytes,

which

is

zero

for

a

private

token.

010

002

Size

of

the

g

field

in

bytes,

which

is

zero

for

a

private

token.

012

002

Size

of

the

y

field

in

bytes,

“yyy”.

014

yyy

Public

key,

y.

y=gx

mod(p);

Note:

p,

g,

and

y

are

defined

in

the

DSS

public

key

token.

Private

Key

Name

(optional)

000

001

X'10',

section

identifier,

private

key

name.

001

001

X'00',

version.

002

002

Section

length,

X'0044'

(68

decimal).

004

064

Private

key

name

(in

ASCII),

left-justified,

padded

with

space

characters

(X'20').

An

access

control

system

can

use

the

private

key

name

to

verify

that

the

calling

application

is

entitled

to

use

the

key.

446

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Table

189.

DSS

Private

Internal

Key

Token

(continued)

Offset

(Dec)

Number

of

Bytes

Description

Internal

Information

Section

(required)

000

004

Eye

catcher

'PKTN'.

004

004

PKA

token

type.

Bit

Meaning

When

Set

On

0

RSA

key.

1

DSS

key.

2

Private

key.

3

Public

key.

4

Private

key

name

section

exists.

008

004

Address

of

token

header.

012

002

Length

of

internal

work

area.

014

002

Count

of

number

of

sections.

016

016

PKA

master

key

hash

pattern.

032

016

Reserved.

PKA

Null

Key

Token

Table

190

shows

the

format

for

a

PKA

null

key

token.

Table

190.

Format

of

PKA

Null

Key

Tokens

Bytes

Description

0

X'00'

Token

identifier

(indicates

that

this

is

a

null

key

token).

1

Version,

X'00'

2–3

X'0008'

Length

of

the

key

token

structure.

4–7

Ignored

(should

be

zero).

Appendix

B.

Key

Token

Formats

447

448

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

This

section

contains

a

control

vector

table

which

displays

the

default

value

of

the

control

vector

that

is

associated

with

each

type

of

key.

It

also

describes

how

to

change

control

vectors

with

the

control

vector

translate

callable

service.

Control

Vector

Table

Note:

The

Control

Vectors

used

in

ICSF

are

exactly

the

same

as

documented

in

CCA

and

the

TSS

documents.

The

master

key

enciphers

all

keys

operational

on

your

system.

A

transport

key

enciphers

keys

that

are

distributed

off

your

system.

Before

a

master

key

or

transport

key

enciphers

a

key,

ICSF

exclusive

ORs

both

halves

of

the

master

key

or

transport

key

with

a

control

vector.

The

same

control

vector

is

exclusive

ORed

to

the

left

and

right

half

of

a

master

key

or

transport

key.

Also,

if

you

are

entering

a

key

part,

ICSF

exclusive

ORs

each

half

of

the

key

part

with

a

control

vector

before

placing

the

key

part

into

the

CKDS.

Each

type

of

key

on

ICSF

(except

the

master

key)

has

either

one

or

two

unique

control

vectors

associated

with

it.

The

control

vector

that

ICSF

exclusive

ORs

the

master

key

or

transport

key

with

depends

on

the

type

of

key

the

master

key

or

transport

key

is

enciphering.

For

double-length

keys,

a

unique

control

vector

exists

for

each

half

of

a

specific

key

type.

For

example,

there

is

a

control

vector

for

the

left

half

of

an

input

PIN-encrypting

key,

and

a

control

vector

for

the

right

half

of

an

input

PIN-encrypting

key.

If

you

are

entering

a

key

part

into

the

CKDS,

ICSF

exclusive

ORs

the

key

part

with

the

unique

control

vector(s)

associated

with

the

key

type.

ICSF

also

enciphers

the

key

part

with

two

master

key

variants

for

a

key

part.

One

master

key

variant

enciphers

the

left

half

of

the

key

part,

and

another

master

key

variant

enciphers

the

right

half

of

the

key

part.

ICSF

creates

the

master

key

variants

for

a

key

part

by

exclusive

ORing

the

master

key

with

the

control

vectors

for

key

parts.

These

procedures

protect

key

separation.

Table

191

displays

the

default

value

of

the

control

vector

that

is

associated

with

each

type

of

key.

Some

key

types

do

not

have

a

default

control

vector.

For

keys

that

are

double-length,

ICSF

enciphers

a

unique

control

vector

on

each

half.

Control

vectors

indicated

with

an

″*″

are

supported

by

the

Cryptographic

Coprocessor

Feature.

Table

191.

Default

Control

Vector

Values

Key

Type

Control

Vector

Value

(Hex)

Value

for

Single-length

Key

or

Left

Half

of

Double-length

Key

Control

Vector

Value

(Hex)

Value

for

Right

Half

of

Double-length

Key

*AKEK

00

00

00

00

00

00

00

00

CIPHER

00

03

71

00

03

00

00

00

CIPHER

(double

length)

00

03

71

00

03

41

00

00

00

03

71

00

03

21

00

00

CVARDEC

00

3F

42

00

03

00

00

00

©

Copyright

IBM

Corp.

1997,

2004

449

Table

191.

Default

Control

Vector

Values

(continued)

Key

Type

Control

Vector

Value

(Hex)

Value

for

Single-length

Key

or

Left

Half

of

Double-length

Key

Control

Vector

Value

(Hex)

Value

for

Right

Half

of

Double-length

Key

CVARENC

00

3F

48

00

03

00

00

00

CVARPINE

00

3F

41

00

03

00

00

00

CVARXCVL

00

3F

44

00

03

00

00

00

CVARXCVR

00

3F

47

00

03

00

00

00

*DATA

00

00

00

00

00

00

00

00

DATAC

00

00

71

00

03

41

00

00

00

00

71

00

03

21

00

00

*DATAM

generation

key

(external)

00

00

4D

00

03

41

00

00

00

00

4D

00

03

21

00

00

*DATAM

key

(internal)

00

05

4D

00

03

00

00

00

00

05

4D

00

03

00

00

00

*DATAMV

MAC

verification

key

(external)

00

00

44

00

03

41

00

00

00

00

44

00

03

21

00

00

*DATAMV

MAC

verification

key

(internal)

00

05

44

00

03

00

00

00

00

05

44

00

03

00

00

00

*DATAXLAT

00

06

71

00

03

00

00

00

DECIPHER

00

03

50

00

03

00

00

00

DECIPHER

(double-length)

00

03

50

00

03

41

00

00

00

03

50

00

03

21

00

00

DKYGENKY

00

71

44

00

03

41

00

00

00

71

44

00

03

21

00

00

ENCIPHER

00

03

60

00

03

00

00

00

ENCIPHER

(double-length)

00

03

60

00

03

41

00

00

00

03

60

00

03

21

00

00

*EXPORTER

00

41

7D

00

03

41

00

00

00

41

7D

00

03

21

00

00

IKEYXLAT

00

42

42

00

03

41

00

00

00

42

42

00

03

21

00

00

*IMP-PKA

00

42

05

00

03

41

00

00

00

42

05

00

03

21

00

00

*IMPORTER

00

42

7D

00

03

41

00

00

00

42

7D

00

03

21

00

00

*IPINENC

00

21

5F

00

03

41

00

00

00

21

5F

00

03

21

00

00

*MAC

00

05

4D

00

03

00

00

00

MAC

(double-length)

00

05

4D

00

03

41

00

00

00

05

4D

00

03

21

00

00

*MACVER

00

05

44

00

03

00

00

00

MACVER

(double-length)

00

05

44

00

03

41

00

00

00

05

44

00

03

21

00

00

OKEYXLAT

00

41

42

00

03

41

00

00

00

41

42

00

03

21

00

00

*OPINENC

00

24

77

00

03

41

00

00

00

24

77

00

03

21

00

00

*PINGEN

00

22

7E

00

03

41

00

00

00

22

7E

00

03

21

00

00

*PINVER

00

22

42

00

03

41

00

00

00

22

42

00

03

21

00

00

Note:

The

external

control

vectors

for

DATAC,

DATAM

MAC

generation

and

DATAMV

MAC

verification

keys

are

also

referred

to

as

data

compatibility

control

vectors.

450

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01000001 0EgksixP 00000000 0000001P fff0K00P 00000000 00000000

00000000 01000001 0E00001P 00000000 0000001P fff0K00P 00000000 00000000

00000000 01000010 0E00001P 00000000 0000001P fff0K00P 00000000 00000000

00000000 01000010 0EgksixP 00000000 0000001P fff0K00P 00000000 00000000

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

.......PP .E.....P0P1PK..PPP

Control-Vector Base Bits

Most Significant Bit

E= XPORT-OK

P=Even Parity

EXPORTER

OKEYXLAT

IKEYXLAT

IMPORTER

Key-Encrypting Keys

K=KEY-PART

Common Bits

Anti-Variant Bits

Least Significant Bit

g=IMEX

k=OPEX

x=XLATE
i=IMPORT

s=IMIM
k=OPIM

g=IMEX

s=EXEX

i=EXPORT

x=XLATE

Key-Form

Figure

3.

Control

Vector

Base

Bit

Map

(Common

Bits

and

Key-Encrypting

Keys)

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

451

00000000 00000000 0Eedmv0P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000000 0E11000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000000 0E00110P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000000 0E00010P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000011 0E11000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000011 0E01000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00000011 0E10000P 00000000 00000011 fff0K00P 00000000 00000000

00000000 00001010 0E..000P 00000000 00000011 fff0K00P 00000000 00000000

cccc0000 00000101 0E00110P 00000000 00000011 fff0K00P 00000000 00000000

cccc0000 00000101 0E00010P 00000000 00000011 fff0K00P 00000000 00000000

DATA

DATAC

DATAM

DATAMV

CIPHER

MACVER

SECMSG

MAC

ENCIPHER

DECIPHER

01 PIN encryption
10 Key encryption

0000 ANY
0001 ANSI X9.9
0010 CVV KEY-A
0011 CVV KEY-B

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Data Operation Keys

Least Significant Bit

Key-Form

e=ENCIPHER

d=DECIPHER
m=MACGEN

v=MACVER

Figure

4.

Control

Vector

Base

Bit

Map

(Data

Operation

Keys)

452

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Figure

5.

Control

Vector

Base

Bit

Map

(PIN

Processing

Keys

and

Cryptographic

Variable-Encrypting

Keys)

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

453

Key

Form

Bits,

’fff’

-

The

key

form

bits,

40-42,

and

for

a

double-length

key,

bits

104-106,

are

designated

’fff’

in

the

preceding

illustration.

These

bits

can

have

these

values:

000

Single

length

key

010

Double

length

key,

left

half

001

Double

length

key.

right

half

The

following

values

may

exist

in

some

CCA

implementations:

110

Double-length

key,

left

half,

halves

guaranteed

unique

101

Double-length

key,

right

half,

halves

guaranteed

unique

Specifying

a

Control-Vector-Base

Value

You

can

determine

the

value

of

a

control

vector

by

working

through

the

following

series

of

questions:

1.

Begin

with

a

field

of

64

bits

(eight

bytes)

set

to

B'0'.

The

most

significant

bit

is

referred

to

as

bit

0.

Define

the

key

type

and

subtype

(bits

8

to

14),

as

follows:

v

The

main

key

type

bits

(bits

8

to

11).

Set

bits

8

to

11

to

one

of

the

following

values:

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01010011 0E..000P 00000000 00000011 0100K00P 00000000 00000000

00000000 0111vvvP 0E0vvvvP 00000000 00000011 0100K00P 00000000 00000000

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

KEYGENKY

DKYGENKY

Key Generating Keys

Least Significant Bit

CLR8-ENC

0001 DDATA000 DKY Subtype 0
001 DKY Subtype 1
010 DKY Subtype 2
011 DKY Subtype 3
100 DKY Subtype 4
101 DKY Subtype 5
110 DKY Subtype 6
111 DKY Subtype 7

0010 DMAC
0011 DMV
0100 DIMP
0101 DEXP
0110 DPVR
1000 DMKEY
1001 DMPIN
1111 DALL

UKPT

Figure

6.

Control

Vector

Base

Bit

Map

(Key

Generating

Keys)

454

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Bits

8

to

11

Main

Key

Type

0000

Data

operation

keys

0010

PIN

keys

0011

Cryptographic

variable-encrypting

keys

0100

Key-encrypting

keys

0101

Key-generating

keys

0111

Diversified

key-generating

keys

v

The

key

subtype

bits

(bits

12

to

14).

Set

bits

12

to

14

to

one

of

the

following

values:

Note:

For

Diversified

Key

Generating

Keys,

the

subtype

field

specifies

the

hierarchical

level

of

the

DKYGENKY.

If

the

subtype

is

non-zero,

then

the

DKYGENKY

can

only

generate

another

DKYGENKY

key

with

the

hierarchy

level

decremented

by

one.

If

the

subtype

is

zero,

the

DKYGENKY

can

only

generate

the

final

diversified

key

(

a

non-DKYGENKY

key)

with

the

key

type

specified

by

the

usage

bits.

Bits

12

to

14

Key

Subtype

Data

Operation

Keys

000

Compatibility

key

(DATA)

001

Confidentiality

key

(CIPHER,

DECIPHER,

or

ENCIPHER)

010

MAC

key

(MAC

or

MACVER)

101

Secure

messaging

keys

Key-Encrypting

Keys

000

Transport-sending

keys

(EXPORTER

and

OKEYXLAT)

001

Transport-receiving

keys

(IMPORTER

and

IKEYXLAT)

PIN

Keys

001

PIN-generating

key

(PINGEN,

PINVER)

000

Inbound

PIN-block

decrypting

key

(IPINENC)

010

Outbound

PIN-block

encrypting

key

(OPINENC)

Cryptographic

Variable-Encrypting

Keys

111

Cryptographic

variable-encrypting

key

(CVAR....)

Diversified

Key

Generating

Keys

000

DKY

Subtype

0

001

DKY

Subtype

1

010

DKY

Subtype

2

011

DKY

Subtype

3

100

DKY

Subtype

4

101

DKY

Subtype

5

110

DKY

Subtype

6

111

DKY

Subtype

7

2.

For

key-encrypting

keys,

set

the

following

bits:

v

The

key-generating

usage

bits

(gks,

bits

18

to

20).

Set

the

gks

bits

to

B'111'

to

indicate

that

the

Key

Generate

callable

service

can

use

the

associated

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

455

key-encrypting

key

to

encipher

generated

keys

when

the

Key

Generate

callable

service

is

generating

various

key-pair

key-form

combinations

(see

the

Key-Encrypting

Keys

section

of

Figure

3).

Without

any

of

the

gks

bits

set

to

1,

the

Key

Generate

callable

service

cannot

use

the

associated

key-encrypting

key.

The

Key

Token

Build

callable

service

can

set

the

gks

bits

to

1

when

you

supply

the

OPIM,

IMEX,

IMIM,

OPEX,

and

EXEX

keywords.

v

The

IMPORT

and

EXPORT

bit

and

the

XLATE

bit

(ix,

bits

21

and

22).

If

the

‘i’

bit

is

set

to

1,

the

associated

key-encrypting

key

can

be

used

in

the

Data

Key

Import,

Key

Import,

Data

Key

Export,

and

Key

Export

callable

services.

If

the

‘x’

bit

is

set

to

1,

the

associated

key-encrypting

key

can

be

used

in

the

Key

Translate

callable

service.

v

The

key-form

bits

(fff,

bits

40

to

42).

The

key-form

bits

indicate

how

the

key

was

generated

and

how

the

control

vector

participates

in

multiple-enciphering.

To

indicate

that

the

parts

can

be

the

same

value,

set

these

bits

to

B'010'.

For

information

about

the

value

of

the

key-form

bits

in

the

right

half

of

a

control

vector,

see

Step

8.

3.

For

MAC

and

MACVER

keys,

set

the

following

bits:

v

The

MAC

control

bits

(bits

20

and

21).

For

a

MAC-generate

key,

set

bits

20

and

21

to

B'11'.

For

a

MAC-verify

key,

set

bits

20

and

21

to

B'01'.

v

The

key-form

bits

(fff,

bits

40

to

42).

For

a

single-length

key,

set

the

bits

to

B'000'.

For

a

double-length

key,

set

the

bits

to

B'010'.

4.

For

PINGEN

and

PINVER

keys,

set

the

following

bits:

v

The

PIN

calculation

method

bits

(aaaa,

bits

0

to

3).

Set

these

bits

to

one

of

the

following

values:

Bits

0

to

3

Calculation

Method

Keyword

Description

0000

NO-SPEC

A

key

with

this

control

vector

can

be

used

with

any

PIN

calculation

method.

0001

IBM-PIN

or

IBM-PINO

A

key

with

this

control

vector

can

be

used

only

with

the

IBM

PIN

or

PIN

Offset

calculation

method.

0010

VISA-PVV

A

key

with

this

control

vector

can

be

used

only

with

the

VISA-PVV

calculation

method.

0100

GBP-PIN

or

GBP-PINO

A

key

with

this

control

vector

can

be

used

only

with

the

German

Banking

Pool

PIN

or

PIN

Offset

calculation

method.

0011

INBK-PIN

A

key

with

this

control

vector

can

be

used

only

with

the

Interbank

PIN

calculation

method.

0101

NL-PIN-1

A

key

with

this

control

vector

can

be

used

only

with

the

NL-PIN-1,

Netherlands

PIN

calculation

method.

v

The

prohibit-offset

bit

(o,

bit

37)

to

restrict

operations

to

the

PIN

value.

If

set

to

1,

this

bit

prevents

operation

with

the

IBM

3624

PIN

Offset

calculation

method

and

the

IBM

German

Bank

Pool

PIN

Offset

calculation

method.

456

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

5.

For

PINGEN,

IPINENC,

and

OPINENC

keys,

set

bits

18

to

22

to

indicate

whether

the

key

can

be

used

with

the

following

callable

services

Service

Allowed

Bit

Name

Bit

Clear

PIN

Generate

CPINGEN

18

Encrypted

PIN

Generate

Alternate

EPINGENA

19

Encrypted

PIN

Generate

EPINGEN

20

for

PINGEN

19

for

OPINENC

Clear

PIN

Generate

Alternate

CPINGENA

21

for

PINGEN

20

for

IPINENC

Encrypted

Pin

Verify

EPINVER

19

Clear

PIN

Encrypt

CPINENC

18

6.

For

the

IPINENC

(inbound)

and

OPINENC

(outbound)

PIN-block

ciphering

keys,

do

the

following:

v

Set

the

TRANSLAT

bit

(t,

bit

21)

to

1

to

permit

the

key

to

be

used

in

the

PIN

Translate

callable

service.

The

Control

Vector

Generate

callable

service

can

set

the

TRANSLAT

bit

to

1

when

you

supply

the

TRANSLAT

keyword.

v

Set

the

REFORMAT

bit

(r,

bit

22)

to

1

to

permit

the

key

to

be

used

in

the

PIN

Translate

callable

service.

The

Control

Vector

Generate

callable

service

can

set

the

REFORMAT

bit

and

the

TRANSLAT

bit

to

1

when

you

supply

the

REFORMAT

keyword.

7.

For

the

cryptographic

variable-encrypting

keys

(bits

18

to

22),

set

the

variable-type

bits

(bits

18

to

22)

to

one

of

the

following

values:

Bits

18

to

22

Generic

Key

Type

Description

00000

CVARPINE

Used

in

the

Encrypted

PIN

Generate

Alternate

service

to

encrypt

a

clear

PIN.

00010

CVARXCVL

Used

in

the

Control

Vector

Translate

callable

service

to

decrypt

the

left

mask

array.

00011

CVARXCVR

Used

in

the

Control

Vector

Translate

callable

service

to

decrypt

the

right

mask

array.

00100

CVARENC

Used

in

the

Cryptographic

Variable

Encipher

callable

service

to

encrypt

an

unformatted

PIN.

8.

For

key-generating

keys,

set

the

following

bits:

v

For

KEYGENKY,

set

bit

18

for

UKPT

usage

and

bit

19

for

CLR8-ENC

usage.

v

For

DKYGENKY,

bits

12–14

will

specify

the

hierarchical

level

of

the

DKYGENKY

key.

If

the

subtype

CV

bits

are

non-zero,

then

the

DKYGENKY

can

only

generate

another

DKYGENKY

key

with

the

hierarchical

level

decremented

by

one.

If

the

subtype

CV

bits

are

zero,

the

DKYGENKY

can

only

generate

the

final

diversified

key

(a

non-DKYGENKY

key)

with

the

key

type

specified

by

usage

bits.

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

457

To

specify

the

subtype

values

of

the

DKYGENKY,

keywords

DKYL0,

DKYL1,

DKYL2,

DKYL3,

DKYL4,

DKYL5,

DKYL6

and

DKYL7

will

be

used.

v

For

DKYGENKY,

bit

18

is

reserved

and

must

be

zero.

v

Usage

bits

18-22

for

the

DKYGENKY

key

type

are

defined

as

follows.

They

will

be

encoded

as

the

final

key

type

that

the

DKYGENKY

key

generates.

Bits

19

to

22

Keyword

Usage

0001

DDATA

DATA,

DATAC,

single

or

double

length

0010

DMAC

MAC,

DATAM

0011

DMV

MACVER,

DATAMV

0100

DIMP

IMPORTER,

IKEYXLAT

0101

DEXP

EXPORTER,

OKEYXLAT

0110

DPVR

PINVER

1000

DMKEY

Secure

message

key

for

encrypting

keys

1001

DMPIN

Secure

message

key

for

encrypting

PINs

1111

DALL

All

key

types

may

be

generated

except

DKYGENKY

and

KEYGENKY

keys.

Usage

of

the

DALL

keyword

is

controlled

by

a

separate

access

control

point.

9.

For

secure

messaging

keys,

set

the

following

bits:

v

Set

bit

18

to

1

if

the

key

will

be

used

in

the

secure

messaging

for

PINs

service.

Set

bit

19

to

1

if

the

key

will

be

used

in

the

secure

messaging

for

keys

service.

10.

For

all

keys,

set

the

following

bits:

v

The

export

bit

(E,

bit

17).

If

set

to

0,

the

export

bit

prevents

a

key

from

being

exported.

By

setting

this

bit

to

0,

you

can

prevent

the

receiver

of

a

key

from

exporting

or

translating

the

key

for

use

in

another

cryptographic

subsystem.

Once

this

bit

is

set

to

0,

it

cannot

be

set

to

1

by

any

service

other

than

Control

Vector

Translate.

The

Prohibit

Export

callable

service

can

reset

the

export

bit.

v

The

key-part

bit

(K,

bit

44).

Set

the

key-part

bit

to

1

in

a

control

vector

associated

with

a

key

part.

When

the

final

key

part

is

combined

with

previously

accumulated

key

parts,

the

key-part

bit

in

the

control

vector

for

the

final

key

part

is

set

to

0.

The

Control

Vector

Generate

callable

service

can

set

the

key-part

bit

to

1

when

you

supply

the

KEY-PART

keyword.

v

The

anti-variant

bits

(bit

30

and

bit

38).

Set

bit

30

to

0

and

bit

38

to

1.

Many

cryptographic

systems

have

implemented

a

system

of

variants

where

a

7-bit

value

is

exclusive-ORed

with

each

7-bit

group

of

a

key-encrypting

key

before

enciphering

the

target

key.

By

setting

bits

30

and

38

to

opposite

values,

control

vectors

do

not

produce

patterns

that

can

occur

in

variant-based

systems.

v

Control

vector

bits

64

to

127.

If

bits

40

to

42

are

B'000'

(single-length

key),

set

bits

64

to

127

to

0.

Otherwise,

copy

bits

0

to

63

into

bits

64

to

127

and

set

bits

105

and

106

to

B'01'.

458

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

v

Set

the

parity

bits

(low-order

bit

of

each

byte,

bits

7,

15,

...,

127).

These

bits

contain

the

parity

bits

(P)

of

the

control

vector.

Set

the

parity

bit

of

each

byte

so

the

number

of

zero-value

bits

in

the

byte

is

an

even

number.

v

For

secure

messaging

keys,

usage

bit

18

on

will

enable

the

encryption

of

keys

in

a

secure

message

and

usage

bit

19

on

will

enable

the

encryption

of

PINs

in

a

secure

message.

Changing

Control

Vectors

with

the

Control

Vector

Translate

Callable

Service

Do

the

following

when

using

the

Control

Vector

Translate

callable

service:

v

Provide

the

control

information

for

testing

the

control

vectors

of

the

source,

target,

and

key-encrypting

keys

to

ensure

that

only

sanctioned

changes

can

be

performed

v

Select

the

key-half

processing

mode.

Providing

the

Control

Information

for

Testing

the

Control

Vectors

To

minimize

your

security

exposure,

the

Control

Vector

Translate

callable

service

requires

control

information

(mask

array

information)

to

limit

the

range

of

allowable

control

vector

changes.

To

ensure

that

this

service

is

used

only

for

authorized

purposes,

the

source-key

control

vector,

target-key

control

vector,

and

key-encrypting

key

(KEK)

control

vector

must

pass

specific

tests.

The

tests

on

the

control

vectors

are

performed

within

the

secured

cryptographic

engine.

The

tests

consist

of

evaluating

four

logic

expressions,

the

results

of

which

must

be

a

string

of

binary

zeros.

The

expressions

operate

bitwise

on

information

that

is

contained

in

the

mask

arrays

and

in

the

portions

of

the

control

vectors

associated

with

the

key

or

key-half

that

is

being

processed.

If

any

of

the

expression

evaluations

do

not

result

in

all

zero

bits,

the

callable

service

is

ended

with

a

control

vector

violation

return

and

reason

code

(8/39).

See

Figure

7.

Only

the

56

bit

positions

that

are

associated

with

a

key

value

are

evaluated.

The

low-order

bit

that

is

associated

with

key

parity

in

each

key

byte

is

not

evaluated.

Mask

Array

Preparation

A

mask

array

consists

of

seven

8-byte

elements:

A1,

B1,

A2,

B2,

A3,

B3,

and

B4.

You

choose

the

values

of

the

array

elements

such

that

each

of

the

following

four

expressions

evaluates

to

a

string

of

binary

zeros.

(See

Figure

7

on

page

461.)

Set

the

A

bits

to

the

value

that

you

require

for

the

corresponding

control

vector

bits.

In

expressions

1

through

3,

set

the

B

bits

to

select

the

control

vector

bits

to

be

evaluated.

In

expression

4,

set

the

B

bits

to

select

the

source

and

target

control

vector

bits

to

be

evaluated.

Also,

use

the

following

control

vector

information:

C1

is

the

control

vector

associated

with

the

left

half

of

the

KEK.

C2

is

the

control

vector

associated

with

the

source

key,

or

selected

source-key

half/halves.

C3

is

the

control

vector

associated

with

the

target

key

or

selected

target-key

half/halves.

1.

(C1

exclusive-OR

A1)

logical-AND

B1

This

expression

tests

whether

the

KEK

used

to

encipher

the

key

meets

your

criteria

for

the

desired

translation.

2.

(C2

exclusive-OR

A2)

logical-AND

B2

This

expression

tests

whether

the

control

vector

associated

with

the

source

key

meets

your

criteria

for

the

desired

translation.

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

459

3.

(C3

exclusive-OR

A3)

logical-AND

B3

This

expression

tests

whether

the

control

vector

associated

with

the

target

key

meets

your

criteria

for

the

desired

translation.

4.

(C2

exclusive-OR

C3)

logical-AND

B4

This

expression

tests

whether

the

control

vectors

associated

with

the

source

key

and

the

target

key

meet

your

criteria

for

the

desired

translation.

Encipher

two

copies

of

the

mask

array,

each

under

a

different

cryptographic-
variable

key

(key

type

CVARENC).

To

encipher

each

copy

of

the

mask

array,

use

the

Cryptographic

Variable

Encipher

callable

service.

Use

two

different

keys

so

that

the

enciphered-array

copies

are

unique

values.

When

using

the

Control

Vector

Translate

callable

service,

the

mask_array_left

parameter

and

the

mask_array_right

parameter

identify

the

enciphered

mask

arrays.

The

array_key_left

parameter

and

the

array_key_right

parameter

identify

the

internal

keys

for

deciphering

the

mask

arrays.

The

array_key_left

key

must

have

a

key

type

of

CVARXCVL

and

the

array_key_right

key

must

have

a

key

type

of

CVARXCVR.

The

cryptographic

process

deciphers

the

arrays

and

compares

the

results;

for

the

service

to

continue,

the

deciphered

arrays

must

be

equal.

If

the

results

are

not

equal,

the

service

returns

the

return

and

reason

code

for

data

that

is

not

valid

(8/385).

Use

the

Key

Generate

callable

service

to

create

the

key

pairs

CVARENC-
CVARXCVL

and

CVARENC-CVARXCVR.

Each

key

in

the

key

pair

must

be

generated

for

a

different

node.

The

CVARENC

keys

are

generated

for,

or

imported

into,

the

node

where

the

mask

array

will

be

enciphered.

After

enciphering

the

mask

array,

you

should

destroy

the

enciphering

key.

The

CVARXCVL

and

CVARXCVR

keys

are

generated

for,

or

imported

into,

the

node

where

the

Control

Vector

Translate

callable

service

will

be

performed.

If

using

the

BOTH

keyword

to

process

both

halves

of

a

double-length

key,

remember

that

bits

41,

42,

104,

and

105

are

different

in

the

left

and

right

halves

of

the

CCA

control

vector

and

must

be

ignored

in

your

mask-array

tests

(that

is,

make

the

corresponding

B2

and/or

B3

bits

equal

to

zero).

When

the

control

vectors

pass

the

masking

tests,

the

verb

does

the

following:

v

Deciphers

the

source

key.

In

the

decipher

process,

the

service

uses

a

key

that

is

formed

by

the

exclusive-OR

of

the

KEK

and

the

control

vector

in

the

key

token

variable

the

source_key_token

parameter

identifies.

v

Enciphers

the

deciphered

source

key.

In

the

encipher

process,

the

service

uses

a

key

that

is

formed

by

the

exclusive-OR

of

the

KEK

and

the

control

vector

in

the

key

token

variable

the

target_key_token

parameter

identifies.

v

Places

the

enciphered

key

in

the

key

field

in

the

key

token

variable

the

target_key_token

parameter

identifies.

460

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Selecting

the

Key-Half

Processing

Mode

Use

the

Control

Vector

Translate

callable

service

to

change

a

control

vector

associated

with

a

key.

Rule-array

keywords

determine

which

key

halves

are

processed

in

the

call,

as

shown

in

Figure

8

on

page

462.

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 1 1 1 1 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 0 1 1 0 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 0 0 0 0 1 1 0 …

0 0 0 0 … 1 1 1 1 …

Control Vector
Under Test

For expression
1: KEK CV
2: Source CV
3: Target CV

A_Values

Intermediate
Result

B_Values

Final Result

For Expression
4: Source CV

Target CV

Intermediate
Result

B_Values

Final Result

Exclusive-OR

Exclusive-OR

Logical-AND

Logical-AND

Set Tested Positions
to the Value that
the Control Vector
Must Match

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
Bit Position is 1

Source Control Vector

Target Control Vector

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
bit Position is 1

Figure

7.

Control

Vector

Translate

Callable

Service

Mask_Array

Processing

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

461

Keyword

Meaning

SINGLE

This

keyword

causes

the

control

vector

of

the

left

half

of

the

source

key

to

be

changed.

The

updated

key

half

is

placed

into

the

left

half

of

the

target

key

in

the

target

key

token.

The

right

half

of

the

target

key

is

unchanged.

The

SINGLE

keyword

is

useful

when

processing

a

single-length

key,

or

when

first

processing

the

left

half

of

a

double-length

key

(to

be

followed

by

processing

the

right

half).

RIGHT

This

keyword

causes

the

control

vector

of

the

right

half

of

the

source

key

to

be

changed.

The

updated

key

half

is

placed

into

the

right

half

of

the

target

key

of

the

target

key

token.

The

left

half

of

the

source

key

is

copied

unchanged

into

the

left

half

of

the

target

key

in

the

target

key

token.

BOTH

This

keyword

causes

the

control

vector

of

both

halves

of

the

source

key

to

be

changed.

The

updated

key

is

placed

into

the

target

key

in

the

target

key

token.

A

single

set

of

control

information

must

permit

the

control

vector

changes

applied

to

each

key

half.

Normally,

control

vector

bit

positions

41,

42,

105,

and

106

are

different

for

each

key

half.

Therefore,

set

bits

41

and

42

to

B'00'

in

mask

array

elements

B1,

B2,

and

B3.

You

can

verify

that

the

source

and

target

key

tokens

have

control

vectors

with

matching

bits

in

bit

positions

40-42

and

104-106,

the

“form

field”

bits.

Ensure

that

bits

40-42

of

mask

array

B4

are

set

to

B'111'.

LEFT

This

keyword

enables

you

to

supply

a

single-length

key

and

obtain

a

double-length

key.

The

source

key

token

must

contain:

v

The

KEK-enciphered

single-length

key

v

The

control

vector

for

the

single-length

key

(often

this

is

a

null

value)

v

A

control

vector,

stored

in

the

source

token

where

the

right-half

control

vector

is

normally

stored,

used

in

decrypting

the

single-length

source

key

when

the

key

is

being

processed

for

the

target

right

half

of

the

key.

The

service

first

processes

the

source

and

target

tokens

as

with

the

SINGLE

keyword.

Then

the

source

token

is

processed

using

the

single-length

enciphered

key

and

the

source

token

right-half

control

CHANGE-CV CHANGE-CV

LEFT RIGHTLEFT RIGHT

LEFT RIGHT LEFT RIGHT LEFT RIGHT

LEFT RIGHT

CHANGE-CV

Keyword SINGLE Keyword RIGHT Keyword BOTH

Source Key

Process

Target Key

Copy

(Unchanged)

CHANGE-CV

Figure

8.

Control

Vector

Translate

Callable

Service.

In

this

figure,

CHANGE-CV

means

the

requested

control

vector

translation

change;

LEFT

and

RIGHT

mean

the

left

and

right

halves

of

a

key

and

its

control

vector.

462

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

vector

to

obtain

the

actual

key

value.

The

key

value

is

then

enciphered

using

the

KEK

and

the

control

vector

in

the

target

token

for

the

right-half

of

the

key.

This

approach

is

frequently

of

use

when

you

must

obtain

a

double-length

CCA

key

from

a

system

that

only

supports

a

single-length

key,

for

example

when

processing

PIN

keys

or

key-encrypting

keys

received

from

non-CCA

systems.

To

prevent

the

service

from

ensuring

that

each

key

byte

has

odd

parity,

you

can

specify

the

NOADJUST

keyword.

If

you

do

not

specify

the

NOADJUST

keyword,

or

if

you

specify

the

ADJUST

keyword,

the

service

ensures

that

each

byte

of

the

target

key

has

odd

parity.

When

the

Target

Key-Token

CV

Is

Null

When

you

use

any

of

the

LEFT,

BOTH,

or

RIGHT

keywords,

and

when

the

control

vector

in

the

target

key

token

is

null

(all

B'0'),

then

bit

3

in

byte

59

will

be

set

to

B'1'

to

indicate

that

this

is

a

double-length

DATA

key.

Control

Vector

Translate

Example

As

an

example,

consider

the

case

of

receiving

a

single-length

PIN-block

encrypting

key

from

a

non-CCA

system.

Often

such

a

key

will

be

encrypted

by

an

unmodified

transport

key

(no

control

vector

or

variant

is

used).

In

a

CCA

system,

an

inbound

PIN

encrypting

key

is

double-length.

First

use

the

Key

Token

Build

callable

service

to

insert

the

single-length

key

value

into

the

left-half

key-space

in

a

key

token.

Specify

USE-CV

as

a

key

type

and

a

control

vector

value

set

to

16

bytes

of

X'00'.

Also

specify

EXTERNAL,

KEY,

and

CV

keywords

in

the

rule

array.

This

key

token

will

be

the

source

key

key-token.

Second,

the

target

key

token

can

also

be

created

using

the

Key

Token

Build

callable

service.

Specify

a

key

type

of

IPINENC

and

the

NO-EXPORT

rule

array

keyword.

Then

call

the

Control

Vector

Translate

callable

service

and

specify

a

rule-array

keyword

of

LEFT.

The

mask

arrays

can

be

constructed

as

follows:

v

A1

is

set

to

the

value

of

the

KEK’s

control

vector,

most

likely

the

value

of

an

IMPORTER

key,

perhaps

with

the

NO-EXPORT

bit

set.

B1

is

set

to

eight

bytes

of

X'FF'

so

that

all

bits

of

the

KEK’s

control

vector

will

be

tested.

v

A2

is

set

to

eight

bytes

of

X'00',

the

(null)

value

of

the

source

key

control

vector.

B2

is

set

to

eight

bytes

of

X'FF'

so

that

all

bits

of

the

source-key

“control

vector”

will

be

tested.

v

A3

is

set

to

the

value

of

the

target

key’s

left-half

control

vector.

B3

is

set

to

X'FFFF

FFFF

FF9F

FFFF'.

This

will

cause

all

bits

of

the

control

vector

to

be

tested

except

for

the

two

(“fff”)

bits

used

to

distinguish

between

the

left-half

and

right-half

target-key

control

vector.

v

B4

is

set

to

eight

bytes

of

X'00'

so

that

no

comparison

is

made

between

the

source

and

target

control

vectors.

Appendix

C.

Control

Vectors

and

Changing

Control

Vectors

with

the

CVT

Callable

Service

463

464

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

D.

Coding

Examples

This

appendix

provides

sample

routines

using

the

ICSF

callable

services

for

the

following

languages:

v

C

v

COBOL

v

Assembler

v

PL/1

The

C,

COBOL

and

Assembler

H

examples

that

follow

use

the

key

generate,

encipher,

and

decipher

callable

services

to

determine

whether

the

deciphered

text

matches

the

starting

text.

C

/*---*

*

Example

using

C:

*

*

Invokes

CSNBKGN

(key

generate),

CSNBENC

(DES

encipher)

and

*

*

CSNBDEC

(DES

decipher)

*

---/

#include

<stdio.h>

#include

"csfbexth.h"

/*---*

*

Prototypes

for

functions

in

this

example

*

---/

/*---*

*

Utility

for

printing

hex

strings

*

---/

void

printHex(unsigned

char

*,

unsigned

int);

/***/

/*

Main

Function

*/

/***/

int

main(void)

{

/*---*

*

Constant

inputs

to

ICSF

services

*

---/

static

int

textLen

=

24;

static

unsigned

char

clearText[24]="ABCDEFGHIJKLMN0987654321";

static

unsigned

char

cipherProcessRule[8]="CUSP

";

static

unsigned

char

keyForm[4]="OP

";

static

unsigned

char

keyLength[8]="SINGLE

";

static

unsigned

char

dataKeyType[8]="DATA

";

static

unsigned

char

nullKeyType[8]="

";

static

unsigned

char

ICV[8]={0};

static

int

*pad=0;

static

int

exitDataLength

=

0;

static

unsigned

char

exitData[4]={0};

static

int

ruleArrayCount

=

1;

/*---*

*

Variable

inputs/outputs

for

ICSF

services

*

---/

unsigned

char

cipherText[24]={0};

unsigned

char

compareText[24]={0};

unsigned

char

dataKeyId[64]={0};

unsigned

char

nullKeyId[64]={0};

unsigned

char

dummyKEKKeyId1[64]={0};

unsigned

char

dummyKEKKeyId2[64]={0};

int

returnCode

=

0;

©

Copyright

IBM

Corp.

1997,

2004

465

int

reasonCode

=

0;

unsigned

char

OCV[18]={0};

/*---*

*

Begin

executable

code

*

---/

do

{

/*---*

*

Call

key

generate

*

---/

if

((returnCode

=

CSNBKGN(&returnCode,

&reasonCode,

&exitDataLength,

exitData,

keyForm,

keyLength,

dataKeyType,

nullKeyType,

dummyKEKKeyId1,

dummyKEKKeyId2,

dataKeyId,

nullKeyId))

!=

0)

{

printf("\nKey

Generate

failed:\n");

printf("

Return

Code

=

%04d\n",returnCode);

printf("

Reason

Code

=

%04d\n",reasonCode);

break;

}

/*---*

*

Call

encipher

*

---/

printf("\nClear

Text\n");

printHex(clearText,sizeof(clearText));

if

((returnCode

=

CSNBENC(&returnCode,

&reasonCode,

&exitDataLength,

exitData,

dataKeyId,

&textLen,

clearText,

ICV,

&ruleArrayCount,

cipherProcessRule,

&pad,

OCV,

cipherText))

!=

0)

{

printf("\nReturn

from

Encipher:\n");

printf("

Return

Code

=

%04d\n",returnCode);

printf("

Reason

Code

=

%04d\n",reasonCode);

if

(returnCode

>

4)

break;

}

/*---*

*

Call

decipher

*

---/

printf("\nCipher

Text\n");

printHex(cipherText,sizeof(cipherText));

if

((returnCode

=

CSNBDEC(&returnCode,

&reasonCode,

&exitDataLength,

exitData,

dataKeyId,

&textLen,

cipherText,

ICV,

466

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

&ruleArrayCount,

cipherProcessRule,

OCV,

compareText))

!=

0)

{

printf("\nReturn

from

Decipher:\n");

printf("

Return

Code

=

%04d\n",returnCode);

printf("

Reason

Code

=

%04d\n",reasonCode);

if

(returnCode

>

4)

break;

}

/*---*

*

End

*

---/

printf("\nClear

Text

after

decipher\n");

printHex(compareText,sizeof(compareText));

}

while(0);

return

returnCode;

}

/*

end

main

*/

void

printHex

(unsigned

char

*

text,

unsigned

int

len)

/*--*

*

Prints

a

string

as

hex

characters

*

--/

{

unsigned

int

i;

for

(i

=

0;

i

<

len;

++i)

if

(

((i

&

7)

==

7)

││

(i

==

(len

-

1))

)

printf

("

%02x\n",

text[i]);

else

printf

("

%02x",

text[i]);

printf

("\n");

}

/*

end

printHex

*/

COBOL

IDENTIFICATION

DIVISION.

PROGRAM-ID.

COBOLXMP.

ENVIRONMENT

DIVISION.

CONFIGURATION

SECTION.

SOURCE-COMPUTER.

IBM-370.

OBJECT-COMPUTER.

IBM-370.

DATA

DIVISION.

FILE

SECTION.

WORKING-STORAGE

SECTION.

77

INPUT-TEXT

PIC

X(24)

VALUE

’ABCDEFGHIJKLMN0987654321’.

77

OUTPUT-TEXT

PIC

X(24)

VALUE

LOW-VALUES.

77

COMPARE-TEXT

PIC

X(24)

VALUE

LOW-VALUES.

77

CIPHER-PROCESSING-RULE

PIC

X(08)

VALUE

’CUSP

’.

77

KEY-FORM

PIC

X(08)

VALUE

’OP

’.

77

KEY-LENGTH

PIC

X(08)

Appendix

D.

Coding

Examples

467

VALUE

’SINGLE

’.

77

KEY-TYPE-1

PIC

X(08)

VALUE

’DATA

’.

77

KEY-TYPE-2

PIC

X(08)

VALUE

’

’.

77

ICV

PIC

X(08)

VALUE

LOW-VALUES.

77

PAD

PIC

X(01)

VALUE

LOW-VALUES.

DEFINE

SAPI

INPUT/OUTPUT

PARAMETERS

01

SAPI-REC.

05

RETURN-CODE-S

PIC

9(08)

COMP.

05

REASON-CODE-S

PIC

9(08)

COMP.

05

EXIT-DATA-LENGTH-S

PIC

9(08)

COMP.

05

EXIT-DATA-S

PIC

X(04).

05

KEK-KEY-ID-1-S

PIC

X(64)

VALUE

LOW-VALUES.

05

KEK-KEY-ID-2-S

PIC

X(64)

VALUE

LOW-VALUES.

05

DATA-KEY-ID-S

PIC

X(64)

VALUE

LOW-VALUES.

05

NULL-KEY-ID-S

PIC

X(64)

VALUE

LOW-VALUES.

05

KEY-FORM-S

PIC

X(08).

05

KEY-LENGTH-S

PIC

X(08).

05

DATA-KEY-TYPE-S

PIC

X(08).

05

NULL-KEY-TYPE-S

PIC

X(08).

05

TEXT-LENGTH-S

PIC

9(08)

COMP.

05

TEXT-S

PIC

X(24).

05

ICV-S

PIC

X(08).

05

PAD-S

PIC

X(01).

05

CPHR-TEXT-S

PIC

X(24).

05

COMP-TEXT-S

PIC

X(24).

05

RULE-ARRAY-COUNT-S

PIC

9(08)

COMP.

05

RULE-ARRAY-S.

10

RULE-ARRAY

PIC

X(08).

05

CHAINING-VECTOR-S

PIC

X(18).

PROCEDURE

DIVISION.

MAIN-RTN.

CALL

KEY

GENERATE

MOVE

0

TO

EXIT-DATA-LENGTH-S.

MOVE

KEY-FORM

TO

KEY-FORM-S.

MOVE

KEY-LENGTH

TO

KEY-LENGTH-S.

MOVE

KEY-TYPE-1

TO

DATA-KEY-TYPE-S.

MOVE

KEY-TYPE-2

TO

NULL-KEY-TYPE-S.

CALL

’CSNBKGN’

USING

RETURN-CODE-S

REASON-CODE-S

EXIT-DATA-LENGTH-S

EXIT-DATA-S

KEY-FORM-S

KEY-LENGTH-S

DATA-KEY-TYPE-S

NULL-KEY-TYPE-S

KEK-KEY-ID-1-S

KEK-KEY-ID-2-S

DATA-KEY-ID-S

NULL-KEY-ID-S.

IF

RETURN-CODE-S

NOT

=

0

OR

REASON-CODE-S

NOT

=

0

THEN

DISPLAY

’***

KEY-GENERATE

***’

DISPLAY

’***

RETURN-CODE

=

’

RETURN-CODE-S

DISPLAY

’***

REASON-CODE

=

’

REASON-CODE-S

ELSE

MOVE

24

TO

TEXT-LENGTH-S

MOVE

INPUT-TEXT

TO

TEXT-S

468

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

MOVE

1

TO

RULE-ARRAY-COUNT-S

MOVE

CIPHER-PROCESSING-RULE

TO

RULE-ARRAY-S

MOVE

LOW-VALUES

TO

CHAINING-VECTOR-S

MOVE

ICV

TO

ICV-S.

MOVE

PAD

TO

PAD-S.

CALL

ENCIPHER

CALL

’CSNBENC’

USING

RETURN-CODE-S

REASON-CODE-S

EXIT-DATA-LENGTH-S

EXIT-DATA-S

DATA-KEY-ID-S

TEXT-LENGTH-S

TEXT-S

ICV-S

RULE-ARRAY-COUNT-S

RULE-ARRAY-S

PAD-S

CHAINING-VECTOR-S

CPHR-TEXT-S

IF

RETURN-CODE-S

NOT

=

0

OR

REASON-CODE-S

NOT

=

0

THEN

DISPLAY

’***

ENCIPHER

***’

DISPLAY

’***

RETURN-CODE

=

’

RETURN-CODE-S

DISPLAY

’***

REASON-CODE

=

’

REASON-CODE-S

ELSE

CALL

DECIPHER

CALL

’CSNBDEC’

USING

RETURN-CODE-S

REASON-CODE-S

EXIT-DATA-LENGTH-S

EXIT-DATA-S

DATA-KEY-ID-S

TEXT-LENGTH-S

CPHR-TEXT-S

ICV-S

RULE-ARRAY-COUNT-S

RULE-ARRAY-S

CHAINING-VECTOR-S

COMP-TEXT-S

IF

RETURN-CODE-S

NOT

=

0

OR

REASON-CODE-S

NOT

=

0

THEN

DISPLAY

’***

DECIPHER

***’

DISPLAY

’***

RETURN-CODE

=

’

RETURN-CODE-S

DISPLAY

’***

REASON-CODE

=

’

REASON-CODE-S

ELSE

IF

COMP-TEXT-S

=

TEXT-S

THEN

DISPLAY

’***

DECIPHERED

TEXT

=

PLAIN

TEXT

***’

ELSE

DISPLAY

’***

DECIPHERED

TEXT

ê=

PLAIN

TEXT

***’.

DISPLAY

’***

TEST

PROGRAM

ENDED

***’

STOP

RUN.

Assembler

H

TITLE

’SAMPLE

ENCIPHER/DECIPHER

S/370

PROGRAM.’

===

*

SYSTEM/370

ASSEMBLER

H

EXAMPLE

*

*

*

===

SPACE

SAMPLE

START

0

DS

0H

STM

14,12,12(13)

SAVE

REGISTERS

BALR

12,0

USE

R12

AS

BASE

REGISTER

USING

*,12

PROVIDE

SAVE

AREA

FOR

SUBROUTINE

LA

14,SAVE

PERFORM

SAVE

AREA

CHAINING

ST

13,4(14)

"

ST

14,8(13)

"

Appendix

D.

Coding

Examples

469

LR

13,14

"

*

CALL

CSFKGN,(RETCD,

*

RESCD,

*

EXDATAL,

*

EXDATA,

*

KEY_FORM,

*

KEY_LEN,

*

KEYTYP1,

*

KEYTYP2,

*

KEK_ID1,

*

KEK_ID2,

*

DATA_ID,

*

NULL_ID)

CLC

RETCD,=F’0’

CHECK

RETURN

CODE

BNE

BACK

OUTPUT

RETURN/REASON

CODE

AND

STOP

CLC

RESCD,=F’0’

CHECK

REASON

CODE

BNE

BACK

OUTPUT

RETURN/REASON

CODE

AND

STOP

*

*

CALL

ENCIPHER

WITH

THE

KEY

JUST

GENERATED

*

OPERATIONAL

FORM

*

MVC

RULEAC,=F’1’

SET

RULE

ARRAY

COUNT

MVC

RULEA,=CL8’CUSP

’

BUILD

RULE

ARRAY

CALL

CSFENC,(RETCD,

*

RESCD,

*

EXDATAL,

*

EXDATA,

*

DATA_ID,

*

TEXTL,

*

TEXT,

*

ICV,

*

RULEAC,

*

RULEA,

*

PAD_CHAR,

*

OCV,

*

CIPHER_TEXT)

CLC

RETCD,=F’0’

CHECK

RETURN

CODE

BNE

BACK

OUTPUT

RETURN/REASON

CODE

AND

STOP

CLC

RESCD,=F’0’

CHECK

REASON

CODE

BNE

BACK

OUTPUT

RETURN/REASON

CODE

AND

STOP

CALL

CSFDEC,(RETCD,

*

RESCD,

*

EXDATAL,

*

EXDATA,

*

DATA_ID,

*

TEXTL,

*

CIPHER_TEXT,

*

ICV,

*

RULEAC,

*

RULEA,

*

OCV,

*

NEW_TEXT)

CLC

RETCD,=F’0’

CHECK

RETURN

CODE

BNE

BACK

OUTPUT

RETURN/REASON

CODE

AND

STOP

CLC

RESCD,=F’0’

CHECK

REASON

CODE

BNE

BACK

OUTPUT

RETURN/REASON

CODE

AND

STOP

*

COMPARE

EQU

*

COMPARE

START

AND

END

TEXT

CLC

TEXT,NEW_TEXT

BE

GOODENC

WTO

’DECIPHERED

TEXT

DOES

NOT

MATCH

STARTING

TEXT’

B

BACK

GOODENC

WTO

’DECIPHERED

TEXT

MATCHES

STARTING

TEXT’

*

*

WTO

’TEST

PROGRAM

TERMINATING’

470

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

B

RETURN

*

*--

*

CONVERT

RETURN/REASON

CODES

FROM

BINARY

TO

EBCDIC

*--

BACK

DS

0F

OUTPUT

RETURN

&

REASON

CODE

L

5,RETCD

LOAD

RETURN

CODE

L

6,RESCD

LOAD

REASON

CODE

CVD

5,BCD1

CONVERT

TO

PACK-DECIMAL

CVD

6,BCD2

UNPK

ORETCD,BCD1

CONVERT

TO

EBCDIC

UNPK

ORESCD,BCD2

OI

ORETCD+7,X’F0’

CORRECT

LAST

DIGIT

OI

ORESCD+7,X’F0’

*

MVC

ERROUT+21(4),ORETCD

MVC

ERROUT+41(4),ORESCD

ERROUT

WTO

’ERROR

CODE

=

,

REASON

CODE

=

’

RETURN

EQU

*

L

13,4(13)

SAVE

AREA

RESTORATION

MVC

16(4,13),RETCD

SAVE

RETURN

CODE

LM

14,12,12(13)

BR

14

RETURN

TO

CALLER

*

BCD1

DS

D

CONVERT

TO

BCD

TEMP

AREA

BCD2

DS

D

CONVERT

TO

BCD

TEMP

AREA

ORETCD

DS

CL8’0’

OUTPUT

RETURN

CODE

ORESCD

DS

CL8’0’

OUTPUT

REASON

CODE

*

KEY_FORM

DC

CL8’OP

’

KEY

FORM

KEY_LEN

DC

CL8’SINGLE

’

KEY

LENGTH

KEYTYP1

DC

CL8’DATA

’

KEY

TYPE

1

KEYTYP2

DC

CL8’

’

KEY

TYPE

2

TEXT

DC

C’ABCDEFGHIJKLMNOPQRSTUV0987654321’

TEXTL

DC

F’32’

TEXT

LENGTH

CIPHER_TEXT

DC

CL32’

’

NEW_TEXT

DC

CL32’

’

DATA_ID

DC

XL64’00’

DATA

KEY

TOKEN

NULL_ID

DC

XL64’00’

NULL

KEY

TOKEN

-

UNFILLED

KEK_ID1

DC

XL64’00’

KEK1

KEY

TOKEN

KEK_ID2

DC

XL64’00’

KEK2

KEY

TOKEN

RETCD

DS

F’0’

RETURN

CODE

RESCD

DS

F’0’

REASON

CODE

EXDATAL

DC

F’0’

EXIT

DATA

LENGTH

EXDATA

DS

0C

EXIT

DATA

RULEA

DS

1CL8

RULE

ARRAY

RULEAC

DS

F’0’

RULE

ARRAY

COUNT

ICV

DC

XL8’00’

INITIAL

CHAINING

VECTOR

OCV

DC

XL18’00’

OUTPUT

CHAINING

VECTOR

PAD_CHAR

DC

F’0’

PAD

CHARACTER

SAVE

DS

18F

SAVE

REGISTER

AREA

END

SAMPLE

PL/1

/**/

/*

*/

/*

Sample

program

to

call

the

one-way

hash

service

to

generate

*/

/*

the

SHA-1

hash

of

the

input

text

and

call

digital

signature

*/

/*

generate

with

an

RSA

key

using

the

ISO

9796

text

formatting.

The

*/

/*

RSA

key

token

is

built

from

supplied

data

and

imported

for

the

*/

/*

signature

generate

service

to

use.

*/

/*

*/

/*

INPUT:

TEXT

Message

digest

to

be

signed

*/

/*

*/

/*

OUTPUT:

SIGNATURE_LENGTH

Length

of

the

signature

in

bytes

*/

/*

Written

to

a

dataset.

*/

Appendix

D.

Coding

Examples

471

/*

*/

/*

SIGNATURE

Signature

for

hash.

Written

to

a

*/

/*

dataset.

*/

/*

*/

/**/

DSIGEXP:PROCEDURE(

TEXT

)

OPTIONS(

MAIN

);

/*

Declarations

-

Parameters

*/

DCL

TEXT

CHAR(

64

)

VARYING;

/*

Declarations

-

API

parameters

*/

DCL

CHAINING_VECTOR_LENGTH

FIXED

BINARY(

31,

0

)

INIT(

128

);

DCL

CHAINING_VECTOR

CHAR(

128

);

DCL

DUMMY_KEK

CHAR(

64

);

DCL

EXIT_DATA

CHAR(

4

);

DCL

EXIT_LEN

FIXED

BINARY(

31,

0

)

INIT(

0

);

DCL

HASH

CHAR(

20

);

DCL

HASH_LENGTH

FIXED

BINARY(

31,

0

)

INIT(

20

);

DCL

INTERNAL_PKA_TOKEN

CHAR(

1024

);

DCL

INTERNAL_PKA_TOKEN_LENGTH

FIXED

BINARY(

31,

0

);

DCL

KEY_VALUE_STRUCTURE

CHAR(139)

INIT((

’02000040000300408000000000000000’X

||

’01AE28DA4606D885EB7E0340D6BAAC51’X

||

’991C0CD0EAE835AFD9CFF3CD7E7EA741’X

||

’41DADD24A6331BEDF41A6626522CCF15’X

||

’767D167D01A16F970100010252BDAD42’X

||

’52BDAD425A8C6045D41AFAF746BEBD5F’X

||

’085D574FCD9C07F0B38C2C45017C2A1A’X

||

’B919ED2551350A76606BFA6AF2F1609A’X

||

’00A0A48DD719A55E9CA801’X

));

DCL

KEY_VALUE_LENGTH

FIXED

BINARY(

31,

0

)

INIT(

139

);

DCL

OWH_TEXT

CHAR(

64

);

DCL

PKA_KEY_TOKEN

CHAR(

1024

);

DCL

PKA_TOKEN_LENGTH

FIXED

BINARY(

31,

0

);

DCL

PRIVATE_NAME

CHAR(

64

)

INIT(

’PL1.EXAMPLE.FOR.APG’

);

DCL

PRIVATE_NAME_LENGTH

FIXED

BINARY(

31,

0

)

INIT(

0

);

DCL

RETURN_CODE

FIXED

BINARY(

31,

0

)

INIT(

0

);

DCL

REASON_CODE

FIXED

BINARY(

31,

0

)

INIT(

0

);

DCL

RESERVED_FIELD_LENGTH

FIXED

BINARY(

31,

0

)

INIT(

0

);

DCL

RESERVED_FIELD

CHAR(

1

);

DCL

RULE_ARY_CNT_DSG

FIXED

BINARY(

31,

0

)

INIT(

1

);

DCL

RULE_ARY_CNT_PKB

FIXED

BINARY(

31,

0

)

INIT(

1

);

DCL

RULE_ARY_CNT_PKI

FIXED

BINARY(

31,

0

)

INIT(

0

);

DCL

RULE_ARY_CNT_OWH

FIXED

BINARY(

31,

0

)

INIT(

2

);

DCL

RULE_ARY_DSG

CHAR(

8

)

INIT(

’ISO-9796’

);

DCL

RULE_ARY_PKB

CHAR(

8

)

INIT(

’RSA-PRIV’

);

DCL

RULE_ARY_PKI

CHAR(

8

);

DCL

RULE_ARY_OWH

CHAR(

16

)

INIT(

’SHA-1

ONLY

’

);

DCL

SIGNATURE_LENGTH

FIXED

BINARY(

31,

0

);

DCL

SIGNATURE

CHAR(

128

);

DCL

SIG_BIT_LENGTH

FIXED

BINARY(

31,

0

);

DCL

TEXT_LENGTH

FIXED

BINARY(

31,

0

);

/*

Declarations

-

Files

and

entry

points

*/

472

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

DCL

SYSPRINT

FILE

OUTPUT;

DCL

SIGOUT

FILE

RECORD

OUTPUT;

DCL

CSNDPKB

ENTRY

EXTERNAL

OPTIONS(

ASM,

INTER

);

DCL

CSNDPKI

ENTRY

EXTERNAL

OPTIONS(

ASM,

INTER

);

DCL

CSNBOWH

ENTRY

EXTERNAL

OPTIONS(

ASM,

INTER

);

DCL

CSNDDSG

ENTRY

EXTERNAL

OPTIONS(

ASM,

INTER

);

/*

Declarations

-

Internal

variables

*/

DCL

DSG_HEADER

CHAR(

32

)

INIT(

’*

DIGITAL

SIGNATURE

GENERATION

*’

);

DCL

FILE_OUT_LINE

CHAR(

128

);

DCL

OWH_HEADER

CHAR(

16

)

INIT(

’*

ONE

WAY

HASH

*’

);

DCL

PKB_HEADER

CHAR(

16

)

INIT(

’*

PKA

TOKEN

BUILD

*’

);

DCL

PKI_HEADER

CHAR(

16

)

INIT(

’*

PKA

TOKEN

IMPORT

*’

);

DCL

RC_STRING

CHAR(

14

)

INIT(

’RETURN

CODE

=

’

);

DCL

RS_STRING

CHAR(

14

)

INIT(

’REASON

CODE

=

’

);

DCL

SIG_STRING

CHAR(

12

)

INIT(

’SIGNATURE

=

’

);

DCL

SIG_LEN_STRING

CHAR(

26

)

INIT(

’SIGNATURE

LENGTH(BYTES)

=

’

);

/*

Declarations

-

Built-in

functions

*/

DCL

(SUBSTR,

LENGTH)

BUILTIN;

/**/

/*

Call

one-way

hash

to

get

the

SHA-1

hash

of

the

text.

*/

/**/

TEXT_LENGTH

=

LENGTH(

TEXT

);

OWH_TEXT

=

SUBSTR(

TEXT,

1,

TEXT_LENGTH

);

CALL

CSNBOWH(

RETURN_CODE,

REASON_CODE,

EXIT_LEN,

EXIT_DATA,

RULE_ARY_CNT_OWH,

RULE_ARY_OWH,

TEXT_LENGTH,

OWH_TEXT,

CHAINING_VECTOR_LENGTH,

CHAINING_VECTOR,

HASH_LENGTH,

HASH

);

PUT

SKIP

LIST(

OWH_HEADER

);

PUT

SKIP

LIST(

RC_STRING

||

RETURN_CODE

);

PUT

SKIP

LIST(

RS_STRING

||

REASON_CODE

);

/**/

/*

Create

the

PKA

RSA

private

external

token.

*/

/**/

IF

RETURN_CODE

=

0

THEN

DO;

PKA_TOKEN_LENGTH

=

1024;

CALL

CSNDPKB(

RETURN_CODE,

REASON_CODE,

EXIT_LEN,

EXIT_DATA,

RULE_ARY_CNT_PKB,

RULE_ARY_PKB,

KEY_VALUE_LENGTH,

Appendix

D.

Coding

Examples

473

KEY_VALUE_STRUCTURE,

PRIVATE_NAME_LENGTH,

PRIVATE_NAME,

RESERVED_FIELD_LENGTH,

RESERVED_FIELD,

RESERVED_FIELD_LENGTH,

RESERVED_FIELD,

RESERVED_FIELD_LENGTH,

RESERVED_FIELD,

RESERVED_FIELD_LENGTH,

RESERVED_FIELD,

RESERVED_FIELD_LENGTH,

RESERVED_FIELD,

PKA_TOKEN_LENGTH,

PKA_KEY_TOKEN

);

PUT

SKIP

LIST(

PKB_HEADER

);

PUT

SKIP

LIST(

RC_STRING

||

RETURN_CODE

);

PUT

SKIP

LIST(

RS_STRING

||

REASON_CODE

);

END;

/**/

/*

Import

the

clear

RSA

private

external

token.

*/

/**/

IF

RETURN_CODE

=

0

THEN

DO;

INTERNAL_PKA_TOKEN_LENGTH

=

1024;

CALL

CSNDPKI(

RETURN_CODE,

REASON_CODE,

EXIT_LEN,

EXIT_DATA,

RULE_ARY_CNT_PKI,

RULE_ARY_PKI,

PKA_TOKEN_LENGTH,

PKA_KEY_TOKEN,

DUMMY_KEK,

INTERNAL_PKA_TOKEN_LENGTH,

INTERNAL_PKA_TOKEN

);

PUT

SKIP

LIST(

PKI_HEADER

);

PUT

SKIP

LIST(

RC_STRING

||

RETURN_CODE

);

PUT

SKIP

LIST(

RS_STRING

||

REASON_CODE

);

END;

/**/

/*

Call

digital

signature

generate.

*/

/**/

IF

RETURN_CODE

=

0

THEN

DO;

SIGNATURE_LENGTH

=

128;

CALL

CSNDDSG(

RETURN_CODE,

REASON_CODE,

EXIT_LEN,

EXIT_DATA,

RULE_ARY_CNT_DSG,

RULE_ARY_DSG,

INTERNAL_PKA_TOKEN_LENGTH,

INTERNAL_PKA_TOKEN,

HASH_LENGTH,

HASH,

SIGNATURE_LENGTH,

SIG_BIT_LENGTH,

474

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

SIGNATURE

);

PUT

SKIP

LIST(

DSG_HEADER

);

PUT

SKIP

LIST(

RC_STRING

||

RETURN_CODE

);

PUT

SKIP

LIST(

RS_STRING

||

REASON_CODE

);

IF

RETURN_CODE

=

0

THEN

DO;

/**/

/*

Write

the

signature

and

its

length

to

the

output

file.

*/

/**/

FILE_OUT_LINE

=

SIG_LEN_STRING

||

SIGNATURE_LENGTH;

WRITE

FILE(SIGOUT)

FROM(

FILE_OUT_LINE

);

FILE_OUT_LINE

=

SIG_STRING

||

SIGNATURE;

WRITE

FILE(SIGOUT)

FROM(

FILE_OUT_LINE

);

END;

END;

END

DSIGEXP;

Appendix

D.

Coding

Examples

475

476

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

E.

Using

ICSF

with

BSAFE

ICSF

works

in

conjunction

with

RSA

Security,

Inc.’s

BSAFE

toolkit

(BSAFE

3.1

or

later).

If

you

are

currently

using

applications

developed

with

BSAFE,

you

may

want

to

take

advantage

of

the

increased

security

and

performance

available

with

the

Cryptographic

Coprocessor

Feature

and

ICSF.

Through

BSAFE

3.1

you

can

access

the

ICSF

services

to:

v

Compute

message

digests

or

hashes

v

Generate

random

numbers

v

Encipher

and

decipher

data

using

the

DES

algorithm

v

Generate

and

verify

RSA

digital

signatures

Some

BSAFE

Basics

BSAFE

has

many

algorithm

information

types

(called

AIs).

Many

of

the

AIs

can

perform

several

cryptographic

functions.

For

this

reason,

you

must

specify

the

algorithmic

method

(AM)

to

be

used

by

supplying

a

chooser.

If

the

cryptographic

function

requires

a

key,

you

supply

key

information

to

the

BSAFE

application

with

a

key

information

(KI)

type.

For

the

most

current

information

on

the

BSAFE

user

interface

and

a

complete

description

of

algorithm

information

types,

algorithm

methods,

choosers,

and

key

information

types,

refer

to

BSAFE

User’s

Manual

and

BSAFE

Library

Reference

Manual.

Computing

Message

Digests

and

Hashes

MD5

and

SHA1

hashing

are

both

available

from

ICSF

via

BSAFE.

If

your

BSAFE

application

uses

the

AM_MD5

or

the

AM_SHA

algorithm

methods,

you

can

add

a

couple

of

BSAFE

function

calls

and

the

application

will

use

ICSF

and

the

Cryptographic

Coprocessor

Feature

instead

of

the

BSAFE

algorithm

method.

The

following

list

shows

BSAFE

AI

types

with

choosers

that

may

include

AM_MD5:

v

AI_MD5

v

AI_MD5_BER

v

AI_MD5WithDES_CBCPad

v

AI_MD5WithDES_CBCPadBER

v

AI_MD5WithRC2_CBCPad

v

AI_MD5WithRC2_CBCPadBER

v

AI_MD5WithRSAEncryption

v

AI_MD5WithRSAEncryptionBER

v

AI_MD5WithXOR

v

AI_MD5WithXOR_BER

The

following

list

shows

BSAFE

AI

types

with

choosers

that

may

include

AM_SHA:

v

AI_SHA1

v

AI_SHA1_BER

v

AI_SHA1WithDES_CBCPad

v

AI_SHA1WithDES_CBCPadBER

Generating

Random

Numbers

If

your

BSAFE

application

uses

the

algorithm

method

AM_MD5_RANDOM,

you

can

add

a

chooser

definition

containing

the

algorithm

method

AM_HW_RANDOM

(new

©

Copyright

IBM

Corp.

1997,

2004

477

with

BSAFE

3.1)

and

a

couple

of

BSAFE

function

calls

and

your

program

can

use

ICSF

and

the

Cryptographic

Coprocessor

Feature

to

generate

random

numbers

instead

of

the

BSAFE

algorithm

method.

BSAFE

3.1

provides

a

new

algorithm

information

type,

AI_HWRandom.

You

need

to

set

your

random

number

generation

object

with

AI_HWRandom,

and

initialize

the

object

with

a

chooser

containing

AM_HW_RANDOM,

in

order

to

use

ICSF

with

the

Cryptographic

Coprocessor

Feature

for

generating

random

numbers.

You

do

not,

however,

have

to

make

a

B_RandomUpdate

call,

since

the

S/390

and

IBM

Eserver

zSeries

cryptographic

solution

does

not

require

a

seed.

The

only

AI

type

with

choosers

that

may

include

AM_HW_RANDOM

is

AI_HWRandom.

Encrypting

and

Decrypting

with

DES

If

your

BSAFE

application

uses

either

the

AM_DES_CBC_ENCRYPT

or

the

AM_DES_CBC_DECRYPT

algorithm

methods,

you

can

add

a

chooser

containing

the

algorithm

methods

AM_TOKEN_DES_CBC_ENCRYPT

and/or

AM_TOKEN_DES_CBC_DECRYPT

(both

new

with

BSAFE

3.1)

and

a

couple

of

BSAFE

function

calls

and

your

program

can

use

ICSF

and

the

Cryptographic

Coprocessor

Feature

to

encrypt

and/or

decrypt

data

using

the

DES

algorithm.

For

your

encryption

or

decryption

key,

you

can

use

either

a

clear

key

in

the

form

of

a

KI_8Byte

or

KI_DES8

or

KI_Item

(8

bytes

long),

or

a

CCA

DES

Key

Token

in

the

form

of

a

KI_TOKEN

(64

bytes

long).

KI_TOKEN

is

a

new

key

information

type

in

BSAFE

3.1.

The

following

list

shows

BSAFE

AI

types

with

choosers

that

may

include

either

AM_TOKEN_DES_CBC_ENCRYPT,

AM_TOKEN_DES_CBC_DECRYPT,

or

both:

v

AI_DES_CBC_BSAFE1

v

AI_DES_CBC_IV8

v

AI_DES_CBCPadBER

v

AI_DES_CBCPadIV8

v

AI_DES_CBCPadPEM

v

AI_MD5WithDES_CBCPad

v

AI_MD5WithDES_CBCPadBER

v

AI_SHA1WithDES_CBCPad

v

AI_SHA1WithDES_CBCPadBER

Generating

and

Verifying

RSA

Digital

Signatures

You

can

use

algorithm

method

AM_TOKEN_RSA_PRV_ENCRYPT

with

AM_MD5

or

AM_SHA

to

have

ICSF

and

the

Cryptographic

Coprocessor

Feature

generate

RSA

digital

signatures.

To

verify

the

RSA

digital

signature

using

the

S/390

or

IBM

Eserver

zSeries

cryptographic

solution,

you

can

use

AM_TOKEN_RSA_PUB_DECRYPT

(with

AM_MD5

or

AM_SHA).

Your

BSAFE

application

must

contain

a

couple

of

new

BSAFE

function

calls

to

access

the

S/390

and

IBM

Eserver

zSeries

services.

AM_TOKEN_RSA_PRV_ENCRYPT

and

AM_TOKEN_RSA_PUB_DECRYPT

are

new

in

BSAFE

3.1.

For

more

information,

see

“Using

the

New

Function

Calls

in

Your

BSAFE

Application”

on

page

479.

For

signature

generation,

you

can

use

either

a

clear

private

key

in

the

form

of

a

KI_PKCS_RSAPrivate

or

a

CCA

RSA

private

key

token

in

the

form

of

a

KI_TOKEN.

For

signature

verification,

you

can

use

either

a

public

RSA

key

in

the

form

of

a

KI_RSAPublic

or

a

CCA

RSA

public

key

token

in

the

form

of

a

KI_TOKEN.

478

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

KI_TOKEN

is

a

new

key

information

type

in

BSAFE.

For

more

information

about

KI_TOKEN,

see

“Using

the

BSAFE

KI_TOKEN”

on

page

481.

The

following

list

shows

BSAFE

AI

types

with

choosers

that

may

include

AM_TOKEN_RSA_PRV_ENCRYPT:

v

AI_MD5WithRSAEncryption

v

AI_MD5WithRSAEncryptionBER

v

AI_SHA1WithRSAEncryption

v

AI_SHA1WithRSAEncryptionBER

The

following

list

shows

BSAFE

AI

types

with

choosers

that

may

include

AM_TOKEN_RSA_PUB_DECRYPT:

v

AI_MD5WithRSAEncryption

v

AI_SHA1WithRSAEncryption

Encrypting

and

Decrypting

with

RSA

You

can

use

algorithm

method

AM_TOKEN_RSA_ENCRYPT

to

have

ICSF

encrypt

a

symmetric

key

(or

other

string

of

48

bytes

or

fewer).

To

decrypt

the

string

using

ICSF,

you

can

use

AM_TOKEN_RSA_CRT_DECRYPT.

You’ll

need

a

couple

of

new

BSAFE

function

calls

to

access

the

S/390

and

IBM

Eserver

zSeries

services

(see

“Using

the

New

Function

Calls

in

Your

BSAFE

Application.”

To

encrypt

a

string,

you

can

use

either

a

public

key

in

the

form

KI_RSAPublic

or

a

CCA

RSA

public

key

token

in

the

form

of

a

KI_TOKEN.

To

decrypt

a

string,

you

can

use

either

a

private

key

in

the

form

KI_PKCS_RSAPrivate

or

a

CCA

RSA

private

key

token

in

the

form

of

a

KI_TOKEN.

Using

the

New

Function

Calls

in

Your

BSAFE

Application

To

have

your

BSAFE

application

access

the

ICSF,

S/390,

and

IBM

Eserver

zSeries

Cryptographic

Coprocessor

Feature

services,

you

need

to

add

several

new

elements

to

your

program.

These

elements

are

explained

with

examples

in

the

steps

that

follow.

1.

At

the

beginning

of

your

program,

declare

one

or

more

session

choosers

and

also

the

hardware

table

list.

For

information

about

choosers

and

the

hardware

table

list,

see

BSAFE

User’s

Manual.

/*---*

*

SESSION_CHOOSER

will

replace

OLD_CHOOSER.

*

---/

B_ALGORITHM_METHOD

**SESSION_CHOOSER

=

NULL_PTR;

/*---*

*

CCA_VTABLE

is

a

vector

table

of

functions

that

will

be

*

*

substituted

for

BSAFE

equivalents.

It

is

supplied

by

IBM

*

*

and

will

be

loaded

into

your

application

when

you

invoke

*

*

QueryCrypto.

*

---/

HW_TABLE_LIST

CCA_VTABLE

=

(HW_TABLE_LIST)NULL_PTR;

2.

Declare

a

tag

list.

The

content

of

the

tag

list

is

supplied

by

BSAFE

at

the

B_CreateSessionChooser

call,

which

is

discussed

in

a

later

step.

unsigned

char

**taglist

=

(unsigned

char

**)NULL_PTR;

3.

For

random

number

generation,

DES

encryption

or

decryption

or

RSA

encryption

or

decryption,

you

need

to

define

and

declare

an

additional

chooser

Appendix

E.

Using

ICSF

with

BSAFE

479

wherever

your

current

chooser

is

defined

and

declared.

For

instance,

suppose

your

application

is

doing

an

RSA

encryption,

and

OLD_CHOOSER

is

defined

as

follows:

/*--*

*

OLD_CHOOSER

is

used

for

this

application

when

ICSF

and

*

*

the

crypto

hardware

is

not

available.

*

--/

B_ALGORITHM_METHOD

*OLD_CHOOSER[]

=

{

&AM_SHA,

&AM_RSA_ENCRYT,

(B_ALGORITHM_METHOD

*)NULL_PTR

};

/*--*

*

ICSF_CHOOSER

is

a

’skeleton’

for

SESSION_CHOOSER.

*

*

SESSION_CHOOSER

will

be

used

for

this

application

if

*

*

ICSF

and

the

crypto

hardware

are

not

available.

*

--/

B_ALGORITHM_METHOD

*ICSF_CHOOSER[]

=

{

&AM_SHA,

&AM_TOKEN_RSA_PUB_ENCRYPT,

(B_ALGORITHM_METHOD

*)NULL_PTR

};

4.

At

the

beginning

of

the

main

function

in

your

application,

add

a

call

to

the

ICSF

QueryCrypto

function

followed

by

a

conditional

call

to

the

BSAFE

B_CreateSessionChooser

function.

/*---*

*

Check

for

the

existence

of

crypto

hardware.

If

it’s

there,

*

*

QueryCrypto

will

supply

CCA_VTABLE

*

---/

if

((status

=

QueryCrypto(CRYPTO_Q_DES_AND_RSA,&CCA_VTABLE))

==

0)

/*---*

*

B_CreateSessionChooser

will

replace

the

*

*

BSAFE

software

functions

with

their

CCA

*

*

hardware

equivalents.

*

*

*

*

Note

that

the

last

three

parameters

are

not

*

*

used

with

CCA

*

---/

if

((status

=

B_CreateSessionChooser(ICSF_CHOOSER,

&SESSION_CHOOSER,

CCA_VTABLE,

(ITEM

*)NULL_PTR,

(POINTER

*)NULL_PTR,

&taglist))

!=

0)

break;

5.

Set

up

the

conditions

under

which

any

alternate

choosers

are

used

to

initialize

the

appropriate

algorithm

object.

For

information

about

initializing

algorithm

objects,

see

BSAFE

User’s

Manual.

/*---*

*

Initialize

the

algorithm

object

with

the

appropriate

*

*

chooser.

*

---/

if

(SESSION_CHOOSER

!=

NULL_PTR)

if

((status

=

B_xxxxxxInit

(xxxxxxObject,SESSION_CHOOSER,

(A_SURRENDER_CTX

*)NULL_PTR))

!=

0)

break;

else

;

else

if

((status

=

B_xxxxxxInit

480

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

(xxxxxxObject,OLD_CHOOSER,

(A_SURRENDER_CTX

*)NULL_PTR))

!=

0)

break;

else

;

6.

When

your

application

no

longer

needs

the

session

chooser,

program

a

call

to

the

BSAFE

B_FreeSessionChooser

function.

if

(SESSION_CHOOSER

!=

NULL_PTR)

B_FreeSessionChooser(&SESSION_CHOOSER,&taglist);

Using

the

BSAFE

KI_TOKEN

Those

ICSF

functions

that

require

a

key,

like

encipher

and

decipher,

expect

the

key

in

the

form

of

a

CCA

token.

If

you

already

have

a

CCA

token,

perform

the

following

steps

before

you

try

to

set

your

algorithm

object.

For

information

about

how

to

perform

the

following

tasks,

see

BSAFE

User’s

Manual

and

BSAFE

Library

Reference

Manual.

1.

Create

a

key

object.

2.

Declare

a

KEY_TOKEN_INFO

and

fill

it

in.

KEY_TOKEN_INFO

is

defined

as

follows

in

the

BSAFE

User’s

Manual:

typedef

struct

{

ITEM

manufacturerID;

ITEM

internalKeyInfo;

}

KEY_TOKEN_INFO;

The

first

ITEM

is

the

address

and

length

of

one

of

the

following

three

strings,

depending

on

the

CCA

key

token

type

you

are

using:

v

com.ibm.CCADES

v

com.ibm.CCARSAPublic

v

com.ibm.CCARSAPrivate

The

second

ITEM

is

the

address

and

length

of

your

CCA

key

token.

3.

Set

the

key

information

(B_SetKeyInfo)

into

the

key

object

using

the

item

and

a

key

information

type

of

KI_TOKEN

as

input.

If

you

don’t

already

have

a

CCA

token,

you

can

supply

a

clear

key

to

the

function

using

one

of

the

key

information

types

mentioned

in

the

section

discussing

the

function

you

are

using.

BSAFE

will

convert

the

key

to

a

CCA

token.

If

you

supply

a

clear

BSAFE

KI

type

to

one

of

the

ICSF

functions,

and

the

function

is

performed

successfully,

you

can

retrieve

the

key

as

a

CCA

token

by

invoking

B_GetKeyInfo

with

KI_TOKEN

as

the

key

information

type.

A

KEY_TOKEN_INFO

struct

is

returned.

ICSF

Triple

DES

via

BSAFE

ICSF

performs

single,

double,

or

triple

DES

depending

on

the

length

of

the

DES

key;

if

you’re

using

BSAFE

to

access

ICSF

triple

DES,

you

should

use

the

algorithm

methods

AM_TOKEN_DES_CBC_ENCRYPT

and

AM_TOKEN_DES_CBC_DECRYPT.

If

you’ve

already

have

an

ICSF

token,

follow

the

instructions

in

the

section

titled

“Using

the

BSAFE

KI_TOKEN.”

If

you’re

using

a

clear

key,

follow

the

same

procedure,

except

use

your

clear

key

padded

on

the

right

with

binary

zeroes

to

a

length

of

64

as

the

internalKeyInfo

part

of

your

KI_TOKEN_INFO.

ICSF

will

convert

your

clear

key

to

an

internal

ICSF

key

token.

Appendix

E.

Using

ICSF

with

BSAFE

481

Here’s

an

example:

B_KEY_OBJ

desKey

=

(B_KEY_OBJ)NULL_PTR;

KEY_TOKEN_INFO

myTokenInfo;

unsigned

char

myToken[64]

=

{0};

unsigned

char

*

myTokenP;

unsigned

char

myDoubleKey[16];

/*

Input

to

this

function

*

unsigned

char

mfgID[]

=

"com.ibm.CCADES";

unsigned

char

*

mfgIDP;

.

.

.

myTokenP

=

myToken;

mfgIDP

=

mfgID;

T_memcpy(myToken,myDoubleKey,sizeof(myDoubleKey));

myTokenInfo.manufacturerID.len

=

strlen(mfgID);

myTokenInfo.manufacturerID.data

=

mfgIDP;

myTokenInfo.internalKeyInfo.len

=

sizeof(myToken);

myTokenInfo.internalKeyInfo.data

=

myTokenP;

/*

Create

a

key

object.

*/

if

((status

=

B_CreateKeyObject

(&desKey))

!=

0)

break;

/*

Set

the

key

object.

*/

if

((status

=

B_SetKeyInfo

(desKey,

KI_TOKEN,

myTokenInfo

))

!=

0)

break;

.

.

.

Retrieving

ICSF

Error

Information

When

using

the

ICSF

and

Cryptographic

Coprocessor

Feature,

Init,

Update,

and

Final

calls

can

result

in

BSAFE

returning

a

status

of

BE_HARDWARE

(0x020B).

When

this

occurs,

you

can

derive

the

ICSF

return

and

reason

codes

by

using

a

new

BSAFE

operation,

B_GetExtendedErrorInfo.

For

an

explanation

of

the

return

codes

and

reason

codes,

see

Appendix

A,

“ICSF

and

TSS

Return

and

Reason

Codes,”

on

page

397.

A

coding

example

follows.

.

.

#include

"balg.h"

#include

"algobj.h"

#include

"cca.h"

.

.

{

.

.

.

B_ALGORITHM_OBJECT

*

aop;

ITEM

*

errp;

unsigned

char

*

algorithmMethod;

CCA_ERROR_DATA

*

edp;

unsigned

int

CCAreturnCode=0;

unsigned

int

CCAreasonCode=0;

unsigned

char

algorithmName[40]={0x00};

.

.

.

if

(status==BE_HARDWARE)

{

482

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

B_GetExtendedErrorInfo(aop,errp,algorithmMethod);

edp

=

errp->data;

CCAreturnCode

=

(unsigned

int)

edp->returnCode;

CCAreasonCode

=

(unsigned

int)

edp->reasonCode;

}

.

.

}

The

prototype

for

B_GetExtendedErrorInfo

is

in

balg.h,

as

shown

in

the

example

that

follows.

B_GetExtendedErrorInfo

(

B_ALGORITHM_OBJ

algorithmObject,

/*

in--algorithm

object

*/

ITEM

*

errorData,

/*

out--address

and

length

of

error

data

*/

POINTER

algorithmMethod

/*

out--address

of

faulting

AM

*/

);

Appendix

E.

Using

ICSF

with

BSAFE

483

484

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

F.

Cryptographic

Algorithms

and

Processes

This

appendix

describes

the

personal

identification

number

(PIN)

formats

and

algorithms.

PIN

Formats

and

Algorithms

For

PIN

calculation

procedures,

see

IBM

Common

Cryptographic

Architecture:

Cryptographic

Application

Programming

Interface

Reference.

PIN

Notation

This

section

describes

various

PIN

block

formats.

The

following

notations

describe

the

contents

of

PIN

blocks:

P

=

A

4-bit

decimal

digit

that

is

one

digit

of

the

PIN

value.

C

=

A

4-bit

hexadecimal

control

value.

The

valid

values

are

X'0',

X'1',

and

X'2'.

L

=

A

4-bit

hexadecimal

value

that

specifies

the

number

of

PIN

digits.

The

value

ranges

from

4

to

12,

inclusive.

F

=

A

4-bit

field

delimiter

of

value

X'F'.

f

=

A

4-bit

delimiter

filler

that

is

either

P

or

F,

depending

on

the

length

of

the

PIN.

D

=

A

4-bit

decimal

padding

value.

All

pad

digits

in

the

PIN

block

have

the

same

value.

X

=

A

4-bit

hexadecimal

padding

value.

All

pad

digits

in

the

PIN

block

have

the

same

value.

x

=

A

4-bit

hexadecimal

filler

that

is

either

P

or

X,

depending

on

the

length

of

the

PIN.

R

=

A

4-bit

hexadecimal

random

digit.

The

sequence

of

R

digits

can

each

take

a

different

value.

r

=

A

4-bit

random

filler

that

is

either

P

or

R,

depending

on

the

length

of

the

PIN.

Z

=

A

4-bit

hexadecimal

zero

(X'0').

z

=

A

4-bit

zero

filler

that

is

either

P

or

Z,

depending

on

the

length

of

the

PIN.

S

=

A

4-bit

hexadecimal

digit

that

constitutes

one

digit

of

a

sequence

number.

A

=

A

4-bit

decimal

digit

that

constitutes

one

digit

of

a

user-specified

constant.

PIN

Block

Formats

This

section

describes

the

PIN

block

formats

and

assigns

a

code

to

each

format.

ANSI

X9.8

This

format

is

also

named

ISO

format

0,

VISA

format

1,

VISA

format

4,

and

ECI

format

1.

P1

=

CLPPPPffffffffFF

P2

=

ZZZZAAAAAAAAAAAA

©

Copyright

IBM

Corp.

1997,

2004

485

PIN

Block

=

P1

XOR

P2

where

C

=

X’0’

L

=

X’4’

to

X’C’

Programming

Note:

The

rightmost

12

digits

(excluding

the

check

digit)

in

P2

are

the

rightmost

12

digits

of

the

account

number

for

all

formats

except

VISA

format

4.

For

VISA

format

4,

the

rightmost

12

digits

(excluding

the

check

digit)

in

P2

are

the

leftmost

12

digits

of

the

account

number.

ISO

Format

1

This

format

is

also

named

ECI

format

4.

PIN

Block

=

CLPPPPrrrrrrrrRR

where

C

=

X’1’

L

=

X’4’

to

X’C’

ISO

Format

2

PIN

Block

=

CLPPPPffffffffFF

where

C

=

X’2’

L

=

X’4’

to

X’C’

VISA

Format

2

PIN

Block

=

LPPPPzzDDDDDDDDD

where

L

=

X’4’

to

X’6’

VISA

Format

3

This

format

specifies

that

the

PIN

length

can

be

4-12

digits,

inclusive.

The

PIN

starts

from

the

leftmost

digit

and

ends

by

the

delimiter

(‘F’),

and

the

remaining

digits

are

padding

digits.

An

example

of

a

6-digit

PIN:

PIN

Block

=

PPPPPPFXXXXXXXXX

IBM

4700

Encrypting

PINPAD

Format

This

format

uses

the

value

X'F'

as

the

delimiter

for

the

PIN.

PIN

Block

=

LPPPPffffffffFSS

where

L

=

X’4’

to

X’C’

IBM

3624

Format

This

format

requires

the

program

to

specify

the

delimiter,

X,

for

determining

the

PIN

length.

PIN

Block

=

PPPPxxxxxxxxXXXX

IBM

3621

Format

This

format

requires

the

program

to

specify

the

delimiter,

X,

for

determining

the

PIN

length.

PIN

Block

=

SSSSPPPPxxxxxxxx

ECI

Format

2

This

format

defines

the

PIN

to

be

4

digits.

PIN

Block

=

PPPPRRRRRRRRRRRR

486

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

ECI

Format

3

PIN

Block

=

LPPPPzzRRRRRRRRR

where

L

=

X’4’

to

X’6’

PIN

Extraction

Rules

This

section

describes

the

PIN

extraction

rules

for

the

Encrypted

PIN

verify

and

Encrypted

PIN

translate

callable

services.

Encrypted

PIN

Verify

Callable

Service

The

service

extracts

the

customer-entered

PIN

from

the

input

PIN

block

according

to

the

following

rules:

v

If

the

input

PIN

block

format

is

ANSI

X9.8,

ISO

format

0,

VISA

format

1,

VISA

format

4,

ECI

format

1,

ISO

format

1,

ISO

format

2,

VISA

format

2,

IBM

Encrypting

PINPAD

format,

or

ECI

format

3,

the

service

extracts

the

PIN

according

to

the

length

specified

in

the

PIN

block.

v

If

the

input

PIN

block

format

is

VISA

format

3,

the

specified

delimiter

(padding)

determines

the

PIN

length.

The

search

starts

at

the

leftmost

digit

in

the

PIN

block.

If

the

input

PIN

block

format

is

3624,

the

specification

of

a

PIN

extraction

method

for

the

3624

is

supported

through

rule

array

keywords.

If

no

PIN

extraction

method

is

specified

in

the

rule

array,

the

specified

delimiter

(padding)

determines

the

PIN

length.

v

If

the

input

PIN

block

format

is

3621,

the

specification

of

a

PIN

extraction

method

for

the

3621

is

supported

through

rule

array

keywords.

If

no

PIN

extraction

method

is

specified

in

the

rule

array,

the

specified

delimiter

(padding)

determines

the

PIN

length.

v

If

the

input

PIN

block

format

is

ECI

format

2,

the

PIN

is

the

leftmost

4

digits.

For

the

VISA

algorithm,

if

the

extracted

PIN

length

is

less

than

4,

the

services

sets

a

reason

code

that

indicates

that

verification

failed.

If

the

length

is

greater

than

or

equal

to

4,

the

service

uses

the

leftmost

4

digits

as

the

referenced

PIN.

For

the

IBM

German

Banking

Pool

algorithm,

if

the

extracted

PIN

length

is

not

4,

the

service

sets

a

reason

code

that

indicates

that

verification

failed.

For

the

IBM

3624

algorithm,

if

the

extracted

PIN

length

is

less

than

the

PIN

check

length,

the

service

sets

a

reason

code

that

indicates

that

verification

failed.

Clear

PIN

Generate

Alternate

Callable

Service

The

service

extracts

the

customer-entered

PIN

from

the

input

PIN

block

according

to

the

following

rules:

v

This

service

supports

the

specification

of

a

PIN

extraction

method

for

the

3624

and

3621

PIN

block

formats

through

the

use

of

the

rule_array

keyword.

Rule_array

points

to

an

array

of

one

or

two

8-byte

elements.

The

first

element

in

the

rule

array

specifies

the

PIN

calculation

method.

The

second

element

in

the

rule

array

(if

specified)

indicates

the

PIN

extraction

method.

Refer

to

the

“Clear

PIN

Generate

Alternate

(CSNBCPA)”

on

page

243

for

an

explanation

of

PIN

extraction

method

keywords.

Encrypted

PIN

Translate

Callable

Service

The

service

extracts

the

customer-entered

PIN

from

the

input

PIN

block

according

to

the

following

rules:

v

If

the

input

PIN

block

format

is

ANSI

X9.8,

ISO

format

0,

VISA

format

1,

VISA

format

4,

ECI

format

1,

ISO

format

1,

ISO

format

2,

VISA

format

2,

IBM

Appendix

F.

Cryptographic

Algorithms

and

Processes

487

Encrypting

PINPAD

format,

or

ECI

format

3,

and

if

the

specified

PIN

length

is

less

than

4,

the

service

sets

a

reason

code

to

reject

the

operation.

If

the

specified

PIN

length

is

greater

than

12,

the

operation

proceeds

to

normal

completion

with

unpredictable

contents

in

the

output

PIN

block.

Otherwise,

the

service

extracts

the

PIN

according

to

the

specified

length.

v

If

the

input

PIN

block

format

is

VISA

format

3,

the

specified

delimiter

(padding)

determines

the

PIN

length.

The

search

starts

at

the

leftmost

digit

in

the

PIN

block.

If

the

input

PIN

block

format

is

3624,

the

specification

of

a

PIN

extraction

method

for

the

3624

is

supported

through

rule

array

keywords.

If

no

PIN

extraction

method

is

specified

in

the

rule

array,

the

specified

delimiter

(padding)

determines

the

PIN

length.

v

If

the

input

PIN

block

format

is

3621,

the

specification

of

a

PIN

extraction

method

for

the

3621

is

supported

through

rule

array

keywords.

If

no

PIN

extraction

method

is

specified

in

the

rule

array,

the

specified

delimiter

(padding)

determines

the

PIN

length.

v

If

the

input

block

format

is

ECI

format

2,

the

PIN

is

always

the

leftmost

4

digits.

If

the

maximum

PIN

length

allowed

by

the

output

PIN

block

is

shorter

than

the

extracted

PIN,

only

the

leftmost

digits

of

the

extracted

PIN

that

form

the

allowable

maximum

length

are

placed

in

the

output

PIN

block.

The

PIN

length

field

in

the

output

PIN

block,

it

if

exists,

specifies

the

allowable

maximum

length.

IBM

PIN

Algorithms

This

section

describes

the

IBM

PIN

generation

algorithms,

IBM

PIN

offset

generation

algorithm,

and

IBM

PIN

verification

algorithms.

3624

PIN

Generation

Algorithm

This

algorithm

generates

a

n-digit

PIN

based

on

an

account-related

data

or

person-related

data,

namely

the

validation

data.

The

assigned

PIN

length

parameter

specifies

the

length

of

the

generated

PIN.

The

algorithm

requires

the

following

input

parameters:

v

A

64-bit

validation

data

v

A

64-bit

decimalization

table

v

A

4-bit

assigned

PIN

length

v

A

128-bit

PIN-generation

key

The

service

uses

the

PIN

generation

key

to

encipher

the

validation

data.

Each

digit

of

the

enciphered

validation

data

is

replaced

by

the

digit

in

the

decimalization

table

whose

displacement

from

the

leftmost

digit

of

the

table

is

the

same

as

the

value

of

the

digit

of

the

enciphered

validation

data.

The

result

is

an

intermediate

PIN.

The

leftmost

n

digits

of

the

intermediate

PIN

are

the

generated

PIN,

where

n

is

specified

by

the

assigned

PIN

length.

Figure

9

illustrates

the

3624

PIN

generation

algorithm.

488

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

German

Banking

Pool

PIN

Generation

Algorithm

This

algorithm

generates

a

4-digit

PIN

based

on

an

account-related

data

or

person-related

data,

namely

the

validation

data.

The

algorithm

requires

the

following

input

parameters:

v

A

64-bit

validation

data

v

A

64-bit

decimalization

table

v

A

128-bit

PIN-generation

key

The

validation

data

is

enciphered

using

the

PIN

generation

key.

Each

digit

of

the

enciphered

validation

data

is

replaced

by

the

digit

in

the

decimalization

table

whose

displacement

from

the

leftmost

digit

of

the

table

is

the

same

as

the

value

of

the

digit

of

enciphered

validation

data.

The

result

is

an

intermediate

PIN.

The

rightmost

4

digits

of

the

leftmost

6

digits

of

the

intermediate

PIN

are

extracted.

The

leftmost

digit

of

the

extracted

4

digits

is

checked

for

zero.

If

the

digit

is

zero,

the

digit

is

changed

to

one;

otherwise,

the

digit

remains

unchanged.

The

resulting

four

digits

is

the

generated

PIN.

Figure

10

illustrates

the

German

Banking

Pool

(GBP)

PIN

generation

algorithm.

Assigned PIN Length

PIN
Generation
Key

Validation Data

Intermediate PIN

Generated PIN

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure

9.

3624

PIN

Generation

Algorithm

Appendix

F.

Cryptographic

Algorithms

and

Processes

489

PIN

Offset

Generation

Algorithm

To

allow

the

customer

to

select

his

own

PIN,

a

PIN

offset

is

used

by

the

IBM

3624

and

GBP

PIN

generation

algorithms

to

relate

the

customer-selected

PIN

to

the

generated

PIN.

The

PIN

offset

generation

algorithm

requires

two

parameters

in

addition

to

those

used

in

the

3624

PIN

generation

algorithm.

They

are

a

customer-selected

PIN

and

a

4-bit

PIN

check

length.

The

length

of

the

customer-selected

PIN

is

equal

to

the

assigned-PIN

length,

n.

The

3624

PIN

generation

algorithm

described

in

the

previous

section

is

performed.

The

offset

data

value

is

the

result

of

subtracting

(modulo

10)

the

leftmost

n

digits

of

the

intermediate

PIN

from

the

customer-selected

PIN.

The

modulo

10

subtraction

ignores

borrows.

The

rightmost

m

digits

of

the

offset

data

form

the

PIN

offset,

where

m

is

specified

by

the

PIN

check

length.

Note

that

n

cannot

be

less

than

m.

To

generate

a

PIN

offset

for

a

GBP

PIN,

m

is

set

to

4

and

n

is

set

to

6.

Figure

11

illustrates

the

PIN

offset

generation

algorithm.

6 Digits

4 Digits

PIN
Generation
Key

Validation Data

Intermediate PIN

If A = 0, then Z = 1; otherwise, Z = A.

A P P P

Z P P P
(Generated PIN)

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure

10.

GBP

PIN

Generation

Algorithm

490

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

3624

PIN

Verification

Algorithm

This

algorithm

generates

an

intermediate

PIN

based

on

the

specified

validation

data.

A

part

of

the

intermediate

PIN

is

adjusted

by

adding

an

offset

data.

A

part

of

the

result

is

compared

with

the

corresponding

part

of

the

customer-entered

PIN.

The

algorithm

requires

the

following

input

parameters:

v

A

64-bit

validation

data

v

A

64-bit

decimalization

table

v

A

128-bit

PIN-verification

key

v

A

4-bit

PIN

check

length

Assigned PIN Length

Assigned PIN Length

PIN Check Length

PIN
Generation
Key

Validation Data

Intermediate PIN

A

B

Customer
Selected PIN

A - B,
where B is leftmost
n digits of the
intermediate PIN

Offset Data

PIN Offset

E
D
E

Digit
Replacement

Subtraction
modulo 10

Decimalization
Table

Multiple
Encryption

Figure

11.

PIN-Offset

Generation

Algorithm

Appendix

F.

Cryptographic

Algorithms

and

Processes

491

v

An

offset

data

v

A

customer-entered

PIN

The

rightmost

m

digits

of

the

offset

data

form

the

PIN

offset,

where

m

is

the

PIN

check

length.

1.

The

validation

data

is

enciphered

using

the

PIN

verification

key.

Each

digit

of

the

enciphered

validation

data

is

replaced

by

the

digit

in

the

decimalization

table

whose

displacement

from

the

leftmost

digit

of

the

table

is

the

same

as

the

value

of

the

digit

of

enciphered

validation

data.

2.

The

leftmost

n

digits

of

the

result

is

added

(modulo

10)

to

the

offset

data

value,

where

n

is

the

length

of

the

customer-entered

PIN.

The

modulo

10

addition

ignores

carries.

3.

The

rightmost

m

digits

of

the

result

of

the

addition

operation

form

the

PIN

check

number.

The

PIN

check

number

is

compared

with

the

rightmost

m

digits

of

the

customer-entered

PIN.

If

they

match,

PIN

verification

is

successful;

otherwise,

verification

is

unsuccessful.

When

a

nonzero

PIN

offset

is

used,

the

length

of

the

customer-entered

PIN

is

equal

to

the

assigned

PIN

length.

Figure

12

illustrates

the

PIN

verification

algorithm.

492

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

German

Banking

Pool

PIN

Verification

Algorithm

This

algorithm

generates

an

intermediate

PIN

based

on

the

specified

validation

data.

A

part

of

the

intermediate

PIN

is

adjusted

by

adding

an

offset

data.

A

part

of

the

result

is

extracted.

The

extracted

value

may

or

may

not

be

modified

before

it

compares

with

the

customer-entered

PIN.

The

algorithm

requires

the

following

input

parameters:

Length of CE PIN

Length of CE PIN

PIN Check
Length

PIN Check Length

PIN CN: PIN Check Number
CE PIN: Customer-entered PIN

PIN
Verification
Key

Validation Data

Intermediate PIN

A

Offset Data

B, the leftmost
n digits of the
intermediate
PIN

A + B

=?

CE PIN

PIN CN

E
D
E

Digit
Replacement

Addition
modulo 10

Decimalization
Table

Multiple
Encryption

Figure

12.

PIN

Verification

Algorithm

Appendix

F.

Cryptographic

Algorithms

and

Processes

493

v

A

64-bit

validation

data

v

A

64-bit

decimalization

table

v

A

128-bit

PIN

verification

key

v

An

offset

data

v

A

customer-entered

PIN

The

rightmost

4

digits

of

the

offset

data

form

the

PIN

offset.

1.

The

validation

data

is

enciphered

using

the

PIN

verification

key.

Each

digit

of

the

enciphered

validation

data

is

replaced

by

the

digit

in

the

decimalization

table

whose

displacement

from

the

leftmost

digit

of

the

table

is

the

same

as

the

value

of

the

digit

of

enciphered

validation

data.

2.

The

leftmost

6

digits

of

the

result

is

added

(modulo

10)

to

the

offset

data.

The

modulo

10

addition

ignores

carries.

3.

The

rightmost

4

digits

of

the

result

of

the

addition

(modulo

10)

are

extracted.

4.

The

leftmost

digit

of

the

extracted

value

is

checked

for

zero.

If

the

digit

is

zero,

the

digit

is

set

to

one;

otherwise,

the

digit

remains

unchanged.

The

resulting

four

digits

are

compared

with

the

customer-entered

PIN.

If

they

match,

PIN

verification

is

successful;

otherwise,

verification

is

unsuccessful.

Figure

13

illustrates

the

GBP

PIN

verification

algorithm.

VISA

PIN

Algorithms

The

VISA

PIN

verification

algorithm

performs

a

multiple

encipherment

of

a

value,

called

the

transformed

security

parameter

(TSP),

and

a

extraction

of

a

4-digit

PIN

verification

value

(PVV)

from

the

ciphertext.

The

calculated

PVV

is

compared

with

the

referenced

PVV

and

stored

on

the

plastic

card

or

data

base.

If

they

match,

verification

is

successful.

PVV

Generation

Algorithm

The

algorithm

generates

a

4-digit

PIN

verification

value

(PVV)

based

on

the

transformed

security

parameter

(TSP).

The

algorithm

requires

the

following

input

parameters:

v

A

64-bit

TSP

v

A

128-bit

PVV

generation

key

Key encrypted
under sending
system's DES
master key

Key encrypted
under receiving
system's DES
master key

Prepare key
for export

Import the
key

Key encrypted
under transport
key

Key encrypted
under transport
key

Exporter key Importer key

Sending System Receiving System

Figure

13.

GBP

PIN

Verification

Algorithm

494

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

1.

A

multiple

encipherment

of

the

TSP

using

the

double-length

PVV

generation

key

is

performed.

2.

The

ciphertext

is

scanned

from

left

to

right.

Decimal

digits

are

selected

during

the

scan

until

four

decimal

digits

are

found.

Each

selected

digit

is

placed

from

left

to

right

according

to

the

order

of

selection.

If

four

decimal

digits

are

found,

those

digits

are

the

PVV.

3.

If,

at

the

end

of

the

first

scan,

less

than

four

decimal

digits

have

been

selected,

a

second

scan

is

performed

from

left

to

right.

During

the

second

scan,

all

decimal

digits

are

skipped

and

only

nondecimal

digits

can

be

processed.

Nondecimal

digits

are

converted

to

decimal

digits

by

subtracting

10.

The

process

proceeds

until

four

digits

of

PVV

are

found.

Figure

14

illustrates

the

PVV

generation

algorithm.

Programming

Note:

For

VISA

PVV

algorithms,

the

leftmost

11

digits

of

the

TSP

are

the

personal

account

number

(PAN),

the

leftmost

12th

digit

is

a

key

table

index

to

select

the

PVV

generation

key,

and

the

rightmost

4

digits

are

the

PIN.

The

key

table

index

should

have

a

value

between

1

and

6,

inclusive.

PVV

Verification

Algorithm

The

algorithm

requires

the

following

input

parameters:

v

A

64-bit

TSP

PGK = PVV Generation Key
= PGKL PGKR

Scan the result from left to
right to select 4 digits

PGKL

PGKR

PGKL

TSP

Encipherment Result

4-digit PVV

E

D

E

Figure

14.

PVV

Generation

Algorithm

Appendix

F.

Cryptographic

Algorithms

and

Processes

495

v

A

16-bit

referenced

PVV

v

A

128-bit

PVV

verification

key

A

PVV

is

generated

using

the

PVV

generation

algorithm,

except

a

PVV

verification

key

rather

than

a

PVV

generation

key

is

used.

The

generated

PVV

is

compared

with

the

referenced

PVV.

If

they

match,

verification

is

successful.

Interbank

PIN

Generation

Algorithm

The

Interbank

PIN

calculation

method

consists

of

the

following

steps:

1.

Let

X

denote

the

transaction_security

parameter

element

converted

to

an

array

of

16

4-bit

numeric

values.

This

parameter

consists

of

(in

the

following

sequence)

the

11

rightmost

digits

of

the

customer

PAN

(excluding

the

check

digit),

a

constant

of

6,

a

1-digit

key

indicator,

and

a

3-digit

validation

field.

2.

Encrypt

X

with

the

double-length

PINGEN

(or

PINVER)

key

to

get

16

hexadecimal

digits

(64

bits).

3.

Perform

decimalization

on

the

result

of

the

previous

step

by

scanning

the

16

hexadecimal

digits

from

left

to

right,

skipping

any

digit

greater

than

X'9'

until

4

decimal

digits

(for

example,

digits

that

have

values

from

X'0'

to

X'9')

are

found.

If

all

digits

are

scanned

but

4

decimal

digits

are

not

found,

repeat

the

scanning

process,

skipping

all

digits

that

are

X'9'

or

less

and

selecting

the

digits

that

are

greater

than

X'9'.

Subtract

10

(X'A')

from

each

digit

selected

in

this

scan.

If

the

4

digits

that

were

found

are

all

zeros,

replace

the

4

digits

with

0100.

4.

Concatenate

and

use

the

resulting

digits

for

the

Interbank

PIN.

The

4-digit

PIN

consists

of

the

decimal

digits

in

the

sequence

in

which

they

are

found.

Cipher

Processing

Rules

The

DES

defines

operations

on

8-byte

data

strings.

Although

the

fundamental

concepts

of

ciphering

(enciphering

and

deciphering)

and

data

verification

are

simple,

there

are

different

approaches

to

processing

data

strings

that

are

not

a

multiple

of

8

bytes

in

length.

These

approaches

are

defined

in

various

standards

and

IBM

products.

CBC

and

ANSI

X3.106

ANSI

standard

X3.106

defines

four

methods

of

operation

for

ciphering.

One

of

these

modes,

cipher

block

chaining

(CBC),

defines

the

basic

method

for

performing

ciphering

on

multiple

8-byte

data

strings.

A

plaintext

data

string,

which

must

be

a

multiple

of

8

bytes,

is

processed

as

a

series

of

8-byte

groups.

The

ciphered

result

from

processing

an

8-byte

group

is

exclusive

ORed

with

the

next

group

of

8

input

bytes.

The

last

8-byte

ciphered

result

is

defined

as

an

output

chaining

vector

(OCV).

ICSF

stores

the

output

chaining

vector

value

in

the

chaining_vector

parameter.

An

initial

chaining

vector

is

exclusive

ORed

with

the

first

group

of

8

input

bytes.

In

summary:

v

An

input

chaining

vector

(ICV)

is

required.

v

If

the

text_length

is

not

an

exact

multiple

of

8

bytes,

the

request

fails.

v

The

plaintext

is

not

padded,

for

example,

the

output

text

length

is

not

increased.

496

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

ANSI

X9.23

and

IBM

4700

An

enhancement

to

the

basic

cipher

block

chaining

mode

of

ANSI

X3.106

is

defined

so

the

data

lengths

that

are

not

an

exact

multiple

of

8

bytes

can

be

processed.

The

ANSI

X9.23

method

always

adds

from

1

byte

to

8

bytes

to

the

plaintext

before

encipherment.

The

last

added

byte

is

the

count

of

the

added

bytes

and

is

in

the

range

of

X'01'

to

X'08'.

The

standard

defines

that

the

other

added

bytes,

the

pad

characters,

are

random.

When

ICSF

enciphers

the

plaintext,

the

resulting

ciphertext

is

always

1

to

8

bytes

longer

than

the

plaintext.

When

ICSF

deciphers

the

ciphertext,

ICSF

uses

the

last

byte

of

the

deciphered

data

as

the

number

of

bytes

to

be

removed

(the

pad

bytes

and

the

count

byte).

The

resulting

plaintext

is

the

same

as

the

original

plaintext.

The

output

chaining

vector

can

be

used

as

feedback

with

this

method

in

the

same

way

as

with

the

X3.106

method.

In

summary,

for

the

ANSI

X9.23

method:

v

X9.23

processing

requires

the

caller

to

supply

an

ICV.

v

X9.23

encipher

does

not

allow

specification

of

a

pad

character.

The

4700

padding

rule

is

similar

to

the

X9.23

rule.

The

only

difference

is

that

in

the

X9.23

method,

the

padding

character

is

not

user-selected,

but

the

padding

string

is

selected

by

the

encipher

process.

Segmenting

The

callable

services

can

operate

on

large

data

objects.

Segmenting

is

the

process

of

dividing

the

function

into

more

than

one

processing

step.

Your

application

can

divide

the

process

into

multiple

steps

without

changing

the

final

outcome.

To

provide

segmenting

capability,

the

MAC

generation,

MAC

verification,

and

MDC

generation

callable

services

require

an

18-byte

system

work

area

in

the

application

address

space

that

is

provided

as

the

chaining

vector

parameter

to

the

callable

service.

The

application

program

must

not

change

the

system

work

area.

Cipher

Last-Block

Rules

The

DES

defines

cipher-block

chaining

as

operating

on

multiples

of

8

bytes.

Various

algorithms

are

used

to

process

strings

that

are

multiples

of

8

bytes.

The

algorithms

are

generically

named

“last-block

rules”.

You

select

the

supported

last-block

rules

by

using

these

keywords:

v

X9.23

v

IPS

v

CUSP

(also

used

with

PCF)

v

4700-PAD

You

specify

which

cipher

last-block

rule

you

want

to

use

in

the

rule_array

parameter

of

the

callable

service.

CUSP

If

the

length

of

the

data

to

be

enciphered

is

an

exact

multiple

of

8

bytes,

the

ICV

is

exclusive

ORed

with

the

first

8-byte

block

of

plaintext,

and

the

resulting

8

bytes

are

passed

to

the

DES

with

the

specified

key.

The

resulting

8-byte

block

of

ciphertext

is

then

exclusive

ORed

with

the

second

8-byte

block

of

plaintext,

and

the

value

is

enciphered.

This

process

continues

until

the

last

8-byte

block

of

plaintext

is

to

be

Appendix

F.

Cryptographic

Algorithms

and

Processes

497

enciphered.

Because

the

length

of

this

last

block

is

exactly

8

bytes,

the

last

block

is

processed

in

an

identical

manner

to

all

the

preceding

blocks.

To

produce

the

OCV,

the

last

block

of

ciphertext

is

enciphered

again

(thus

producing

a

double-enciphered

block).

The

user

can

pass

this

value

of

the

OCV

as

the

ICV

in

his

next

encipher

call

to

produce

chaining

between

successive

calls.

The

caller

can

alternatively

pass

the

same

ICV

on

every

call

to

the

callable

service.

If

the

length

of

data

to

be

enciphered

is

greater

than

7

bytes,

and

is

not

an

exact

multiple

of

8

bytes,

the

process

is

the

same

as

that

above,

until

the

last

partial

block

of

1

to

7

bytes

is

reached.

To

encipher

the

last

short

block,

the

previous

8-byte

block

of

ciphertext

is

passed

to

the

DES

with

the

specified

key.

The

first

1

to

7

bytes

of

this

double-enciphered

block

has

two

uses.

The

first

use

is

to

exclusive

OR

this

block

with

the

last

short

block

of

plaintext

to

form

the

last

short

block

of

the

ciphertext.

The

second

use

is

to

pass

it

back

as

the

OCV.

Thus,

the

OCV

is

the

last

complete

8-byte

block

of

plaintext,

doubly

enciphered.

If

the

length

of

the

data

to

be

enciphered

is

less

than

8

bytes,

the

ICV

is

enciphered

under

the

specified

key.

The

first

1

to

7

bytes

of

the

enciphered

ICV

is

exclusive

ORed

with

the

plaintext

to

form

the

ciphertext.

The

OCV

is

the

enciphered

ICV.

The

Information

Protection

System

(IPS)

The

Information

Protection

System

(IPS)

offers

two

forms

of

chaining:

block

and

record.

Under

record

chaining,

the

OCV

for

each

enciphered

data

string

becomes

the

ICV

for

the

next.

Under

block

chaining,

the

same

ICV

is

used

for

each

encipherment.

Files

that

are

enciphered

directly

with

the

ICSF

encipher

callable

service

cannot

be

properly

deciphered

using

the

IPS/CMS

CIPHER

command

or

the

IPS/CMS

subroutines.

Both

IPS/CMS

CIPHER

and

AMS

REPRO

ENCIPHER

write

headers

to

their

files

that

contain

information

(principally

the

ICV

and

chaining

method)

needed

for

decipherment.

The

encipher

callable

service

does

not

generate

these

headers.

Specialized

techniques

are

described

in

IPS/CMS

documentation

to

overcome

some,

if

not

all,

of

these

limitations,

depending

on

the

chaining

mode.

As

a

rough

test,

you

can

attempt

a

decipherment

with

the

CIPHER

command

HDWARN

option,

which

causes

CIPHER

to

continue

processing

even

though

the

header

is

absent.

The

encipher

callable

service

returns

an

OCV

used

by

IPS

for

record

chaining.

This

allows

cryptographic

applications

using

ICSF

to

be

compatible

with

IPS

record

chaining.

Record

chaining

provides

a

superior

method

of

handling

successive

short

blocks,

and

has

better

error

recovery

features

when

the

caller

passes

successive

short

blocks.

The

principle

used

by

record

chaining

is

that

the

OCV

is

the

last

8

bytes

of

ciphertext.

This

is

handled

as

follows:

v

If

the

length

of

the

data

to

be

enciphered

is

an

exact

multiple

of

8

bytes,

the

ICV

is

exclusive

ORed

with

the

first

8

byte

block

of

plaintext,

and

the

resulting

8

bytes

are

passed

to

the

DES

with

the

specified

key.

The

resulting

8-byte

block

of

ciphertext

is

then

exclusive

ORed

with

the

second

8-byte

block

of

plaintext,

and

the

resulting

value

is

enciphered.

This

process

continues

until

the

last

8-byte

block

of

plaintext

is

to

be

enciphered.

Because

the

length

of

this

last

block

is

exactly

8

bytes,

the

last

block

is

processed

in

an

identical

manner

to

all

the

preceding

blocks.

498

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

OCV

is

the

last

8

bytes

of

ciphertext.

The

user

can

pass

this

value

as

the

ICV

in

the

next

encipher

call

to

produce

chaining

between

successive

calls.

v

If

the

length

of

data

to

be

enciphered

is

greater

than

7

bytes,

and

is

not

an

exact

multiple

of

8

bytes,

the

process

is

the

same

as

that

above,

until

the

last

partial

block

of

1

to

7

bytes

is

reached.

To

encipher

the

last

short

block,

the

previous

8-byte

block

of

ciphertext

is

passed

to

the

DES

with

the

specified

key.

The

first

1

to

7

bytes

of

this

doubly

enciphered

block

is

then

exclusive

ORed

with

the

last

short

block

of

plaintext

to

form

the

last

short

block

of

the

ciphertext.

The

OCV

is

the

last

8

bytes

of

ciphertext.

v

If

the

length

of

the

data

to

be

enciphered

is

less

than

8

bytes,

then

the

ICV

is

enciphered

under

the

specified

key.

The

first

1

to

7

bytes

of

the

enciphered

ICV

is

exclusive

ORed

with

the

plaintext

to

form

the

ciphertext.

The

OCV

is

the

rightmost

8

bytes

of

the

plaintext

ICV

concatenated

with

the

short

block

of

ciphertext.

For

example:

ICV

=

ABCDEFGH

ciphertext

=

XYZ

OCV

=

DEFGHXYZ

Multiple

Decipherment

and

Encipherment

This

appendix

explains

multiple

encipherment

and

decipherment

and

their

equations.

The

Integrated

Cryptographic

Feature

uses

multiple

encipherment

whenever

it

enciphers

a

key

under

a

key-encrypting

key

like

the

master

key

or

the

transport

key

and

in

triple-DES

encipherment

for

data

privacy.

Multiple

encipherment

is

superior

to

single

encipherment

because

multiple

encipherment

increases

the

work

needed

to

“break”

a

key.

ICSF

provides

extra

protection

for

a

key

by

enciphering

it

under

an

enciphering

key

multiple

times

rather

than

once.

The

multiple

encipherment

method

for

keys

enciphered

under

a

key-encrypting

key

uses

a

double-length

(128

bit)

key

split

into

two

64-bit

halves.

Like

single

encipherment,

multiple

encipherment

uses

a

DES

based

on

the

electronic

code

book

(ECB)

mode

of

encipherment.

Keys

can

either

be

double-length

or

single-length

depending

on

the

installation

and

their

cryptographic

function.

When

a

single-length

key

is

encrypted

under

a

double-length

key,

multiple

encipherment

is

performed

on

the

key.

In

the

multiple

encipherment

method,

the

key

is

encrypted

under

the

left

half

of

the

enciphering

key.

The

result

is

then

decrypted

under

the

right

half

of

the

enciphering

key.

Finally,

this

result

is

encrypted

under

the

left

half

of

the

enciphering

key

again.

When

a

double-length

key

is

encrypted

with

multiple

encipherment,

the

method

is

similar,

except

ICSF

uses

two

enciphering

keys.

One

enciphering

key

encrypts

each

half

of

the

double-length

key.

Double-length

keys

active

on

the

system

have

two

master

key

variants

used

when

enciphering

them.

Multiple

encipherment

and

decipherment

is

not

only

used

to

protect

or

retrieve

a

cryptographic

key,

but

they

are

also

used

to

protect

or

retrieve

64-bit

data

in

the

area

of

PIN

applications.

For

example,

the

following

two

sections

use

a

double-length

*KEK

as

an

example

to

cipher

a

single-length

key

even

though

the

same

algorithms

apply

to

cipher

64-bit

data

by

a

double-length

PIN-related

cryptographic

key.

ICSF

also

supports

triple-DES

encipherment

for

data

privacy

using

double-length

and

triple-length

DATA

keys.

For

this

procedure

the

data

is

first

enciphered

using

Appendix

F.

Cryptographic

Algorithms

and

Processes

499

the

first

DATA

key.

The

result

is

then

deciphered

using

the

second

DATA

key.

This

second

result

is

then

enciphered

using

the

third

DATA

key

when

a

triple-length

key

is

provided,

or

reusing

the

first

DATA

key

when

a

double-length

key

is

provided.

Note

that

an

asterisk

(*)

preceding

the

key

means

that

the

key

is

double-length.

Notations

in

this

chapter

have

the

following

meaning:

v

eK(x),

where

x

is

enciphered

under

K

v

dK(y)

represents

plaintext,

where

K

is

the

key

and

y

is

the

ciphertext

Therefore,

dK(eK(x))

equals

x

for

any

64-bit

key

K

and

any

64-bit

plaintext

x.

When

a

key

(*K)

to

be

protected

is

double-length,

two

double-length

*KEKs

are

used.

One

*KEK

is

used

for

protecting

the

left

half

of

the

key

(*K);

another

is

for

the

right

half.

Multiple

encipherment

is

used

with

the

appropriate

*KEK

for

protecting

each

half

of

the

key.

Multiple

Encipherment

of

Single-length

Keys

The

multiple

encipherment

of

a

single-length

key

(K)

using

a

double-length

*KEK

is

defined

as

follows:

e*KEK(K)

=

eKEKL(dKEKR(eKEKL(K)))

where

KEKL

is

the

left

64

bits

of

*KEK

and

KEKR

is

the

right

64

bits

of

*KEK.

Figure

15

illustrates

the

definition.

Multiple

Decipherment

of

Single-length

Keys

The

multiple

encipherment

of

an

encrypted

single-length

key

(Y

=

e*KEK(K))

using

a

double-length

*KEK

is

defined

as

follows:

KEKL

KEKR

KEKL

K

e*KEK(K)

E

D

E

Figure

15.

Multiple

Encipherment

of

Single-length

Keys

500

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

d*KEK(Y)

=

dKEKL(eKEKR(dKEKL(Y)))

=

d*KEK(e*KEK(K))

=

K

where

KEKL

is

the

left

64

bits

of

*KEK

and

KEKR

is

the

right

64

bits

of

*KEK.

Figure

16

illustrates

the

definition.

Multiple

Encipherment

of

Double-length

Keys

The

multiple

encipherment

of

a

double-length

key

(*K)

using

two

double-length

*KEKs,

*KEKa

and

*KEKb

is

defined

as

follows:

e*KEKa(KL)

||

e*KEKb(KR)

=

eKEKaL(dKEKaR(eKEKaL(KL)))

||

eKEKbL(dKEKbR(eKEKbL(KR)))

where:

v

KL

is

the

left

64

bits

of

*K.

v

KR

is

the

right

64

bits

of

*K.

v

KEKaL

is

the

left

64

bits

of

*KEKa.

v

KEKaR

is

the

right

64

bits

of

*KEKa.

v

KEKbL

is

the

left

64

bits

of

*KEKb.

v

KEKbR

is

the

right

64

bits

of

*KEKb.

v

{

means

concatenation.

Figure

17

illustrates

the

definition.

KEKL

KEKR

KEKL

K

e*KEK(K)

D

E

D

Figure

16.

Multiple

Decipherment

of

Single-length

Keys

Appendix

F.

Cryptographic

Algorithms

and

Processes

501

Multiple

Decipherment

of

Double-length

Keys

The

multiple

decipherment

of

an

encrypted

double-length

key,

*Y

=

e*KEKa(KL)

||

e*KEKb(KR),

using

two

double-length

*KEKs,

*KEKa

and

*KEKb,

is

defined

as

follows:

D*KEKa(YL)

||

d*KEKb(YR)

=

dKEKaL(eKEKaR(dKEKaL(YL)))

||

dKEKbL(eKEKbR(dKEKbL(YR)))

=

d*KEKa(e*KEKa(KL))

||

d*KEKb(e*KEKb(KR))

=

*K

where

v

YL

is

the

left

64

bits

of

*Y.

v

YR

is

the

right

64

bits

of

*Y.

v

KEKaL

is

the

left

64

bits

of

*KEKa.

v

KEKaR

is

the

right

64

bits

of

*KEKa.

v

KEKbL

is

the

left

64

bits

of

*KEKb.

v

KEKbR

is

the

right

64

bits

of

*KEKb.

v

{

means

concatenation.

Figure

18

illustrates

the

definition.

KEKaL KEKbL

KEKaR KEKbR

KEKaL KEKbL

e*KEKa(KL) e*KEKb(KR)

KL KR

E E

D D

E E

Figure

17.

Multiple

Encipherment

of

Double-length

Keys

502

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Multiple

Encipherment

of

Triple-length

Keys

The

multiple

encipherment

of

a

triple-length

key

(**K)

using

two

double-length

*KEKs,

*KEKa

and

*KEKb

is

defined

as

follows:

e*KEKa(KL)

||

e*KEKb(KM)

||

e*KEKa(KR)

=

eKEKaL(dKEKaR(eKEKaL(KL)))

||

eKEKbL(dKEKbR(eKEKbL(KM)))

||

eKEKaL(dKEKaR(eKEKaL(KR)))

where:

v

KL

is

the

left

64

bits

of

**K

v

KM

is

the

next

64

bits

of

**K

v

KR

is

the

right

64

bits

of

**K

v

KEKaL

is

the

left

64

bits

of

*KEKa

v

KEKaR

is

the

right

64

bits

of

*KEKa

v

KEKbL

is

the

left

64

bits

of

*KEKb

v

KEKbR

is

the

right

64

bits

of

*KEKb

v

||

means

concatenation

Figure

19

on

page

504

illustrates

the

definition.

KEKaL KEKbL

KEKaR KEKbR

KEKaL KEKbL

YL = e*KEKa(KL) YR = e*KEKb(KR)

KL KR

D D

E E

D D

Figure

18.

Multiple

Decipherment

of

Double-length

Keys

Appendix

F.

Cryptographic

Algorithms

and

Processes

503

Multiple

Decipherment

of

Triple-length

Keys

The

multiple

decipherment

of

an

encrypted

triple-length

key

**Y

=

e*KEKa(KL)

||

e*KEKb(KM)

||

e*KEKa(KR),

using

two

double-length

*KEKs,

*KEKa

and

*KEKb,

is

defined

as

follows:

d*KEKa(YL)

||

d*KEKb(YM)

||

d*KEKa(YR)

=

dKEKaL(eKEKaR(dKEKaL(YL)))

||

dKEKbL(eKEKbR(dKEKbL(YM)))

||

dKEKaL(eKEKaR(dKEKaL(YR)))

=

d*KEKa(e*KEKa(KL))

||

d*KEKb(e*KEKb(KM))

||

d*KEKa(e*KEKa(KR))

=

**K

where:

v

YL

is

the

left

64

bits

of

**Y

v

YM

is

the

next

64

bits

of

**Y

v

YR

is

the

right

64

bits

of

**Y

v

KEKaL

is

the

left

64

bits

of

*KEKa

v

KEKaR

is

the

right

64

bits

of

*KEKa

v

KEKbL

is

the

left

64

bits

of

*KEKb

v

KEKbR

is

the

right

64

bits

of

*KEKb

v

||

means

concatenation

Figure

20

on

page

505

illustrates

the

definition.

KEKaL KEKbL KEKaL

KEKaR KEKbR KEKaR

KEKaL KEKbL KEKaL

YL = e*KEKa(KL) YM = e*KEKb(KM) YR = e*KEKa(KR)

KL KM KR

D D D

E E E

D D D

Figure

19.

Multiple

Encipherment

of

Triple-length

Keys

504

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

PKA92

Key

Format

and

Encryption

Process

The

PKA

Symmetric

Key

Generate

and

the

PKA

Symmetric

Key

Import

callable

services

optionally

support

a

PKA92

method

of

encrypting

a

DES

or

CDMF

key

with

an

RSA

public

key.

This

format

is

adapted

from

the

IBM

Transaction

Security

System

(TSS)

4753

and

4755

product’s

implementation

of

“PKA92”.

The

callable

services

do

not

create

or

accept

the

complete

PKA92

AS

key

token

as

defined

for

the

TSS

products.

Rather,

the

callable

services

only

support

the

actual

RSA-encrypted

portion

of

a

TSS

PKA92

key

token,

the

AS

External

Key

Block.

Forming

an

External

Key

Block

-

The

PKA96

implementation

forms

an

AS

External

Key

Block

by

RSA-encrypting

a

key

block

using

a

public

key.

The

key

block

is

formed

by

padding

the

key

record

detailed

in

Table

192

with

zero

bits

on

the

left,

high-order

end

of

the

key

record.

The

process

completes

the

key

block

with

three

sub-processes:

masking,

overwriting,

and

RSA

encrypting.

Table

192.

PKA96

Clear

DES

Key

Record

Offset

(Bytes)

Length

(Bytes)

Description

Zero-bit

padding

to

form

a

structure

as

long

as

the

length

of

the

public

key

modulus.

The

implementation

constrains

the

public

key

modulus

to

a

multiple

of

64

bits

in

the

range

of

512

to

1024

bits.

Note

that

government

export

or

import

regulations

can

impose

limits

on

the

modulus

length.

The

maximum

length

is

validated

by

a

check

against

a

value

in

the

Function

Control

Vector.

000

005

Header

and

flags:

X'01

0000

0000'

005

016

Environment

Identifier

(EID),

encoded

in

ASCII

021

008

Control

vector

base

for

the

DES

key

KEKaL KEKbL KEKaL

KEKaR KEKbR KEKaR

KEKaL KEKbL KEKaL

e*KEKa(KL) e*KEKb(KM) e*KEKa(KR)

KL KM KR

E E E

D D D

E E E

Figure

20.

Multiple

Decipherment

of

Triple-length

Keys

Appendix

F.

Cryptographic

Algorithms

and

Processes

505

Table

192.

PKA96

Clear

DES

Key

Record

(continued)

Offset

(Bytes)

Length

(Bytes)

Description

029

008

Repeat

of

the

CV

data

at

offset

021

037

008

The

single-length

DES

key

or

the

left

half

of

a

double-length

DES

key

045

008

The

right

half

of

a

double-length

DES

key

or

a

random

number.

This

value

is

locally

designated

″K.″

053

008

Random

number,

″IV″

061

001

Ending

byte,

X'00'

Masking

Sub-process

-

Create

a

mask

by

CBC

encrypting

a

multiple

of

8

bytes

of

binary

zeros

using

K

as

the

key

and

IV

as

the

initialization

vector

as

defined

in

the

key

record

at

offsets

45

and

53.

Exclusive-OR

the

mask

with

the

key

record

and

call

the

result

PKR.

Overwriting

Sub-process

-

Set

the

high-order

bits

of

PKR

to

B'01',

and

set

the

low-order

bits

to

B'0110'.

Exclusive-OR

K

and

IV

and

write

the

result

at

offset

45

in

PKR.

Write

IV

at

offset

53

in

PKR.

This

causes

the

masked

and

overwritten

PKR

to

have

IV

at

its

original

position.

Encrypting

Sub-process

-

RSA

encrypt

the

overwritten

PKR

masked

key

record

using

the

public

key

of

the

receiving

node.

Recovering

a

Key

from

an

External

Key

Block

-

Recover

the

encrypted

DES

key

from

an

AS

External

Key

Block

by

performing

decrypting,

validating,

unmasking,

and

extraction

sub-processes.

Decrypting

Sub-process

-

RSA

decrypt

the

AS

External

Key

Block

using

an

RSA

private

key

and

call

the

result

of

the

decryption

PKR.

The

private

key

must

be

usable

for

key

management

purposes.

Validating

Sub-process

-

Verify

that

the

high-order

two

bits

of

the

PKR

record

are

valued

to

B'01'

and

that

the

low-order

four

bits

of

the

PKR

record

are

valued

to

B'0110'.

Unmasking

Sub-process

-

Set

IV

to

the

value

of

the

8

bytes

at

offset

53

of

the

PKR

record.

Note

that

there

is

a

variable

quantity

of

padding

prior

to

offset

0.

See

Table

192

on

page

505.

Set

K

to

the

exclusive-OR

of

IV

and

the

value

of

the

8

bytes

at

offset

45

of

the

PKR

record.

Create

a

mask

that

is

equal

in

length

to

the

PKR

record

by

CBC

encrypting

a

multiple

of

8

bytes

of

binary

zeros

using

K

as

the

key

and

IV

as

the

initialization

vector.

Exclusive-OR

the

mask

with

PKR

and

call

the

result

the

key

record.

Copy

K

to

offset

45

in

the

PKR

record.

Extraction

Sub-process.

Confirm

that:

506

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

v

The

four

bytes

at

offset

1

in

the

key

record

are

valued

to

X'0000

0000'

v

The

two

control

vector

fields

at

offsets

21

and

29

are

identical

v

If

the

control

vector

is

an

IMPORTER

or

EXPORTER

key

class,

that

the

EID

in

the

key

record

is

not

the

same

as

the

EID

stored

in

the

cryptographic

engine.

The

control

vector

base

of

the

recovered

key

is

the

value

at

offset

21.

If

the

control

vector

base

bits

40

to

42

are

valued

to

B'010'

or

B'110',

the

key

is

double

length.

Set

the

right

half

of

the

received

key’s

control

vector

equal

to

the

left

half

and

reverse

bits

41

and

42

in

the

right

half.

The

recovered

key

is

at

offset

37

and

is

either

8

or

16

bytes

long

based

on

the

control

vector

base

bits

40

to

42.

If

these

bits

are

valued

to

B'000',

the

key

is

single

length.

If

these

bits

are

valued

to

B'010'

or

B'110',

the

key

is

double

length.

ANSI

X9.17

Partial

Notarization

Method

The

ANSI

X9.17

notarization

process

can

be

divided

into

two

procedures:

1.

Partial

notarization,

in

which

the

ANSI

key-encrypting

key

(AKEK)

is

cryptographically

combined

with

the

origin

and

destination

identifiers.

Note:

IBM

defines

this

step

as

partial

notarization.

The

ANSI

X9.17

standard

does

not

use

the

term

partial

notarization.

2.

Offsetting,

in

which

the

result

of

the

first

step

is

exclusive-ORed

with

a

counter

value.

ICSF

performs

the

offset

procedure

to

complete

the

notarization

process

when

you

use

a

partially

notarized

AKEK.

This

appendix

describes

partial

notarization

for

the

ANSI

X9.17

notarization

process.

Partial

Notarization

Partial

notarization

improves

performance

when

you

use

an

AKEK

for

many

cryptographic

service

messages,

each

with

a

different

counter

value.

This

section

describes

the

steps

in

partial

notarization.

For

more

information

about

partial

notarization,

see

“ANSI

X9.17

Key

Management

Services”

on

page

28.

For

a

description

of

the

steps

ICSF

uses

to

complete

the

notarization

of

an

AKEK

or

to

notarize

a

key

in

one

process,

see

ANSI

X9.17

-

1985,

Financial

Institution

Key

Management

(Wholesale).

Notations

Used

in

the

Calculations

*KK

The

16-byte

AKEK

to

be

partially

notarized

KKL

The

leftmost

8

bytes

of

*KK

KKR

The

rightmost

8

bytes

of

*KK

KK

The

8-byte

AKEK

to

be

partially

notarized

KK1

An

8-byte

intermediate

result

KK2

An

8-byte

intermediate

result

FMID

The

16-byte

origin

identifier

FMID1

The

leftmost

8

bytes

of

FMID

FMID2

The

rightmost

8

bytes

of

FMID

TOID

The

16-byte

destination

identifier

TOID1

The

leftmost

8

bytes

of

TOID

TOID2

The

rightmost

8

bytes

of

TOID

Appendix

F.

Cryptographic

Algorithms

and

Processes

507

NSL

An

8-byte

intermediate

result

NSL1

The

leftmost

4

bytes

of

NSL

NSR

An

8-byte

intermediate

result

NSR2

The

rightmost

4

bytes

of

NSR

*KKNI

The

16-byte

partially

notarized

AKEK

KKNIL

The

leftmost

8

bytes

of

*KKNI

KKNIR

The

rightmost

8

bytes

of

*KKNI

KKNI

The

8-byte

partially

notarized

AKEK

XOR

Denotes

the

exclusive-OR

operation

TOID1<<1

Denotes

the

ASCII

TOID1

left-shifted

one

bit

FMID1<<1

Denotes

the

ASCII

FMID1

left-shifted

one

bit

eK(X)

Denotes

DES

encryption

of

plaintext

X

using

key

K

{

Denotes

the

concatenation

operation

Partial

Notarization

Calculation

for

a

Double-Length

AKEK

For

a

double-length

AKEK,

the

partial

notarization

calculation

consists

of

the

following

steps:

1.

Set

KK1

=

KKL

XOR

TOID1<<1

2.

Set

KK2

=

KKR

XOR

FMID1<<1

3.

Set

NSL

=

eKK2(TOID2)

4.

Set

NSR

=

eKK1(FMID2)

5.

Set

KKNIL

=

KKL

XOR

NSL

6.

Set

KKNIR

=

KKR

XOR

NSR

7.

Set

*KKNI

=

KKNIL

{

KKNIR

Partial

Notarization

Calculation

for

a

Single-Length

AKEK

For

a

single-length

AKEK,

the

partial

notarization

calculation

consists

of

the

following

steps:

1.

Set

KK1

=

KK

XOR

TOID1<<1

2.

Set

KK2

=

KK

XOR

FMID1<<1

3.

Set

NSL

=

eKK2(TOID2)

4.

Set

NSR

=

eKK1(FMID2)

5.

Set

NSL

=

NSL1

{

NSR2

6.

Set

KKNI

=

KK

XOR

NSL

Transform

CDMF

Key

Algorithm

The

CDMF

key

transformation

algorithm

uses

a

64-bit

cryptographic

key.

1.

Set

parity

bits

of

the

key

to

zero

by

ANDing

the

key

with

X'FEFEFEFEFEFEFEFE'

to

produce

Kx.

2.

Using

DES,

encipher

Kx

under

the

constant

K1.

3.

XOR

this

value

with

Kx

to

produce

Ky.

4.

AND

Ky

with

X'0EFE0EFE0EFE0EFE'

to

produce

Kz.

5.

Using

DES,

encipher

Kz

under

K2

to

produce

eK2(Kz).

6.

Adjust

eK2(Kz)

to

odd

parity

in

each

byte.

The

result

is

the

transformed

key.

508

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

The

following

figure

illustrates

these

steps.

(e

indicates

DES

encryption.)

Formatting

Hashes

and

Keys

in

Public-Key

Cryptography

The

digital

signature

generate

and

digital

signature

verify

callable

services

support

several

methods

for

formatting

a

hash,

and

in

some

cases

a

descriptor

for

the

hashing

method,

into

a

bit-string

to

be

processed

by

the

cryptographic

algorithm.

This

section

discusses

the

ANSI

X9.31

and

PKCS

#1

methods.

The

ISO

9796-1

method

can

be

found

in

the

ISO

standard.

This

section

also

describes

the

PKCS

#1,

version

1,

1.5,

and

2.0,

methods

for

placing

a

key

in

a

bit

string

for

RSA

ciphering

as

part

of

a

key

exchange.

ANSI

X9.31

Hash

Format

With

ANSI

X9.31,

the

string

that

is

processed

by

the

RSA

algorithm

is

formatted

by

the

concatenation

of

a

header,

padding,

the

hash

and

a

trailer,

from

the

most

Kx

eK1(Kx)

Ky

Kz

eK2(Kz)

TCDM Key

X 'FEFEFEFEFEFEFEFE'

X'0EFE0EFE0EFE0EFE'

K1 = X'C408B0540BA1E0AE'

K2 = X'EF2C041CE6382FE6'

CDMF Key

AND

e

e

Adjust
to odd
parity

XOR

AND

Figure

21.

The

CDMF

Key

Transformation

Algorithm

Appendix

F.

Cryptographic

Algorithms

and

Processes

509

|

|
|
|
|
|

|
|

|

|
|

significant

bit

to

the

least

significant

bit,

such

that

the

resulting

string

is

the

same

length

as

the

modulus

of

the

key.

For

the

ICSF

implementation,

the

modulus

length

must

be

a

multiple

of

8

bits.

v

The

header

consists

of

X'6B'

v

The

padding

consists

of

X'BB',

repeated

as

many

times

as

required,

and

terminated

by

X'BA'

v

The

hash

value

follows

the

padding

v

The

trailer

consists

of

a

hashing

mechanism

specifier

and

final

byte.

These

specifiers

are

defined:

–

X'31':

RIPEMD-160

–

X'33':

SHA-1

v

A

final

byte

of

X'CC'.

PKCS

#1

Formats

Version

2.0

of

the

PKCS

#1

standard

6

defines

methods

for

formatting

keys

and

hashes

prior

to

RSA

encryption

of

the

resulting

data

structures.

The

earlier

versions

of

the

PKCS

#1

standard

defined

block

types

0,

1,

and

2,

but

in

the

current

standard

that

terminology

is

dropped.

ICSF

implemented

these

processes

using

the

terminology

of

the

Version

2.0

standard:

v

For

formatting

keys

for

secured

transport

(CSNDSYX,

CSNDSYG,

CSNDSYI):

–

RSAES-OAEP,

the

preferred

method

for

key-encipherment

7

when

exchanging

DATA

keys

between

systems.

Keyword

PKCSOAEP

is

used

to

invoke

this

formatting

technique.

The

P

parameter

described

in

the

standard

is

not

used

and

its

length

is

set

to

zero.

–

RSAES-PKCS1-v1_5,

is

an

older

method

for

formatting

keys.

Keyword

PKCS-1.2

is

used

to

invoke

this

formatting

technique.

v

For

formatting

hashes

for

digital

signatures

(CSNDDSG

and

CSNDDSV):

–

RSASSA-PKCS1-v1_5,

the

newer

name

for

the

block-type

1

format.

Keyword

PKCS-1.1

is

used

to

invoke

this

formatting

technique.

–

The

PKCS

#1

specification

no

longer

discusses

use

of

block-type

0.

Keyword

PKCS-1.0

is

used

to

invoke

this

formatting

technique.

Use

of

block-type

0

is

discouraged.

Using

the

terminology

from

older

versions

of

the

PKCS

#1

standard,

block

types

0

and

1

are

used

to

format

a

hash

and

block

type

2

is

used

to

format

a

DES

key.

The

blocks

consist

of

the

following

(||

means

concatenation):

X'00'

||

BT

||

PS

||

X'00'

D

where:

v

BT

is

the

block

type,

X'00',

X'01',

X'02'.

v

PS

is

the

padding

of

as

many

bytes

as

required

to

make

the

block

the

same

length

as

the

modulus

of

the

RSA

key,

and

is

bytes

of

X'00'

for

block

type

0,

X'01'

for

block

type

1,

and

random

and

non-X'00'

for

block

type

2.

The

length

of

PS

must

be

at

least

8

bytes.

v

D

is

the

key,

or

the

concatenation

of

the

BER-encoded

hash

identifier

and

the

hash.

6. PKCS

standards

can

be

retrieved

from

http://www.rsasecurity.com/rsalabs/pkcs.

7. The

PKA

92

method

and

the

method

incorporated

into

the

SET

standard

are

other

examples

of

the

Optimal

Asymmetric

Encryption

Padding

(OAEP)

technique.

The

OAEP

technique

is

attributed

to

Bellare

and

Rogaway.

510

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|

|

|
|

|

|
|

|

|

|

|

|
|
|
|

|
|

|

|
|
|
|

|
|

|

|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|

You

can

create

the

BER

encoding

of

an

MD5

or

SHA-1

value

by

prepending

these

strings

to

the

16

or

20-byte

hash

values,

respectively:

MD5

X'3020300C

06082A86

4886F70D

02050500

0410'

SHA-1

X'30213009

06052B0E

03021A05

000414'

Appendix

F.

Cryptographic

Algorithms

and

Processes

511

|
|

|
|

|

512

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

G.

EBCDIC

and

ASCII

Default

Conversion

Tables

This

section

presents

tables

showing

EBCDIC

to

ASCII

and

ASCII

to

EBCDIC

conversion

tables.

In

the

table

headers,

EBC

refers

to

EBCDIC

and

ASC

refers

to

ASCII.

Table

193

shows

the

EBCDIC

to

ASCII

default

conversion

table.

Table

193.

EBCDIC

to

ASCII

Default

Conversion

Table

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

00

00

20

81

40

20

60

2D

80

F8

A0

C8

C0

7B

E0

5C

01

01

21

82

41

A6

61

2F

81

61

A1

7E

C1

41

E1

E7

02

02

22

1C

42

E1

62

DF

82

62

A2

73

C2

42

E2

53

03

03

23

84

43

80

63

DC

83

63

A3

74

C3

43

E3

54

04

CF

24

86

44

EB

64

9A

84

64

A4

75

C4

44

E4

55

05

09

25

0A

45

90

65

DD

85

65

A5

76

C5

45

E5

56

06

D3

26

17

46

9F

66

DE

86

66

A6

77

C6

46

E6

57

07

7F

27

1B

47

E2

67

98

87

67

A7

78

C7

47

E7

58

08

D4

28

89

48

AB

68

9D

88

68

A8

79

C8

48

E8

59

09

D5

29

91

49

8B

69

AC

89

69

A9

7A

C9

49

E9

5A

0A

C3

2A

92

4A

9B

6A

BA

8A

96

AA

EF

CA

CB

EA

A0

0B

0B

2B

95

4B

2E

6B

2C

8B

A4

AB

C0

CB

CA

EB

85

0C

0C

2C

A2

4C

3C

6C

25

8C

F3

AC

DA

CC

BE

EC

8E

0D

0D

2D

05

4D

28

6D

5F

8D

AF

AD

5B

CD

E8

ED

E9

0E

0E

2E

06

4E

2B

6E

3E

8E

AE

AE

F2

CE

EC

EE

E4

0F

0F

2F

07

4F

7C

6F

3F

8F

C5

AF

F9

CF

ED

EF

D1

10

10

30

E0

50

26

70

D7

90

8C

B0

B5

D0

7D

F0

30

11

11

31

EE

51

A9

71

88

91

6A

B1

B6

D1

4A

F1

31

12

12

32

16

52

AA

72

94

92

6B

B2

FD

D2

4B

F2

32

13

13

33

E5

53

9C

73

B0

93

6C

B3

B7

D3

4C

F3

33

14

C7

34

D0

54

DB

74

B1

94

6D

B4

B8

D4

4D

F4

34

15

B4

35

1E

55

A5

75

B2

95

6E

B5

B9

D5

4E

F5

35

16

08

36

EA

56

99

76

FC

96

6F

B6

E6

D6

4F

F6

36

17

C9

37

04

57

E3

77

D6

97

70

B7

BB

D7

50

F7

37

18

18

38

8A

58

A8

78

FB

98

71

B8

BC

D8

51

F8

38

19

19

39

F6

59

9E

79

60

99

72

B9

BD

D9

52

F9

39

1A

CC

3A

C6

5A

21

7A

3A

9A

97

BA

8D

DA

A1

FA

B3

1B

CD

3B

C2

5B

24

7B

23

9B

87

BB

D9

DB

AD

FB

F7

1C

83

3C

14

5C

2A

7C

40

9C

CE

BC

BF

DC

F5

FC

F0

1D

1D

3D

15

5D

29

7D

27

9D

93

BD

5D

DD

F4

FD

FA

1E

D2

3E

C1

5E

3B

7E

3D

9E

F1

BE

D8

DE

A3

FE

A7

1F

1F

3F

1A

5F

5E

7F

22

9F

FE

BF

C4

DF

8F

FF

FF

©

Copyright

IBM

Corp.

1997,

2004

513

Table

194

shows

the

ASCII

to

EBCDIC

default

conversion

table.

Table

194.

ASCII

to

EBCDIC

Default

Conversion

Table

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

ASC

EBC

00

00

20

40

40

7C

60

79

80

43

A0

EA

C0

AB

E0

30

01

01

21

5A

41

C1

61

81

81

20

A1

DA

C1

3E

E1

42

02

02

22

7F

42

C2

62

82

82

21

A2

2C

C2

3B

E2

47

03

03

23

7B

43

C3

63

83

83

1C

A3

DE

C3

0A

E3

57

04

37

24

5B

44

C4

64

84

84

23

A4

8B

C4

BF

E4

EE

05

2D

25

6C

45

C5

65

85

85

EB

A5

55

C5

8F

E5

33

06

2E

26

50

46

C6

66

86

86

24

A6

41

C6

3A

E6

B6

07

2F

27

7D

47

C7

67

87

87

9B

A7

FE

C7

14

E7

E1

08

16

28

4D

48

C8

68

88

88

71

A8

58

C8

A0

E8

CD

09

05

29

5D

49

C9

69

89

89

28

A9

51

C9

17

E9

ED

0A

25

2A

5C

4A

D1

6A

91

8A

38

AA

52

CA

CB

EA

36

0B

0B

2B

4E

4B

D2

6B

92

8B

49

AB

48

CB

CA

EB

44

0C

0C

2C

6B

4C

D3

6C

93

8C

90

AC

69

CC

1A

EC

CE

0D

0D

2D

60

4D

D4

6D

94

8D

BA

AD

DB

CD

1B

ED

CF

0E

0E

2E

4B

4E

D5

6E

95

8E

EC

AE

8E

CE

9C

EE

31

0F

0F

2F

61

4F

D6

6F

96

8F

DF

AF

8D

CF

04

EF

AA

10

10

30

F0

50

D7

70

97

90

45

B0

73

D0

34

F0

FC

11

11

31

F1

51

D8

71

98

91

29

B1

74

D1

EF

F1

9E

12

12

32

F2

52

D9

72

99

92

2A

B2

75

D2

1E

F2

AE

13

13

33

F3

53

E2

73

A2

93

9D

B3

FA

D3

06

F3

8C

14

3C

34

F4

54

E3

74

A3

94

72

B4

15

D4

08

F4

DD

15

3D

35

F5

55

E4

75

A4

95

2B

B5

B0

D5

09

F5

DC

16

32

36

F6

56

E5

76

A5

96

8A

B6

B1

D6

77

F6

39

17

26

37

F7

57

E6

77

A6

97

9A

B7

B3

D7

70

F7

FB

18

18

38

F8

58

E7

78

A7

98

67

B8

B4

D8

BE

F8

80

19

19

39

F9

59

E8

79

A8

99

56

B9

B5

D9

BB

F9

AF

1A

3F

3A

7A

5A

E9

7A

A9

9A

64

BA

6A

DA

AC

FA

FD

1B

27

3B

5E

5B

AD

7B

C0

9B

4A

BB

B7

DB

54

FB

78

1C

22

3C

4C

5C

E0

7C

4F

9C

53

BC

B8

DC

63

FC

76

1D

1D

3D

7E

5D

BD

7D

D0

9D

68

BD

B9

DD

65

FD

B2

1E

35

3E

6E

5E

5F

7E

A1

9E

59

BE

CC

DE

66

FE

9F

1F

1F

3F

6F

5F

6D

7F

07

9F

46

BF

BC

DF

62

FF

FF

514

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

H.

Access

Control

Points

and

Callable

Services

The

TKE

workstation

allows

you

to

enable

or

disable

callable

service

access

control

points.

For

systems

that

do

not

use

the

optional

TKE

Workstation,

all

access

control

points

(current

and

new)

are

enabled

in

the

DEFAULT

Role

with

the

appropriate

licensed

internal

code

on

the

PCI

Cryptographic

Coprocessor

or

PCI

X

Cryptographic

Coprocessor.

TKE

Version

4.0

and

higher

Access

to

services

that

are

executed

on

the

PCI

X

Cryptographic

Coprocessor

is

through

Access

Control

Points

in

the

DEFAULT

Role.

To

execute

callable

services

on

the

PCI

X

Cryptographic

Coprocessor,

access

control

points

must

be

enabled

for

each

service

in

the

DEFAULT

Role.

New

TKE

users

and

non-TKE

users

have

all

access

control

points

enabled.

This

is

also

true

for

brand

new

TKE

V4.1

users.

If

you

are

migrating

from

TKE

V4.0

to

TKE

V4.1

and

have

a

PCIXCC,

all

your

current

access

control

points

will

remain

the

same

and

the

new

access

control

points

for

HCR770B

will

not

be

enabled.

Note:

Access

control

points

DKYGENKY-DALL

and

DSG

ZERO-PAD

unrestricted

hash

length

are

always

disabled

in

the

DEFAULT

role

for

all

customers

(TKE

and

Non-TKE).

A

TKE

Workstation

is

required

to

enable

these

access

control

points.

Access

Control

Points

for

HCR770B

are:

v

Diversified

Key

Generate

-

TDES-XOR

v

Diversified

Key

Generate

-

TDESEMV2/TDESEMV4

v

PIN

Change/Unblock

-

change

EMV

PIN

with

OPINENC

v

PIN

Change/Unblock

-

change

EMV

PIN

with

IPINENC

v

Transaction

Validation

-

Generate

v

Transaction

Validation

-

Verify

CSC-3

v

Transaction

Validation

-

Verify

CSC-4

v

Transaction

Validation

-

Verify

CSC-5

v

Key

Part

Import

-

RETRKPR

Access

Control

Points

for

HCR770A

are:

v

CKDS

Conversion

Program

v

Clear

Key

Import

v

Decipher

v

Digital

Signature

Verify

v

DSG

ZERO-PAD

Unrestricted

Hash

Length

v

Encipher

v

Key

Part

Import

-

ADD-PART

keyword

v

Key

Part

Import

-

COMPLETE

keyword

v

NOCV

Exporter

v

NOCV

Importer

v

Prohibit

Export

Extended

v

Public

Key

Encrypt

©

Copyright

IBM

Corp.

1997,

2004

515

|

|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

These

access

control

points

are

only

supported

on

the

PCIXCC.

For

the

relationship

between

access

control

points

and

callable

services,

see

Table

195

on

page

517.

TKE

Version

3.1

Access

to

services

that

are

executed

on

the

PCI

Cryptographic

Coprocessor

is

through

Access

Control

Points

in

the

DEFAULT

Role.

To

execute

callable

services

on

the

PCI

Cryptographic

Coprocessor,

access

control

points

must

be

enabled

for

each

service

in

the

DEFAULT

Role.

The

ability

to

enable/disable

access

control

points

in

the

DEFAULT

Role

was

introduced

on

OS/390

V2R10

through

APAR

OW46381

for

the

Trusted

Key

Entry

Workstation.

New

TKE

customers

and

Non-TKE

customers

have

all

access

control

points

enabled.

This

is

also

true

for

brand

new

TKE

V3.1

users

(not

converting

from

TKE

V3.0).

Note:

Access

control

point

DKYGENKY-DALL

is

always

disabled

in

the

DEFAULT

Role

for

all

customers

(TKE

and

Non-TKE).

A

TKE

Workstation

is

required

to

enable

this

access

control

point

for

the

Diversified

Key

Generate

service.

For

existing

TKE

V3.0

users,

upgrading

to

TKE

V3.1

(APAR

OW46381

and

its

corresponding

ECA),

current

(for

the

level

of

ICSF

you

are

running)

access

control

points

in

the

DEFAULT

Role

are

enabled.

Any

new

access

control

points

are

disabled

in

the

DEFAULT

Role

and

must

be

enabled

through

TKE

if

the

service

is

required.

Notes:

1.

APAR

OW46381

will

update

the

TKE

Host

Code

2.

ECA

186

will

update

the

TKE

Workstation

Code

3.

The

latest

or

most

current

driver

is

required

for

the

PCI

Cryptographic

Coprocessor

licensed

internal

code

for

the

S/390

G5

Enterprise

Server

or

the

S/390

G6

Enterprise

Server

4.

The

latest

or

most

current

driver

is

required

for

the

PCI

Cryptographic

Coprocessor

licensed

internal

code

for

the

IBM

Eserver

zSeries

900

All

of

the

above

components

are

required

for

complete

access

control

point

support.

Access

to

services

which

execute

on

the

Cryptographic

Coprocessor

Feature

is

through

SAF.

Disablement

through

SAF

is

sufficient

to

prevent

execution

of

a

service

by

either

the

Cryptographic

Coprocessor

Feature

or

the

PCI

Cryptographic

Coprocessor.

For

functions

which

can

be

executed

on

the

PCI

Cryptographic

Coprocessor,

enablement

of

the

function

requires

that

the

function

be

enabled

through

SAF

and

through

the

access

control

point

in

the

DEFAULT

Role.

If

you

are

on

OS/390

V2

R10,

using

a

TKE

V3.0

workstation,

access

control

points

for

new

services

(requiring

APARs

OW46380

and

OW46382)

will

be

disabled.

Existing

access

control

points

will

be

enabled

in

the

DEFAULT

Role.

APAR

OW46381

must

be

installed

to

enable

the

OS/390

V2

R10

interface.

This

will

allow

the

TKE

Administrator

to

enable

any

new

access

control

points

for

ICSF

services

that

execute

in

the

PCI

Cryptographic

Coprocessor

under

the

DEFAULT

Role.

Access

Control

Points

(requiring

APARs

OW46380

and

OW46382)

for

OS/390

V2R10

are:

v

DATAM

Key

Management

Control

516

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

Note:

For

existing

TKE

installations

(upgrading

to

TKE

V3.1),

it

is

required

that

this

access

control

point

be

enabled.

Failure

to

do

so

will

result

in

processing

errors

for

Double

MAC

keys

in

Key

Import,

Key

Export,

and

Key

Generate.

v

Diversified

Key

Generate

-

Single

length

or

same

halves

v

Diversified

Key

Generate

-

CLR8-ENC

v

Diversified

Key

Generate

-

TDES-ENC

v

Diversified

Key

Generate

-

TDES-DEC

v

Diversified

Key

Generate

-

SESS-XOR

v

Diversified

Key

Generate

-

DKYGENKY-DALL

Note:

This

access

control

point

is

always

disabled

in

the

DEFAULT

Role

for

all

customers

(TKE

and

Non-TKE).

A

TKE

Workstation

is

required

to

enable

the

function.

v

MAC

Generate

-

For

existing

TKE

installations,

it

is

recommended

that

this

access

control

point

be

enabled.

v

MAC

Verify

-

For

existing

TKE

installations,

it

is

recommended

that

this

access

control

point

be

enabled.

Access

Control

Points

for

z/OS

V1

R2

are:

v

PKA

Key

Token

Change

v

Secure

Messaging

for

Keys

v

Secure

Messaging

for

PINs

Access

Control

Points

for

z/OS

V1

R3

are:

v

UKPT

-

PIN

Verify,

PIN

Translate

Access

Control

Points

for

APAR

OW53666

are:

v

Data

Key

Export

-

Unrestricted

v

Data

Key

Import

-

Unrestricted

v

Key

Export

-

Unrestricted

v

Key

Import

-

Unrestricted

v

Key

Part

Import

-

Unrestricted

If

an

access

control

point

is

disabled,

the

corresponding

ICSF

callable

service

will

fail

during

execution

with

an

access

denied

error.

Table

195.

Callable

service

access

control

points

Access

Control

Point

Callable

Service

*Clear

Key

Import

/

Multiple

Clear

Key

Import

CSNBCKI

or

CSNBCKM

Clear

PIN

Encrypt

CSNBCPE

Clear

PIN

Generate

-

3624

CSNBPGN

Clear

PIN

Generate

-

GPB

CSNBPGN

Clear

PIN

Generate

-

VISA

PVV

CSNBPGN

Clear

PIN

Generate

-

Interbank

CSNBPGN

Clear

Pin

Generate

Alternate

-

3624

Offset

CSNBCPA

Clear

PIN

Generate

Alternate

-

VISA

PVV

CSNBCPA

Control

Vector

Translate

CSNBCVT

Appendix

H.

Access

Control

Points

and

Callable

Services

517

Table

195.

Callable

service

access

control

points

(continued)

Cryptographic

Variable

Encipher

CSNBCVE

CVV

Generate

CSNBCSG

CVV

Verify

CSNBCSV

DATAM

Key

Management

Control

CSNBKGN,

CSNBKIM,

CSNBKEX

and

CSNBDKG

Data

Key

Export

CSNBDKX

Data

Key

Export

-

Unrestricted

CSNBDKX

Data

Key

Import

CSNBDKM

Data

Key

Import

-

Unrestricted

CSNBDKM

*Decipher

CSNBDEC

Digital

Signature

Generate

CSNDDSG

*DSG

ZERO-PAD

restriction

lifted

CSNDDSG

*Digital

Signature

Verify

CSNDDSV

Diversified

Key

Generate

-

CLR8–ENC

CSNBDKG

Diversified

Key

Generate

-

SESS-XOR

CSNBDKG

Diversified

Key

Generate

-

TDES-ENC

CSNBDKG

Diversified

Key

Generate

-

TDES-DEC

CSNBDKG

**Diversified

Key

Generate

-

TDES-XOR

CSNBDKG

**Diversified

Key

Generate

-

TDESEMV2/TDESEMV4

CSNBDKG

Diversified

Key

Generate

-

single

length

or

same

halves

CSNBDKG

DKYGENKY

-

DALL

CSNBDKG

*Encipher

CSNBENC

Encrypted

PIN

Generate

-

3624

CSNBEPG

Encrypted

PIN

Generate

-

GPB

CSNBEPG

Encrypted

PIN

Generate

-

Interbank

CSNBEPG

Encrypted

PIN

Translate

-

Translate

CSNBPTR

Encrypted

PIN

Translate

-

Reformat

CSNBPTR

Encrypted

PIN

Verify

-

3624

CSNBPVR

Encrypted

PIN

Verify

-

GPB

CSNBPVR

Encrypted

PIN

Verify

-

VISA

PVV

CSNBPVR

Encrypted

PIN

Verify

-

Interbank

CSNBPVR

Key

Export

CSNBKEX

Key

Export

-

Unrestricted

CSNBKEX

Key

Generate

-

OPIM,

OPEX,

IMEX,

etc.

CSNBKGN

Key

Generate

-

EX,

IM,

OP

CSNBKGN

Key

Generate

-

CVARs

CSNBKGN

Key

Generate

-

SINGLE-R

CSNBKGN

Key

Import

CSNBKIM

Key

Import

-

Unrestricted

CSNBKIM

*Key

Part

Import

-

ADD-PART

CSNBKPI

518

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||

|
|
|

Table

195.

Callable

service

access

control

points

(continued)

*Key

Part

Import

-

COMPLETE

CSNBKPI

Key

Part

Import

-

first

key

part

CSNBKPI

Key

Part

Import

-

middle

and

final

CSNBKPI

Key

Part

Import

-

unrestricted

CSNBKPI

Key

Part

Import

-

RETRKPR

CSNBKPI

Key

Translate

CSNBKTR

MAC

Generate

CSNBMGN

MAC

Verify

CSNBMVR

*NOCV

KEK

usage

for

export-related

functions

CSNBKEX,

CSNBSKM,

and

CSNBKGN

*NOCV

KEK

usage

for

import-related

functions

CSNBKIM,

CSNBSKI,

CSNBSKM,

and

CSNBKGN

*PCF

CKDS

Conversion

Program

CSFCONV

**PIN

Change/Unblock

-

change

EMV

PIN

with

OPINENC

CSNBPCU

**PIN

Change/Unblock

-

change

EMV

PIN

with

IPINENC

CSNBPCU

PKA

Decrypt

CSNDPKD

PKA

Encrypt

CSNDPKE

PKA

Key

Generate

CSNDPKG

PKA

Key

Generate

-

Clear

CSNDPKG

PKA

Key

Generate

-

Clone

CSNDKPG

PKA

Key

Import

CSNDPKI

PKA

Key

Token

Change

CSNDKTC

Prohibit

Export

CSNBPEX

*Prohibit

Export

Extended

CSNBPEXX

*Public

Key

Encrypt

CSNDPKE

Retained

Key

Delete

CSNDRKD

Retained

Key

List

CSNDRKL

Secure

Key

Import

-

IM

CSNBSKI

or

CSNBSKM

Secure

Key

Import

-

OP

CSNBSKI

or

CSNBSKM

Secure

Messaging

for

Keys

CSNBSKY

Secure

Messaging

for

PINs

CSNBSPN

SET

Block

Compose

CSNDSBC

SET

Block

Decompose

CSNDSBD

SET

Block

Decompose

-

PIN

ext

IPINENC

CSNDSBD

SET

Block

Decompose

-

PIN

ext

OPINENC

CSNDSBD

Symmetric

Key

Export

-

PKCS-1.2

CSNDSYX

Symmetric

Key

Export

-

ZERO-PAD

CSNDSYX

Symmetric

Key

Generate

-

PKA92

CSNDSYG

Symmetric

Key

Generate

-

PKCS-1.2

CSNDSYG

Symmetric

Key

Generate

-

ZERO-PAD

CSNDSYG

Appendix

H.

Access

Control

Points

and

Callable

Services

519

||

|
|
|

|
|
|

Table

195.

Callable

service

access

control

points

(continued)

Symmetric

Key

Import

-

PKA92

KEK

CSNDSYI

Symmetric

Key

Import

-

PKA92

PIN

Key

CSNDSYI

Symmetric

Key

Import

-

PKCS-1.2

CSNDSYI

Symmetric

Key

Import

-

ZERO-PAD

CSNDSYI

**Transaction

Validation

-

Generate

CSNBTRV

**Transaction

Validation

-

Verify

CSC-3

CSNBTRV

**Transaction

Validation

-

Verify

CSC-4

CSNBTRV

**Transaction

Validation

-

Verify

CSC-5

CSNBTRV

UKPT

-

PIN

Verify,

PIN

Translate

CSNBPVR

and

CSNBPTR

Notes:

1.

*

indicates

that

the

access

control

point

is

only

available

with

a

PCI

X

Cryptographic

Coprocessor.

2.

**

indicates

that

the

access

control

point

is

only

available

with

a

PCI

X

Cryptographic

Coprocessor

and

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC).

3.

To

use

PKA

Key

Generate

-

Clear

or

PKA

Key

Generate

-

Clone,

the

PKA

Key

Generate

access

control

point

must

be

enabled

or

the

callable

service

will

fail.

4.

To

use

SET

Block

Decompose

-

PIN

ext

IPINENC

or

PIN

ext

OPINENC,

the

SET

Block

Decompose

access

control

point

must

be

enabled

or

the

callable

service

will

fail.

5.

Diversified

Key

Generate

-

single

length

or

same

halves

requires

either

Diversified

Key

Generate

-

TDES-ENC

or

Diversified

Key

Generate

-

TDES-DEC

be

enabled.

520

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

||

||

||

||

Appendix

I.

z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor

For

secure

key

cryptography,

the

IBM

Eserver

zSeries

990

or

IBM

Eserver

zSeries

890

server

require

the

optional

feature

0868,

PCI

X

Cryptographic

Coprocessor

(PCIXCC).

Feature

code

3863,

CP

Assist

for

Cryptographic

Functions

(CPACF)

DES/TDES

Enablement,

must

also

be

installed.

The

PCIXCC

replaces

the

Cryptographic

Coprocessor

Feature

(CCF)

and

the

PCI

Cryptographic

Coprocessor

(PCICC).

CP

Assist

for

Cryptographic

Functions

and

the

optional

PCI

Cryptographic

Accelerator

(feature

code

0862)

are

also

available

on

the

z990

or

z890

server.

The

PCIXCC

symmetric-keys

master

key

is

used

in

place

of

the

CCF

DES

master

key.

The

asymmetric-keys

master

key

is

used

in

place

of

the

CCF

signature

and

key

management

master

keys.

Restriction:

The

PCI

X

Cryptographic

Coprocessor

is

not

available

on

the

S/390

G6

Enterprise

Server,

IBM

Eserver

zSeries

800,

or

IBM

Eserver

zSeries

900.

Operating

System

Requirements

ICSF

support

for

the

PCI

X

Cryptographic

Coprocessor

is

available

for

the

z990

or

z890

with

FMID

HCR770A

or

later.

HCR770B

requires

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

or

IBM

Eserver

zSeries

890

to

exploit

new

functions.

Applications

and

programs

Applications

requiring

secure

cryptography

using

encrypted

keys

will

be

able

to

execute

on

the

z990

or

z890

as

long

as

the

optional

PCI

X

Cryptographic

Coprocessor

is

also

installed.

Callable

services

The

following

services

are

not

available

with

a

PCI

X

Cryptographic

Coprocessor:

v

ANSI

X9.17

EDC

Generate

(CSNAEGN)

v

ANSI

X9.17

Key

Export

(CSNAKEX)

v

ANSI

X9.17

Key

Import

(CSNAKIM)

v

ANSI

X9.17

Key

Translate

(CSNAKTR)

v

ANSI

X9.17

Transport

Key

Partial

Notarize

(CSNAKTR)

v

Ciphertext

Translate

(CSNBCTT)

v

PKSC

Interface

Service

(CSFPKSC)

v

Transform

CDMF

Key

(CSNBTCK)

v

User

Derived

Key

(CSFUDK)

The

following

services

have

changed

and

are

available

with

a

PCI

X

Cryptographic

Coprocessor:

©

Copyright

IBM

Corp.

1997,

2004

521

|
|

|

|
|

|

Table

196.

Summary

of

new

and

changed

ICSF

callable

services

Callable

service

Release

Description

ICSF

Query

Facility

(CSFIQF)

HCR770B

New:

Determines

cryptographic

algorithms

available

through

ICSF

services;

retrieves

hardware

and

software

cryptographic

information.

PIN

Change/Unblock

(CSNBPCU)

HCR770B

New:

Supports

the

PIN

change

algorithms

specified

in

the

VISA

Integrated

Circuit

Card

Specification;

Only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

Transaction

Validation

(CSNBTRV)

HCR770B

New:

Supports

generation

and

validation

of

American

Express

card

security

codes.

Only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

Diversified

Key

Generate

(CSNBDKG)

HCR770B

Changed:

Supports

the

EMV2000

key

generation

algorithm.

Only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

PIN

Translate

(CSNBPTR)

HCR770B

Changed:

Supports

the

Derived

Unique

Key

Per

Transaction

(DUKPT)

standard

from

ANSI

9.24

for

double-length

PIN

keys.

Only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

PIN

Verify

(CSNBPVR)

HCR770B

Changed:

Supports

the

Derived

Unique

Key

Per

Transaction

(DUKPT)

standard

from

ANSI

9.24

for

double-length

PIN

keys.

Only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

PKA

Decrypt

(CSNDPKD)

HCR770B

Changed:

Supports

the

ZERO-PAD

keyword

for

clear

RSA

private

keys.

When

present,

service

will

be

routed

to

a

PCICA.

This

support

is

only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

PKA

Encrypt

(CSNDPKE)

HCR770B

Changed:

Supports

the

MRP

keyword

for

clear

RSA

private

keys

to

enable

the

mod

raised

to

power

function

for

even

and

odd

exponents,

enabling

customers

to

write

applications

implementing

the

Diffie-Hellman

key

agreement

protocol.

When

present,

service

will

be

routed

to

a

PCICA.

This

support

is

only

available

with

z990

with

May

2004

version

of

Licensed

Internal

Code

(LIC)

and

IBM

Eserver

zSeries

890.

Clear

Key

Import

(CSNBCKI)

HCR770A

Changed:

No

internal

token

markings

for

CDMF

or

DES;

no

token

copying.

Clear

PIN

Generate

(CSNBPGN)

HCR770A

Changed:

rule_array

keyword

GBP-PINO

is

no

longer

supported.

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

Clear

PIN

Generate

Alternate

(CSNBCPA)

HCR770A

Changed:

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

Control

Vector

Generate

(CSNBCVG)

HCR770A

Changed:

Single-

and

double-length

control

vectors

can

be

generated

for

MAC,

MACVER,

CIPHER,

ENCIPHER

and

DECIPHER

class

keys.

Data

Key

Export

(CSNBDKX)

HCR770A

Changed:

Token

marking

for

DES/CDMF

and

key-encrypting

keys

are

ignored.

Data

Key

Import

(CSNBDKM)

HCR770A

Changed:

Supports

triple-length

DATA

keys.

Token

marking

for

DES/CDMF

and

key-encrypting

keys

are

ignored.

Decipher

(CSNBDEC

and

CSNBDEC1)

HCR770A

Changed:

If

keyword

CDMF

is

specified

or

if

the

token

is

marked

as

CDMF,

the

service

fails.

Single-

and

double-length

CIPHER

and

DECIPHER

class

keys

are

supported.

Digital

Signature

Generate

(CSNDDSG)

HCR770A

Changed:

Retained

keys

are

supported.

DSS

tokens

are

not

supported.

The

hash

length

limit

for

ZERO-PAD

formatting

is

controlled

by

an

access

control

point

in

the

PCIXCC.

522

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
||
|
|

|
|
||
|
|
|

|
|
||
|
|

|
|
||
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

Table

196.

Summary

of

new

and

changed

ICSF

callable

services

(continued)

Callable

service

Release

Description

Digital

Signature

Verify

(CSNDSV)

HCR770A

Changed:

DSS

tokens

are

not

supported.

It

may

execute

on

a

PCICA,

if

available.

Encipher

(CSNBENC

and

CSNBENC1)

HCR770A

Changed:

If

keyword

CDMF

is

specified

or

if

the

token

is

marked

as

CDMF,

the

service

fails.

Single-

and

double-length

CIPHER

and

ENCIPHER

class

keys

are

supported.

Encrypted

PIN

Translate

(CSNBPTR)

HCR770A

Changed:

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

Encrypted

PIN

Verify

(CSNBPVR)

HCR770A

Changed:

rule_array

keyword

GBP-PINO

is

no

longer

supported.

Format

control

in

the

PIN

profile

parameter

must

specify

NONE.

Key

Export

(CSNBKEX)

HCR770A

Changed:

DATAXLAT

and

MACD

keytypes

are

no

longer

supported.

Token

markings

for

DES/CDMF

on

DATA

and

KEKs

are

ignored.

NOCV

KEKs

are

supported

by

this

service

and

the

NOCV

Exporter

is

controlled

by

a

new

access

control

point.

Existing

internal

tokens

with

a

MAC||MAC

CV

must

be

exported

with

either

a

TOKEN

or

DATAM

key

type.

The

external

CV

will

be

DATAM

CV.

Key

Generate

(CSNBKGN)

HCR770A

Changed:

DATAXLAT

key

type

not

supported.

Single

and

double

length

MAC,

MACVER,

CIPHER,

ENCIPHER

and

DECIPHER

keys

can

now

be

created.

Key

Import

(CSNBKIM)

HCR770A

Changed:

DES

and

CDMF

token

markings

are

not

made

on

DATA

and

key-encrypting

keys,

and

are

ignored

on

the

IMPORTER

key-encrypting

key.

Use

of

NOCV

keys

are

controlled

by

an

access

control

point

in

the

PCIXCC.

Creation

of

NOCV

key-encrypting

keys

is

only

available

for

standard

IMPORTERs

and

EXPORTERs.

DATAXLAT

key

type

is

no

longer

supported.

Imported

DATAC

tokens

will

now

have

the

same

CV

as

external

DATAC

tokens.

The

export

prohibited

bit

in

the

flag

byte

of

the

internal

token

is

no

longer

used.

The

internal

token

will

have

the

appropriate

CV

for

export

prohibit.

Key

Part

Import

(CSNBKPI)

HCR770A

Changed:

rule_array

keywords

ADD-PART

and

COMPLETE

are

added.

New

access

control

points

are

added

for

control

of

the

new

keywords.

Key

Record

Write

(CSNBKRW)

HCR770A

Changed:

DES

and

CDMF

token

markings

are

ignored.

You

can

write

NOCV

keys

to

the

CKDS

without

being

in

supervisor

state.

Key

Test

(CSNBKYT)

HCR770A

Changed:

Support

added

for

generation

and

verification

of

triple

length

keys

for

the

ENC-ZERO

verification

process.

KEY-ENC

and

KEY-ENCD

keywords

can

be

used

for

triple

length

key

tokens.

No

support

for

clear

triple

length

keys.

Key

Test

Extended

(CSNBKYTX)

HCR770A

Changed:

Support

added

for

generation

and

verification

of

single,

double,

and

triple

length

keys

for

the

ENC-ZERO

verification

process.

Key

Token

Build

(CSNBKTB)

HCR770A

Changed:

CDMF

keyword

not

supported.

AKEK

and

DATAXLAT

keytype

not

supported.

MAC

Generate

(CSNBMGN

and

CSNBMGN1)

HCR770A

Changed:

Text

length

greater

than

4K

is

supported.

MAC

Verify

(CSNBMVR

and

CSNBMVR1)

HCR770A

Changed:

Text

length

greater

than

4K

is

supported.

Multiple

Clear

Key

Import

(CSNBCKM)

HCR770A

Changed:

CDMF

keyword

will

fail.

Appendix

I.

z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor

523

Table

196.

Summary

of

new

and

changed

ICSF

callable

services

(continued)

Callable

service

Release

Description

Multiple

Secure

Key

Import

(CSNBSKM)

HCR770A

Changed:

DATAXLAT

keytype

is

no

longer

supported.

For

DATAC

keytype,

the

internal

tokens

will

have

the

CCA

compliant

control

vectors.

Creation

of

NOCV

key-encrypting

keys

is

only

available

for

standard

IMPORTERs

and

EXPORTERs.

The

NOCV

IMPORTER

access

control

point

must

be

enabled

to

use

the

function.

PCI

Interface

(CSFPCI)

HCR770A

Changed:

rule_array

keyword

XCPMASK

will

return

online

and

active

PCIXCCs

on

the

system.

Results

are

returned

in

the

masks_data

parameter

and

only

for

XCPMASK.

PCIMASKS

will

return

counts

and

masks

of

0

on

a

z990

or

z890

system.

PKA

Encrypt

(CSNDPKE)

HCR770A

Changed:

ZERO-PAD

requests

are

routed

to

a

PCICA,

if

available.

Execution

on

a

PCIXCC

is

controlled

by

new

access

control

points.

PKA

Decrypt

(CSNDPKD)

HCR770A

Changed:

For

clear

RSA

private

keys,

this

service

will

be

routed

to

the

PCICA,

if

available,

to

provide

optimal

performance

for

SSL.

PKA

Key

Generate

(CSNDPKG)

HCR770A

Changed:

DSS

keys

will

no

longer

be

generated.

PKA

Key

Import

(CSNDPKI)

HCR770A

Changed:

DSS

keys

will

no

longer

be

imported.

PKA

Key

Token

Build

(CSNDPKB)

HCR770A

Changed:

DSS

key

tokens

can

be

created,

but

cannot

be

used

in

any

other

service.

PKA

Key

Token

Change

(CSNDKTC)

HCR770A

Changed:

DSS

key

tokens

are

supported.

In

a

shared

PKDS

environment,

it

may

be

necessary

to

reencipher

on

one

system,

rather

than

requiring

the

reencipher

of

the

DSS

token

on

a

CCF

system.

PKA

Public

Key

Extract

(CSNDPKX)

HCR770A

Changed:

DSS

key

tokens

are

supported

by

this

service,

but

cannot

be

used

in

any

other

service.

Internal

and

external

RSA

tokens

and

PKDS

labelnames

are

supported.

Prohibit

Export

(CSNBPEX)

HCR770A

Changed:

MAC

and

MACVER

keys

are

supported.

Old

internal

DATAM

and

DATAMV

are

not

supported.

DATA

keys

are

not

supported.

Prohibit

Export

Extended

(CSNBPEXX)

HCR770A

Changed:

External

MACD

keys

are

not

supported.

Secure

Key

Import

(CSNBSKI)

HCR770A

Changed:

DATAXLAT

keytype

is

no

longer

supported.

Special

Secure

Mode

in

the

Options

Data

Set

must

be

enabled.

To

create

NOCV

key-encrypting

keys,

token

copying

for

standard

IMPORTERs

and

EXPORTERs.

Token

copying

is

not

supported

for

DES

or

CDMF

flags.

The

NOCV

IMPORTER

access

control

point

must

be

enabled

to

use

the

function.

Set

Block

Decompose

(CSNDSBD)

HCR770A

Changed:

The

RSA

private

key

used

by

this

service

does

not

need

to

be

generated

as

a

signature-only

key.

Symmetric

Key

Generate

(CSNDSYG)

HCR770A

Changed:

The

generated

internal

DATA

key

will

not

have

any

algorithm

markings.

Symmetric

Key

Import

(CSNDSYI)

HCR770A

Changed:

Retained

keys

are

supported.

The

imported

internal

DATA

key

will

not

have

any

algorithm

markings.

Reason

codes

may

be

different

when

running

on

a

PCIXCC

(rather

than

a

CCF).

All

the

reason

codes

have

been

merged

into

one

table

in

the

z/OS

Cryptographic

Services

ICSF

Application

Programmer’s

Guide.

524

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|

CKDS

and

PKDS

(PCI

X

Cryptographic

Coprocessor)

The

PCI

X

Cryptographic

Coprocessor

eliminates

the

need

for

many

of

the

system

keys

in

the

CKDS

–

namely

the

SYSTEM

IMPORTER

and

EXPORTER

keys,

the

NOCV

dummy

keys,

the

ANSI

keys,

and

the

ESYS

keys.

These

system

keys

are

not

created

on

a

z990

or

z890

initialized

CKDS.

If

your

CKDS

was

initialized

on

a

z990

or

z890,

it

can

not

be

used

on

a

CCF

system.

The

PKDS

must

be

initialized

first

before

it

can

be

used

by

callable

services.

ICSF

Setup

and

Initialization

It

is

normal

to

see

the

following

messages

during

the

startup

of

ICSF

(HCR770A

or

later)

on

a

z990

or

z890:

v

First

time

startup

messages

before

master

keys

have

been

loaded

and

the

CKDS

and

PKDS

have

not

been

initialized:

–

with

a

PCIXCC,

without

a

PCICA

S

CSF

$HASP100

CSF

ON

STCINRDR

IEF695I

START

CSF

WITH

JOBNAME

CSF

IS

ASSIGNED

TO

USER

++++++++

$HASP373

CSF

STARTED

IEF403I

CSF

-

STARTED

-

TIME=15.34.03

CSFM101E

PKA

KEY

DATA

SET,

CSF.PKDS

IS

NOT

INITIALIZED.

CSFM419E

INCORRECT

MASTER

KEY

(BOTH)

ON

PCI

X

CRYPTOGRAPHIC

COPROCESSOR

Xnn,

SERIAL

NUMBER

nnnnnnnn.

CSFM100E

CRYPTOGRAPHIC

KEY

DATA

SET,

CSF.CKDS

IS

NOT

INITIALIZED.

CSFM508I

CRYPTOGRAPHY

-

THERE

ARE

NO

CRYPTOGRAPHIC

ACCELERATORS

ONLINE.

CSFM001I

ICSF

INITIALIZATION

COMPLETE

CSFM400I

CRYPTOGRAPHY

-

SERVICES

ARE

NOW

AVAILABLE.

You

will

receive

message

CSFM419E

for

each

online

PCIXCC

–

with

a

PCIXCC,

with

a

PCICA

S

CSF

$HASP100

CSF

ON

STCINRDR

IEF695I

START

CSF

WITH

JOBNAME

CSF

IS

ASSIGNED

TO

USER

++++++++

$HASP373

CSF

STARTED

IEF403I

CSF

-

STARTED

-

TIME=15.40.52

CSFM101E

PKA

KEY

DATA

SET,

CSF.PKDS

IS

NOT

INITIALIZED.

CSFM419E

INCORRECT

MASTER

KEY

(BOTH)

ON

PCI

X

CRYPTOGRAPHIC

COPROCESSOR

Xnn,

SERIAL

NUMBER

nnnnnnnn.

CSFM411I

PCI

CRYPTOGRAPHIC

ACCELERATOR

Ann

IS

ACTIVE

CSFM100E

CRYPTOGRAPHIC

KEY

DATA

SET,

CSF.CKDS

IS

NOT

INITIALIZED.

CSFM001I

ICSF

INITIALIZATION

COMPLETE

CSFM400I

CRYPTOGRAPHY

-

SERVICES

ARE

NOW

AVAILABLE.

You

will

receive

message

CSFM419E

for

each

online

PCIXCC.

You

will

receive

message

CSFM411I

for

each

active

PCICA.

v

First

time

startup

messages

before

master

keys

have

been

loaded

and

sharing

a

CKDS

and

PKDS:

–

with

a

PCIXCC,

without

a

PCICA

S

CSF

$HASP100

CSF

ON

STCINRDR

IEF695I

START

CSF

WITH

JOBNAME

CSF

IS

ASSIGNED

TO

USER

++++++++

Appendix

I.

z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor

525

|

|

|

$HASP373

CSF

STARTED

IEF403I

CSF

-

STARTED

-

TIME=15.54.34

CSFM419E

INCORRECT

MASTER

KEY

(BOTH)

ON

PCI

X

CRYPTOGRAPHIC

COPROCESSOR

Xnn,

SERIAL

NUMBER

nnnnnnnn.

CSFM508I

CRYPTOGRAPHY

-

THERE

ARE

NO

CRYPTOGRAPHIC

ACCELERATORS

ONLINE.

CSFM001I

ICSF

INITIALIZATION

COMPLETE

CSFM400I

CRYPTOGRAPHY

-

SERVICES

ARE

NOW

AVAILABLE.

You

will

receive

message

CSFM419E

for

each

online

PCIXCC.

–

with

a

PCIXCC,

with

a

PCICA

S

CSF

$HASP100

CSF

ON

STCINRDR

IEF695I

START

CSF

WITH

JOBNAME

CSF

IS

ASSIGNED

TO

USER

++++++++

$HASP373

CSF

STARTED

IEF403I

CSF

-

STARTED

-

TIME=15.54.34

CSFM419E

INCORRECT

MASTER

KEY

(BOTH)

ON

PCI

X

CRYPTOGRAPHIC

COPROCESSOR

Xnn,

SERIAL

NUMBER

nnnnnnnn.

CSFM411I

PCI

CRYPTOGRAPHIC

ACCELERATOR

Ann

IS

ACTIVE

CSFM001I

ICSF

INITIALIZATION

COMPLETE

CSFM400I

CRYPTOGRAPHY

-

SERVICES

ARE

NOW

AVAILABLE.

You

will

receive

message

CSFM419E

for

each

online

PCIXCC.

You

will

receive

message

CSFM411I

for

each

active

PCICA.

Migration

If

you

are

migrating

from

HCR7708

to

HCR770A

or

later

and

you

have

a

PCI

X

Cryptographic

Coprocessor,

almost

all

the

functionality

previously

available

with

z/OS

V1

R3

is

now

supported.

Functions

Not

Supported

The

following

section

lists

functions

not

supported

by

HCR770A

or

later

with

a

PCI

X

Cryptographic

Coprocessor

installed.

1.

There

is

no

KMMK

(key

management

master

key).

2.

The

Commercial

Data

Masking

Facility

(CDMF)

is

no

longer

supported.

The

CDMF

keyword

on

KGUP

control

statements

and

panels

is

no

longer

supported.

3.

The

Public

Key

Algorithm

Digital

Signature

Standard

is

not

supported.

This

affects

callable

services

CSNDPKG,

CSNDPKI,

CSNDDSG,

and

CSNDDSV.

4.

The

PBVC

keyword

is

not

supported

on

a

PCI

X

Cryptographic

Coprocessor.

This

affects

callable

services

Clear

PIN

Generate

Alternate

(CSNBCPE),

PIN

Translate

(CSNBPTR)

and

PIN

Verify

(CSNBPVR).

5.

RSA

keys

of

modulus

less

than

512

bits

are

not

supported

on

a

PCI

X

Cryptographic

Coprocessor.

Setup

Considerations

The

following

section

lists

setup

changes

that

should

be

considered

when

installing

HCR770A

or

later

with

a

PCI

X

Cryptographic

Coprocessor

installed.

Consideration

should

be

given

to:

1.

The

PCIXCC

has

only

one

PKA

master

key,

the

asymmetric-keys

master

key

(ASYM-MK).

Users

of

CCF

systems

where

the

SMK

value

is

not

equal

to

the

KMMK

value

should

change

the

PKA

master

key

values

to

be

the

same,

and

reencipher

their

PKDS.

(You

must

have

a

PCICC

or

PCIXCC

to

do

the

reencipher.)

Otherwise,

their

private

keys

encrypted

under

the

KMMK

will

not

be

usable

on

a

PCIXCC

system.

526

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|
|

|

|

2.

CICS

wait

list

should

be

updated

for

services

now

executing

on

PCIXCCs.

The

sample

CICS

wait

list,

CSFWTL01,

supplied

by

IBM

includes

these

services

and

can

be

used

as

a

reference.

3.

PKDS

initialization

is

required.

4.

New

options

data

set

keyword

CKTAUTH.

5.

A

CKDS

initialized

on

a

z990

or

z890

can

not

be

used

on

CCF

systems.

6.

If

sharing

a

PKDS

with

a

PCICC

and

PCIXCC,

delete

the

PKDS

records

for

labelnames

of

retained

keys

on

PCICCs

no

longer

in

use.

7.

Customers

who

run

CSFEUTIL

to

setup

ICSF

for

automated

electronic

delivery

process

no

longer

need

to

execute

CSFEUTIL

on

a

z990

or

z890

system.

SHA-1

is

available

on

z990

or

z890

without

entering

ICSF

master

keys.

Programming

Considerations

The

following

section

lists

programming

changes

that

should

be

considered

when

installing

HCR770A

or

later

with

a

PCI

X

Cryptographic

Coprocessor

installed.

Consideration

should

be

given

to:

1.

The

DATAC

key

type

should

only

be

used

with

a

PCI

X

Cryptographic

Coprocessor

on

the

IBM

Eserver

zSeries

990.

2.

The

PIN

block

format

checking

on

PCIXCC

is

more

rigorous

than

with

a

CCF.

For

CSNBPVR,

CSNBPTR

and

CSNBCPA

services,

the

input

PIN

block

must

have

the

correct

format

as

specified

in

the

PIN

Profile

parameter.

On

a

CCF

system,

the

PIN

block

format

checking

is

incomplete.

For

example,

the

REFORMAT

processing

mode

of

PIN

Translate

(CSNBPTR)

may

now

fail

on

a

PCIXCC

when

it

was

previously

successful

on

a

CCF.

On

a

CCF,

if

input

to

the

PIN

verify

service

(CSNBPVR)

is

a

malformed

encrypted

PIN

block,

the

service

will

fail

with

return

code

4,

reason

code

3028

(verification

failed);

on

a

PCIXCC,

the

service

may

fail

with

return

code

8

and

some

appropriate

reason

code

for

invalid

PIN

format.

3.

512

to

2048

bit

modulus

for

RSA

keys

is

supported

in

all

PKA

services

except

SET

services

(Set

Block

Compose

and

Set

Block

Decompose).

4.

All

CCF

functions

are

now

executed

on

the

PCI

X

Cryptographic

Coprocessor.

This

may

cause

some

impact

on

the

performance

of

customer

applications.

5.

Reason

codes

from

the

PCI

X

Cryptographic

Coprocessor

may

be

different

from

previous

cryptographic

hardware.

6.

With

PCIXCCs,

the

requirement

that

caller

must

be

in

supervisor

state

to

use

NOCV

tokens

is

lifted

for

the

Key

Record

Write

(CSNBKRW)

service.

7.

The

z/OS

SCHEDULE

and

IEAMSCHD

macros

are

used

to

schedule

SRBs.

On

the

IBM

Eserver

zSeries

990,

since

there

are

no

CCFs

on

the

system,

applications

should

delete

FEATURE=CRYPTO

on

the

SCHEDULE

and

IEAMSCHD

macros

or

the

SRB

being

scheduled

will

not

run.

8.

External

tokens

that

are

export

prohibited

are

imported

differently

on

a

z990

or

z890

system

with

PCIXCCs.

The

imported

internal

token

will

have

the

same

control

vector

as

the

external

token

with

export

prohibited.

These

tokens

will

only

be

usable

on

a

z990

or

z890

system

with

a

PCIXCC

or

on

CCF

systems

with

PCICCs.

On

previous

hardware

(CCF

systems)

the

imported

internal

token

had

a

control

vector

that

allowed

export,

and

export

prohibition

was

enforced

by

the

export

flag

in

the

token.

9.

Prohibit

Export

service

can

now

be

used

for

MAC

and

MACVER

keys.

Appendix

I.

z990

and

z890

with

a

PCI

X

Cryptographic

Coprocessor

527

|

|
|

|

|
|
|

|
|
|
|
|
|

|
|

|

TKE

workstation

The

Trusted

Key

Entry

(TKE)

workstation

(Version

4.0

or

later)

is

available

on

the

IBM

Eserver

zSeries

990

and

IBM

Eserver

zSeries

890.

It

can

also

be

used

to

provide

key

management

on

the

IBM

Eserver

zSeries

900,

IBM

Eserver

zSeries

800,

S/390

G6

Enterprise

Server,

and

S/390

G5

Enterprise

Server.

Operational

key

entry

for

the

PCIXCC

on

the

z990

or

z890

is

available

with

TKE

V4.1.

Access

Control

Points

Access

to

services

that

are

executed

on

the

PCI

X

Cryptographic

Coprocessor

is

through

Access

Control

Points

in

the

DEFAULT

Role.

To

execute

callable

services

on

the

PCI

X

Cryptographic

Coprocessor,

access

control

points

must

be

enabled

for

each

service

in

the

DEFAULT

Role.

For

systems

that

do

not

use

the

optional

TKE

Workstation,

all

access

control

points

(current

and

new)

are

enabled

in

the

DEFAULT

Role

with

the

appropriate

microcode

level

on

the

PCI

X

Cryptographic

Coprocessor.

New

TKE

users

and

non-TKE

users

have

all*

access

control

points

enabled.

This

is

also

true

for

brand

new

TKE

Version

4.1

users.

If

you

are

migrating

from

TKE

V4.0

to

TKE

4.1

and

have

a

PCIXCC,

all

your

current

access

control

points

will

remain

the

same

and

the

new

access

control

points

for

HCR770B

will

not

be

enabled.

Note:

*Access

control

points

DKYGENKY-DALL

and

DSG

ZERO-PAD

unrestricted

hash

length

are

always

disabled

in

the

DEFAULT

Role

for

all

customers

(TKE

and

Non-TKE).

A

TKE

Workstation

is

required

to

enable

these

access

control

points.

Access

Control

Points

for

HCR770B

with

a

PCIXCC

are:

v

Diversified

Key

Generate

-

TDES-XOR

v

Diversified

Key

Generate

-

TDESEMV2/TDESEMV4

v

PIN

Change/Unblock

-

change

EMV

PIN

with

OPINENC

v

PIN

Change/Unblock

-

change

EMV

PIN

with

IPINENC

v

Transaction

Validation

-

Generate

v

Transaction

Validation

-

Verify

CSC-3

v

Transaction

Validation

-

Verify

CSC-4

v

Transaction

Validation

-

Verify

CSC-5

v

Key

Part

Import

-

RETRKPR

TKE

Enablement

from

the

Support

Element

On

z890

or

z990

systems

running

with

May

2004

version

of

Licensed

Internal

Code,

you

must

enable

each

PCIXCC

card

from

the

support

element.

This

is

true

for

new

TKE

users

and

those

upgrading

from

TKE

4.0

to

4.1

when

the

new

LIC

is

installed.

See

Support

Element

Operations

Guide,

SC28-6820

and

z/OS

Cryptographic

Services

ICSF

TKE

Workstation

User’s

Guide,

SA22-7524

for

more

information.

TSO

panels

There

are

new

panels

and

changes

to

panels

to

support

TKE

operational

key

entry

on

the

PCI

X

Cryptographic

Coprocessor.

528

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

Appendix

J.

z990

and

z890

without

a

PCI

X

Cryptographic

Coprocessor

This

section

describes

the

processing

of

the

IBM

Eserver

zSeries

990

environment,

without

a

PCI

X

Cryptographic

Coprocessor.

Note

that

this

server

does

not

support

the

Cryptographic

Coprocessor

Feature

or

the

PCI

Cryptographic

Coprocessor.

Applications

and

programs

Applications

requiring

secure

cryptography

using

encrypted

keys

will

not

be

able

to

execute

on

the

IBM

Eserver

zSeries

990

or

IBM

Eserver

zSeries

890

without

a

PCI

X

Cryptographic

Coprocessor.

All

cryptographic

keys

must

be

clear

keys.

The

following

applications

and

programs

are

not

supported:

v

Access

Method

Services

Cryptographic

option

v

CICS

attachment

facility

v

CKDS

Conversion

program

v

CSFEUTIL

program

for

CKDS

reencipher,

refresh,

change

master

key,

and

passphrase

initialization

functions

v

CSFPUTIL

program

for

PKDS

activate,

cache

refresh,

reencipher,

and

initialization

functions

v

Distributed

Key

Management

System

(DKMS)

v

Key

Generation

Utility

Program

(KGUP)

v

PCF

applications

v

UDX

(User

Defined

Extension)

support

v

VTAM

Session

Level

Encryption

v

4753-HSP

applications

v

Applications

that

access

ICSF

services

through

the

BSAFE

interfaces

Callable

services

The

following

services

are

available

when

running

on

a

z990

or

z890

without

a

PCI

X

Cryptographic

Coprocessor:

v

Character/Nibble

Conversion

(CSNBXBC

and

CSNBXCB)

v

Code

Conversion

(CSNBXEA

and

CSNBXAE)

v

Control

Vector

Generate

(CSNBCVG)

v

Decode

(CSNBDCO)

-

This

service

requires

CP

Assist

for

Cryptographic

Functions.

v

Digital

Signature

Verify

(CSNDDSV)

-

This

service

requires

a

PCI

Cryptographic

Accelerator.

v

Encode

(CSNBECO)

-

This

service

requires

CP

Assist

for

Cryptographic

Functions.

v

ICSF

Query

Sevice

(CSFIQF)

-

The

only

part

of

this

service

available

without

a

PCIXCC

is

the

ICSFSTAT

function.

v

MDC

Generate

(CSNBMDG

and

CSNBMDG1)

-

This

service

requires

CP

Assist

for

Cryptographic

Functions.

v

One–Way

Hash

Generate

(CSNBOWH

and

CSNBOWH1)

©

Copyright

IBM

Corp.

1997,

2004

529

|

|

|
|

v

PKA

Decrypt

(CSNDPKD)

-

This

service

requires

a

PCI

Cryptographic

Accelerator.

v

PKA

Encrypt

(CSNDPKE)

ZERO-PAD

formatting

only

-

This

service

requires

a

PCI

Cryptographic

Accelerator.

v

PKA

Key

Token

Build

(CSNDPKB)

v

PKA

Public

Key

Extract

(CSNDPKX)

v

Symmetric

Key

Decipher

(CSNBSYD

and

CSNBSYD1)

-

This

service

requires

CP

Assist

for

Cryptographic

Functions.

v

Symmetric

Key

Encipher

(CSNBSYE

and

CSNBSYE1)

-

This

service

requires

CP

Assist

for

Cryptographic

Functions.

v

X9.9

Data

Editing

(CSNB9ED)

Installation

defined

callable

services

are

supported

only

if

you’re

using

clear

keys

and

using

one

of

the

above

supported

callable

services.

ICSF

Setup

and

Initialization

It

is

normal

to

see

the

following

messages

during

the

startup

of

ICSF

on

a

z990

or

z890:

v

Starting

ICSF

on

a

z990

or

z890

without

a

PCI

Cryptographic

Accelerator

or

PCI

X

Cryptographic

Coprocessor:

S

CSF

$HASP100

CSF

ON

STCINRDR

IEF695I

START

CSF

WITH

JOBNAME

CSF

IS

ASSIGNED

TO

USER

++++++++

$HASP373

CSF

STARTED

IEF403I

CSF

-

STARTED

-

TIME=11.07.28

CSFM506I

CRYPTOGRAPHY

-

THERE

IS

NO

ACCESS

TO

ANY

CRYPTOGRAPHIC

COPROCESSORS

OR

ACCELERATORS.

CSFM001I

ICSF

INITIALIZATION

COMPLETE

CSFM400I

CRYPTOGRAPHY

-

SERVICES

ARE

NOW

AVAILABLE.

v

Starting

ICSF

on

a

z990

or

z890

with

a

PCI

Cryptographic

Accelerator

and

without

a

PCI

X

Cryptographic

Coprocessor.

You’ll

receive

message

CSFM411I

for

each

PCI

Cryptographic

Accelerator

that

is

active.

S

CSF

$HASP100

CSF

ON

STCINRDR

IEF695I

START

CSF

WITH

JOBNAME

CSF

IS

ASSIGNED

TO

USER

++++++++

$HASP373

CSF

STARTED

IEF403I

CSF

-

STARTED

-

TIME=11.08.15

CSFM411I

PCI

CRYPTOGRAPHIC

ACCELERATOR

Ann

IS

ACTIVE

CSFM507I

CRYPTOGRAPHY

-

THERE

ARE

NO

PCI

X

CRYPTOGRAPHIC

COPROCESSORS

ONLINE.

CSFM001I

ICSF

INITIALIZATION

COMPLETE

CSFM400I

CRYPTOGRAPHY

-

SERVICES

ARE

NOW

AVAILABLE.

Secure

Sockets

Layer

(SSL)

System

SSL

applications

are

supported

on

the

z990

or

z890.

SSL

defines

methods

for

data

encryption,

server

authentication,

message

integrity,

and

client

authentication

for

a

TCP/IP

connection.

Security

is

provided

on

the

link

and

callable

services

have

been

enhanced

for

DES,

TDES

and

SHA-1

services.

530

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

|
|

|

|

|

TKE

workstation

The

Trusted

Key

Entry

(TKE)

workstation

is

not

available

with

this

hardware

configuration.

Appendix

J.

z990

and

z890

without

a

PCI

X

Cryptographic

Coprocessor

531

532

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Appendix

K.

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

major

accessibility

features

in

z/OS

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Using

assistive

technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

user

interfaces

found

in

z/OS.

Consult

the

assistive

technology

documentation

for

specific

information

when

using

such

products

to

access

z/OS

interfaces.

Keyboard

navigation

of

the

user

interface

Users

can

access

z/OS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

z/OS

TSO/E

Primer,

z/OS

TSO/E

User’s

Guide,

and

z/OS

ISPF

User’s

Guide

Volume

I

for

information

about

accessing

TSO/E

and

ISPF

interfaces.

These

guides

describe

how

to

use

TSO/E

and

ISPF,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

z/OS

information

z/OS

information

is

accessible

using

screen

readers

with

the

BookServer/Library

Server

versions

of

z/OS

books

in

the

Internet

library

at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

One

exception

is

command

syntax

that

is

published

in

railroad

track

format;

screen-readable

copies

of

z/OS

books

with

that

syntax

information

are

separately

available

in

HTML

zipped

file

form

upon

request

to

mhvrcfs@us.ibm.com.

©

Copyright

IBM

Corp.

1997,

2004

533

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

534

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

USA.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

USA

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1997,

2004

535

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Mail

Station

P300

2455

South

Road

Poughkeepsie,

NY

12601-5400

USA

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

Interface

Information

This

book

documents

intended

Programming

Interfaces

that

allow

the

customer

to

write

programs

to

obtain

the

services

of

z/OS

Integrated

Cryptographic

Service

Facility.

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

AIX

AS/400

CICS

ES/3090

ES/9000

eServer

IBM

IBMLink

Multiprise

MVS

MVS/ESA

MVS/SP

OS/390

Parallel

Sysplex

Personal

Security

Processor

Resource/Systems

Manager

PR/SM

RACF

Resource

Link

RMF

S/370

S/390

S/390

Parallel

Enterprise

Server

System/390

VTAM

536

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

3090

zSeries

z/OS

z/OS.e

The

following

terms

are

trademarks

of

other

companies:

American

Express

American

Express

Company

BSAFE

RSA

Data

Security,

Incorporated

MasterCard

MasterCard

International,

Incorporated

Netscape

Netscape

Communications

Corporation

SET

SET

Secure

Electronic

Transaction,

LLC

UNIX

The

Open

Group

VISA

VISA

International

Service

Association

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

537

538

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Index

Numerics
3621

PIN

block

format

232,

486

3624

PIN

block

format

232,

486

4700-PAD

processing

rule

178,

179,

187,

188

4704-EPP

PIN

block

format

232

A
accessibility

533

accessing
callable

service

9

invocation

requirements

8

affinity

(IEAAFFN

callable

service)

9

AKEK

key

type

21

ALET

(alternate

entry

point)
format

4

algorithm

30

3624

PIN

generation

488

3624

PIN

verification

491

DES

13,

30

GBP

PIN

generation

489

GBP

PIN

verification

493

GBP-PIN

263

GBP-PINO

263

IBM-PIN

263

IBM-PINO

263

PIN

offset

generation

490

PIN,

detailed

488

PIN,

general

33

PVV

generation

494

PVV

verification

495

VISA

PIN

494

VISA-PVV

246,

263

VISAPVV4

263

ANSI

9.9-1

algorithm

207

ANSI

key-encrypting

key

(AKEK)

21

ANSI

X3.106

processing

rule

496

ANSI

X9.17

EDC

generate

callable

service

(CSNAEGN)
format

377

overview

29

parameters

377

syntax

377

ANSI

X9.17

key

export

callable

service

(CSNAKEX)
format

379

overview

29

parameters

379

syntax

379

ANSI

X9.17

key

import

callable

service

(CSNAKIM)
format

384

overview

29

parameters

384

syntax

384

ANSI

X9.17

key

management

377

overview

28

ANSI

X9.17

key

translate

callable

service

(CSNAKTR)
format

389

overview

29

ANSI

X9.17

key

translate

callable

service

(CSNAKTR)

(continued)
parameters

389

syntax

389

ANSI

X9.17

key-encrypting

key

19

ANSI

X9.17

transport

key

partial

notarize

callable

service

(CSNATKN)
overview

29

ANSI

X9.17

transport

key

partial

notorize

(CSNATKN)
format

394

parameters

394

syntax

394

ANSI

X9.19

optional

double

MAC

procedure

207

ANSI

X9.23

processing

rule

170,

178,

179,

187,

188,

497

ANSI

X9.8

257

ANSI

X9.8

PIN

block

format

485

ASCII

to

EBCDIC

conversion
table

513

authenticating

messages

207

C
c-variable

encrypting

key

identifier

parameter
cryptographic

variable

encipher

callable

service

72

call
successful

11

unsuccessful

11

callable

service
ANSI

X9.17

EDC

generate

(CSNAEGN)

29,

377

ANSI

X9.17

key

export

(CSNAKEX)

29,

379

ANSI

X9.17

key

import

(CSNAKIM)

29,

384

ANSI

X9.17

key

translate

(CSNAKTR)

29,

389

ANSI

X9.17

transport

key

partial

notarize

(CSNATKN)

29

ANSI

X9.17

transport

key

partial

notorize

(CSNATKN)

394

character/nibble

conversion

(CSNBXBC

and

CSNBXCB)

351

ciphertext

41

ciphertext

translate

(CSNBCTT

or

CSNBCTT1)

171

clear

key

import

(CSNBCKI)

22,

63

clear

PIN

encrypt

(CSNBCPE)

33,

236

clear

PIN

generate

(CSNBPGN)

34,

239

clear

PIN

generate

alternate

(CSNBCPA)

34,

243

code

conversion

(CSNBXAE)

36

code

conversion

(CSNBXBC)

36

code

conversion

(CSNBXCB)

36

code

conversion

(CSNBXEA

and

CSNBXAE)

353

code

conversion

(CSNBXEA)

36

coding

examples

465

Assembler

H

469

C

465

COBOL

467

PL/1

471

control

vector

generate

(CSNBCVG)

22,

65

control

vector

translate

callable

service

(CSNBCVT)

22,

68

©

Copyright

IBM

Corp.

1997,

2004

539

callable

service

(continued)
cryptographic

variable

encipher

(CSNBCVE)

22,

71

CSFxxxx

format

3

CSNBxxxx

format

3

data

key

export

(CSNBDKX)

22,

73

data

key

import

(CSNBDKM)

22,

75

decipher

(CSNBDEC

or

CSNBDEC1)

174

decode

(CSNBDCO)

181

definition

3,

13

digital

signature

generate

(CSNDDSG)

51,

303

digital

signature

verify

(CSNDDSV)

51,

309

diversified

key

generate

(CSNBDKG)

22,

78

encipher

(CSNBENC

or

CSNBENC1)

183

encode

(CSNBECO)

190

encrypted

PIN

generate

(CSNBEPG)

34,

248

encrypted

PIN

translate

(CSNBPTR)

34,

253

encrypted

PIN

verification

(CSNBPVR)

34

encrypted

PIN

verify

(CSNBPVR)

260

format

369,

373

ICSF

Query

Service

(CSFIQF)

36,

355

IEAAFFN

(affinity)

9

installation-defined

13

invoking

a

3

key

export

(CSNBKEX)

23,

82

key

generate

(CSNBKGN)

23,

37,

86

key

import

(CSNBKIM)

23,

97

key

part

import

(CSNBKPI)

23,

102

key

record

create

(CSNBKRC)

26,

105

key

record

delete

(CSNBKRD)

26,

107

key

record

read

(CSNBKRR)

26,

109

key

record

write

(CSNBKRW)

26,

111

key

test

(CSNBKYT

and

CSNBKYTX)

23

key

test

and

key

test

extended

(CSNBKYT

and

CSNBKYTX)

113

key

token

build

(CSNBKTB)

23,

117

key

translate

(CSNBKTR)

24,

125

link

edit

step

12

MAC

generate

(CSNBMGN

or

CSNBMGN1)

209

MAC

generation

(CSNBMGN

or

CSNBMGN1)

31

MAC

verification

(CSNBMVR

or

CSNBMVR1)

31

MAC

verify

(CSNBMVR

or

CSNBMVR1)

214

MDC

generate

(CSNBMDG

or

CSNBMDG1)

219

MDC

generation

(CSNBMDG

or

CSNBMDG1)

32

multiple

clear

key

import

(CSNBCKM)

24,

127

multiple

secure

key

import

(CSNBSKM)

24,

130

one-way

hash

generate

(CSNBOWH

and

CSNBOWH1)

32,

224

overview

3

PCI

interface

(CSFPCI)

369

PIN

change/unblock

(CSNBPCU)

34

PIN

Change/Unblock

(CSNBPCU)

267

PKA

decrypt

(CSNDPKD)

26

PKA

encrypt

(CSNDPKE)

26

PKA

key

generate

(CSNDPKG)

52,

315

PKA

key

import

(CSNDPKI)

52,

319

PKA

key

token

build

(CSNDPKB)

52,

323

PKA

key

token

change

(CSNDKTC)

52,

332

PKA

public

key

extract

(CSNDPKX)

53,

334

PKDS

record

create

(CSNDKRC)

337

PKDS

record

delete

(CSNDKRD)

339

PKDS

record

read

(CSNDKRR)

341

callable

service

(continued)
PKDS

record

write

(CSNDKRW)

343

PKSC

interface

(CSFPKSC)

373

prohibit

export

(CSNBPEX)

24,

142

prohibit

export

extended

(CSNBPEXX)

24,

144

random

number

generate

(CSNBRNG)

24,

145

retained

key

delete

(CSNDRKD)

345

retained

key

list

(CSNDRKL)

348

secure

key

import

(CSNBSKI)

24,

147

secure

messaging

for

keys

(CSNBSKY)

273

secure

messaging

for

PINs

(CSNBSPN)

276

security

considerations

9

sequences

36

SET

block

compose

(CSNDSBC)

55,

280

SET

block

decompose

(CSNDSBD)

55,

285

symmetric

key

decipher

(CSNBSYD

and

CSNBSYD1)

192

symmetric

key

encipher

(CSNBSYE

and

CSNBSYE1)

199

symmetric

key

export

(CSNDSYX)

24,

150

symmetric

key

generate

(CSNDSYG)

25,

153

symmetric

key

import

(CSNDSYI)

25,

158

syntax

3

transaction

validation

35

Transaction

Validation

(CSNBTRV)

291

transform

CDMF

key

(CSNBTCK)

25,

162

translating

ciphertext

30

User

derived

key

(CSFUDK)

164

using

key

types

and

key

forms

10

VISA

CVV

service

generate

(CSNBCSG)

295

VISA

CVV

service

verify

(CSNBCSV)

298

with

ALETs

(alternate

entry

point)

4

X9.9

data

editing

(CSNB9ED)

36,

366

CBC

processing

rule

170,

178,

179,

187,

188

CDMF
overview

27

CDMF

key,

transforming
algorithm

508

callable

service

162

chaining

vector

length

parameter
one-way

hash

generate

callable

service

226

chaining

vector

parameter
decipher

callable

service

179

encipher

callable

service

188

MAC

generate

callable

service

212

MAC

verify

callable

service

218

MDC

generate

callable

service

222

one-way

hash

generate

callable

service

226

changing

control

vectors

459

character/nibble

conversion

callable

service

(CSNBXBC

and

CSNBXCB)
format

351

parameters

351

syntax

351

character/nibble

conversion

callable

services

(CSNBXBC

and

CSNBXCB)
overview

36

choosing

between
CSNBCTT

and

CSNBCTT1

171

CSNBDEC

and

CSNBDEC1

175

CSNBENC

and

CSNBENC1

184

540

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

choosing

between

(continued)
CSNBMDG

and

CSNBMDG1

220

CSNBMGN

and

CSNBMGN1

209

CSNBMVR

and

CSNBMVR1

215

CSNBSYD

and

CSNBSYD1

193

CSNBSYE

and

CSNBSYE1

200

CICS

wait

list

527

CIPHER
keys

17

cipher

block

chaining

(CBC)

169

ciphertext
cryptographic

variable

encipher

callable

service

72

deciphering

30,

169

encoding

190

field

180,

190,

199,

205

translating

30,

171

ciphertext

id

parameter
decipher

callable

service

179,

198

encipher

callable

service

189,

205

ciphertext

parameter
decipher

callable

service

177

decode

callable

service

182

encipher

callable

service

189

encode

callable

service

191

ciphertext

translate

callable

service

(CSNBCTT

or

CSNBCTT1)
format

171

parameters

172

syntax

171

using

41

clear

key
deciphering

data

with

181

definition

21

enciphering

147

enciphering

data

with

190

encoding

and

decoding

data

with

30

protecting

169

clear

key

import

callable

service

(CSNBCKI)
format

63

overview

22

parameters

63

syntax

63

clear

key

length

parameter
multiple

clear

key

import

callable

service

129,

132

clear

key

parameter
clear

key

import

callable

service

64

decode

callable

service

182

encode

callable

service

191

multiple

clear

key

import

callable

service

129,

132

secure

key

import

callable

service

148

clear

PIN

encrypt

callable

service

(CSNBCPE)
format

236

syntax

236

clear

PIN

encrypt

service

(CSNBCPE)
parameters

236

clear

PIN

generate

alternate

callable

service

(CSNBCPA)
format

243

overview

34

parameters

243

syntax

243

clear

PIN

generate

callable

service

(CSNBPGN)
format

239

parameters

240

syntax

239

clear

PIN

generate

key

identifier

parameter

244

clear

PIN

generate

callable

service

240

clear

text

id

parameter
decipher

callable

service

179,

198

encipher

callable

service

189,

204

clear

text

parameter
decipher

callable

service

179

decode

callable

service

182

encipher

callable

service

186

encode

callable

service

191

code

conversion

callable

service

(CSNBXEA

and

CSNBXAE)
format

353

parameters

353

syntax

353

code

conversion

callable

services

(CSNBXEA

and

CSNBXAE)
overview

36

code

table

parameter
character/nibble

conversion

callable

service

352

code

conversion

callable

service

354

coding

examples

465

Assembler

H

469

C

465

COBOL

467

PL/1

471

Commercial

Data

Masking

Facility

(CDMF)

169

control

information
for

digital

signature

generate

305

for

digital

signature

verify

311

for

diversified

key

generate

79

for

key

test

114

for

key

token

build

119

for

MAC

generate

211

for

MAC

verify

216

for

MDC

generate

222

for

multiple

clear

key

import

129

for

multiple

secure

key

import

131,

132

for

one-way

hash

generate

225

for

PKA

key

token

build

324

for

symmetric

key

encipher

195,

196,

202,

203

for

symmetric

key

generate

155

for

symmetric

key

import

159

for

user

derived

key

166

control

vector
description

449

value

449,

450

control

vector

generate

(CSNBCVG)
parameters

66

control

vector

generate

callable

service

(CSNBCVG)
format

65

overview

22

syntax

65

control

vector

parameter
control

vector

generate

callable

service

67

control

vector

translate

callable

service

(CSNBCVT)
format

68

Index

541

control

vector

translate

callable

service

(CSNBCVT)

(continued)
overview

22

parameters

68

syntax

68

control

vector,

description

of

14,

16

control

vectors,

changing

459

cryptographic

feature
description

xxiii

cryptographic

key

data

set

(CKDS)
held

keys

19

storing

keys

22,

25,

63

cryptographic

variable

encipher

(CSNBCVE)
parameters

71

cryptographic

variable

encipher

callable

service

(CSNBCVE)
format

71

overview

22

syntax

71

CSFIQF

callable

service

355

CSFPCI

callable

service

369

CSFPKSC

callable

service

373

CSFUDK

callable

service

164

CSFxxxx

format

3

CSNAEGN

callable

service

377

CSNAKEX

callable

service

379,

384

CSNAKTR

callable

service

389

CSNATKN

callable

service

394

CSNB9ED

callable

service

366

CSNBCKI

callable

service

63

CSNBCKM

callable

service

127

CSNBCPA

callable

service

243

CSNBCPE

callable

service

236

CSNBCSG

callable

service

295

CSNBCSV

callable

service

298

CSNBCTT

or

CSNBCTT1

callable

service

171

CSNBCVE

callable

service

71

CSNBCVG

callable

service

65

CSNBCVT

callable

service

68

CSNBDCO

callable

service

181

CSNBDEC

or

CSNBDEC1

callable

service

174

CSNBDKG

callable

service

78

CSNBDKM

callable

service

75

CSNBDKX

callable

service

73

CSNBECO

callable

service

190

CSNBENC

or

CSNBENC1

callable

service

183

CSNBEPG

callable

service

248

CSNBKEX

callable

service

82

CSNBKGN

callable

service

86

CSNBKIM

callable

service

97

CSNBKPI

callable

service

102

CSNBKRC

callable

service

105

CSNBKRD

callable

service

107

CSNBKRR

callable

service

109

CSNBKRW

callable

service

111

CSNBKTB

callable

service

117

CSNBKTR

callable

service

125

CSNBKYT

callable

service

113

CSNBKYTX

callable

service

113

CSNBMDG

or

CSNBMDG1

callable

service

219

CSNBMGN

or

CSNBMGN1

callable

service

209

CSNBMVR

or

CSNBMVR1

callable

service

214

CSNBOWH

and

CSNBOWH1

callable

services

224

CSNBPCU

callable

service

267

CSNBPEX

callable

service

142

CSNBPEXX

callable

service

144

CSNBPGN

callable

service

239

CSNBPTR

callable

service

253

CSNBPVR

callable

service

260

CSNBRNG

callable

service

145

CSNBSKI

callable

service

147

CSNBSKM

callable

service

130

CSNBSKY

callable

service

273

CSNBSPN

callable

service

276

CSNBSYD

and

CSNBSYD

callable

service

192

CSNBSYE

and

CSNBSYE1

callable

service

199

CSNBTCK

callable

service

162

CSNBTRV

callable

service

291

CSNBXAE

callable

service

353

CSNBXBC

callable

service

351

CSNBXCB

callable

service

351

CSNBXEA

callable

service

353

CSNBxxxx

format

3

CSNDDSG

callable

service

303

CSNDDSV

callable

service

309

CSNDKRC

callable

service

337

CSNDKRD

callable

service

339

CSNDKRR

callable

service

341

CSNDKRW

callable

service

343

CSNDKTC

callable

service

332

CSNDPKB

callable

service

323

CSNDPKD

callable

service

134

CSNDPKE

callable

service

139

CSNDPKG

callable

service

315

CSNDPKI

callable

service

319

CSNDPKX

callable

service

334

CSNDRKD

callable

service

345

CSNDRKL

callable

service

348

CSNDSBC

callable

service

280

CSNDSBD

callable

service

285

CSNDSYG

callable

service

153

CSNDSYI

callable

service

158

CSNDSYX

callable

service

150

CUSP

processing

rule

178,

179,

187,

188,

497

CUSP/IPS

processing

rule

170

D
data

deciphering

174

enciphering

183

enciphering

and

deciphering

30

encoding

and

decoding

30

protecting

169

data

array

parameter
clear

PIN

generate

alternate

callable

service

246

clear

PIN

generate

callable

service

241

encrypted

PIN

generate

callable

service

251

encrypted

PIN

verify

callable

service

264

data

integrity
ensuring

30

verifying

207

542

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

data

key
exporting

73

importing

63

reenciphering

73

data

key

export

callable

service

(CSNBDKX)
format

73

overview

22

parameters

73

syntax

73

data

key

import

callable

service

(CSNBDKM)
format

75

overview

22

parameters

75

syntax

75

DATA

key

type

21

data

length

parameter
diversified

key

generate

callable

service

81

data

space
callable

services

that

use

data

in

data

spaces

4

data-encrypting

key

17

data-translation

key

17,

171

DATAM

key

type

21

DATAMV

key

type

21

DATAXLAT

key

type

21

decipher

callable

service

(CSNBDEC

or

CSNBDEC1)
format

176

syntax

176

deciphering
data

169,

174

data

with

clear

key

181

multiple

499

decode

callable

service

(CSNBDCO)
format

181

parameters

181

syntax

181

DES

algorithm

13,

30,

169

DES

enciphered

key

token

parameter

156

DES

external

key

token

format

432

DES

internal

key

token

format

431

destination

identifier

28

digital

signature

generate

callable

service

(CSNDDSG)
format

303

overview

51

parameters

303

syntax

303

digital

signature

verify

callable

service

(CSNDDSV)
format

309

overview

51

parameters

309

syntax

309

disability

533

diversified

key

generate

callable

service

(CSNBDKG)
format

78

overview

22

parameters

78

syntax

78

documents,

licensed

xxvii

double-length

key
multiple

decipherment

502

multiple

encipherment

501

using

19

DSS

private

external

key

token

439,

440

DSS

private

internal

key

token

445,

446,

447

DSS

public

token

435

dynamic

CKDS

update

callable

services
description

25

E
EBCDIC

to

ASCII

conversion
table

513

ECI-1

257

ECI-2

PIN

block

format

232,

486

ECI-3

PIN

block

format

232,

487

ECI-4

257

EDC
generating

377

electronic

code

book

(ECB)

169

encipher

callable

service

(CSNBENC

or

CSNBENC1)
format

185

parameters

185

syntax

185

enciphered
key

86,

149,

169

under

master

key

97

enciphering
data

169,

183

multiple

499

string

with

clear

key

190

encode

callable

service

(CSNBECO)
format

190

parameters

190

syntax

190

encrypted

PIN

block

parameter
clear

PIN

generate

alternate

callable

service

245

encrypted

PIN

verify

callable

service

262

encrypted

PIN

generate

callable

service

(CSNBEPG)
format

249

syntax

249

encrypted

PIN

generate

service

(CSNBEPG)
parameters

249

encrypted

PIN

translate

callable

service

(CSNBPTR)

253

extraction

rules

487

format

253

parameters

253

syntax

253

encrypted

PIN

verification

callable

service

(CSNBPVR)
extraction

rules

487

encrypted

PIN

verify

callable

service

(CSNBPVR)
format

260

parameters

261

syntax

260

ensuring

data

integrity

and

authenticity

30

error

detection

code

(EDC)
generating

377

EX

key

form

38

examples

of

callable

services

465

EXEX

key

form

40

exit

data

7

exit

data

length

7

exit,

installation

7

Index

543

exportable

key

form

15

definition

14

generating

38

value

88

exporter

key

identifier

parameter
data

key

export

callable

service

74

key

export

callable

service

84

EXPORTER

key

type

21

exporter

key-encrypting

key

18

any

DES

key

82

enciphering

data

key

73

external

key

token

7,

16,

57

DES

432

PKA

58

DSS

private

439,

440

RSA

private

436

extraction

rules,

PIN

487

F
FEATURE=CRYPTO

keyword
SCHEDULE

macro

9

form

parameter
random

number

generate

callable

service

146

format

control

234

formats,

PIN

33

functions

of
cryptographic

keys

13

ICSF

13

G
GBP-PIN

algorithm

263

GBP-PINO

algorithm

263

generated

key

identifier

1

parameter
key

generate

callable

service

92

generated

key

identifier

2

parameter
key

generate

callable

service

93

generated

key

identifier

parameter
diversified

key

generate

callable

service

81

generating

an

error

detection

code

(EDC)

377

generating

encrypted

keys

86

generating

key

identifier

parameter
diversified

key

generate

callable

service

81

German

Banking

Pool

PIN

algorithm

489

H
hash

length

parameter
digital

signature

generate

callable

service

306

digital

signature

verify

callable

service

311

one-way

hash

generate

callable

service

226

hash

parameter
digital

signature

generate

callable

service

306

digital

signature

verify

callable

service

312

one-way

hash

generate

callable

service

226

HEXDIGIT

PIN

extraction

method

keyword

233

high-level

languages

3

I
IBM

Eserver

zSeries

990
functions

not

supported

526,

527

with

PCI

X

Cryptographic

Coprocessor

521

without

PCI

X

Cryptographic

Coprocessor

529

IBM

3624

239,

260

IBM

4700

processing

rule

170,

497

IBM

GBP

239,

260

IBM-4700

PIN

block

format

486

IBM-PIN

algorithm

263

IBM-PINO

algorithm

263

ICSF
functions

13

overview

13

ICSF

Query

Facility

(CSFIQF)
parameters

355

syntax

355

ICSF

Query

Facility

(CSFIQF))
format

355

ICSF

Query

Facility

Service

(CSFIQF)
overview

36

IEAAFFN

callable

service

(affinity)

9

IM

key

form

38

IMEX

key

form

40

IMIM

key

form

39

importable

key

form

15

definition

14

generating

38

value

88

imported

key

identifier

length

parameter
multiple

secure

key

import

callable

service

133

imported

key

identifier

parameter
multiple

secure

key

import

callable

service

133

importer

key

identifier

parameter
key

import

callable

service

99

PKA

key

import

callable

service

321

secure

key

import

callable

service

149

IMPORTER

key

type

21

importer

key-encrypting

key

18

enciphering

clear

key

147,

149

importing

a

non-exportable

key

144

improving

performance

using

partial

notarization

507

INBK

PIN

231,

239

INBK-PIN

260

Information

Protection

System

(IPS)

498

initial

chaining

vector

(ICV)
description

169,

496

initialization

vector

in

parameter
ciphertext

translate

callable

service

173

initialization

vector

out

parameter
ciphertext

translate

callable

service

173

initialization

vector

parameter
cryptographic

variable

encipher

callable

service

72

decipher

callable

service

177

encipher

callable

service

186

key

token

build

callable

service

122

input

data

transport

key

171

input

KEK

key

identifier

parameter
key

translate

callable

service

126

input

PIN

profile

parameter
clear

PIN

generate

alternate

callable

service

244

544

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

input

PIN

profile

parameter

(continued)
encrypted

PIN

translate

callable

service

254

encrypted

PIN

verify

callable

service

262

input

PIN-encrypting

key

identifier

parameter
encrypted

PIN

translate

callable

service

254

encrypted

PIN

verify

callable

service

261

installation

exit
post-processing

7

preprocessing

7

installation-defined

callable

service

13

Integrated

Cryptographic

Service

Facility

(ICSF)
description

xxiii

Interbank

PIN

46,

231,

239,

260

internal

key

token

7,

15,

57,

58

DES

431

PKA
DSS

private

445,

446,

447

RSA

private

440,

441,

442,

443

invocation

requirements

8

IPINENC

key

type

21,

254

IPS

processing

rule

178,

179,

187,

188,

498

ISO-0

PIN

block

format

232

ISO-1

PIN

block

format

232,

486

ISO-2

PIN

block

format

486

J
JCL

statements,

sample

12

K
KEK

key

identifer

parameter
control

vector

translate

callable

service

69

KEK

key

identifier

1

parameter
key

generate

callable

service

92

KEK

key

identifier

2

parameter
key

generate

callable

service

92

KEK

key

identifier

parameter
key

test

callable

service

116

prohibit

export

extended

callable

service

145

transform

CDMF

key

callable

service

163

key

array

parameter
control

vector

translate

callable

service

69

key

array

right

parameter
control

vector

translate

callable

service

69

key

encrypting

key

identifier

parameter

156

key

export

callable

service

(CSNBKEX)
format

82

overview

23

parameters

82

syntax

82

key

flow

15

key

form
combinations

for

a

key

pair

94

combinations

with

key

type

94

definition

14

exportable

14,

15

importable

14,

15

operational

14

value

88

key

form

parameter
key

generate

callable

service

87

secure

key

import

callable

service

149

key

generate

callable

service

(CSNBKGN)
format

86

overview

22

parameters

86

syntax

86

using

37

key

generator

utility

program

(KGUP)
description

22

key

identifier

7

PKA

keys

57

key

identifier

in

parameter
ciphertext

translate

callable

service

172

key

identifier

length

parameter
multiple

clear

key

import

callable

service

129

key

identifier

out

parameter
ciphertext

translate

callable

service

172

key

identifier

parameter
clear

key

import

callable

service

64

decipher

callable

service

177

diversified

key

generate

callable

service

81

encipher

callable

service

186

key

test

callable

service

115

MAC

generate

callable

service

211

MAC

generation

callable

service

216

multiple

clear

key

import

callable

service

129

secure

key

import

callable

service

149

key

import

callable

service

(CSNBKIM)
format

97

overview

23

parameters

97

syntax

97

key

label

8,

57

security

considerations

9

key

length

parameter
key

generate

callable

service

89

key

management
ANSI

X9.17

standard

377

key

pair

94

key

part

import

callable

service

(CSNBKPI)
format

102

overview

23

parameters

102

syntax

102

key

record

create

callable

service

(CSNBKRC)
format

105

overview

26

parameters

105

syntax

105

key

record

delete

callable

service

(CSNBKRD)
format

107

overview

26

parameters

107

syntax

107

key

record

read

callable

service

(CSNBKRR)
format

109

overview

26

parameters

109

syntax

109

Index

545

key

record

write

callable

service

(CSNBKRW)
format

111

overview

26

parameters

111

syntax

111

key

test

and

key

test

extended

callable

service

(CSNBKYT

and

CSNBKYTX)
parameters

113

key

test

and

key

test

extended

callable

services

(CSNBKYT

and

CSNBKYTX)
format

113

syntax

113

key

test

callable

service

(CSNBKYT

and

CSNBKYTX)
overview

23

key

token

15,

57

DES
external

432

internal

431

null

433

DES

internal

431

external

16

internal

15,

58

null

16

PKA

55

DSS

private

external

439,

440

DSS

private

internal

445,

446,

447

DSS

public

435

null

447

RSA

1024-bit

modulus-exponent

private

external

436,

437

RSA

1024-bit

private

internal

442,

443

RSA

2048-bit

Chinese

remainder

theorem

private

external

437,

438

RSA

2048-bit

Chinese

remainder

theorem

private

internal

444,

445

RSA

private

external

436

RSA

private

internal

440,

441,

442

RSA

public

434

PKA

external

58

key

token

build

callable

service

(CSNBKTB)
format

117

overview

23

parameters

117

syntax

117

key

translate

(CSNBKTR)
parameters

126

key

translate

callable

service

(CSNBKTR)
format

126

overview

24

syntax

126

key

type

1

39,

40

key

type

1

parameter
key

generate

callable

service

91

key

type

2

39,

40

key

type

2

parameter
key

generate

callable

service

91

key

type

parameter
key

export

callable

service

83

key

import

callable

service

99

key

token

build

callable

service

119

secure

key

import

callable

service

148

key

type

parameter

(continued)
user

derived

key

callable

service

165

key

value

structure

length

parameter

325

key

value

structure

parameter

325

key-encrypting

key

18

definition

14

description

18

exporter

73,

82

importer

147

keyboard

533

keys
ANSI

X9.17

key-encrypting

19

changing

CDMF

DATA

key

to

transformed

shortened

DES

162

CIPHER

17

clear

21,

147

control

vector

14,

16

creating

10

cryptographic,

functions

of

13

data

key
exporting

73

importing

63

reenciphering

73

data-encrypting

17

data-translation

17

double-length

39,

40

enciphered

149

exporter

key-encrypting

18

forms

14

generating
encrypted

86

values

for

keys

24

held

in

applications

19

held

in

CKDS

19

importer

key-encrypting

18

key-encrypting

18

list

of

types

21

MAC

17

managing

63

master

key

variant

14

master,

DES

17

multiple

decipherment/encipherment

499

pair

39,

40

parity

63

PIN

18

PIN-encrypting

key

253

PKA

master

49

Key

Management

Master

Key

(KMMK)

49

Signature

Master

Key

(SMK)

49

possible

forms

23

protecting

169

reenciphered

97

reenciphering

82

separation

13

single-length

38,

39

transport

18

transport

key

variant

14

types

of

17

using

10

VISA

PVV
generating

243

546

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

L
languages,

high-level

3

large

data

object

497

licensed

documents

xxvii

linking

callable

services

12

LookAt

message

retrieval

tool

xxvi

M
MAC

generation

callable

service

31

keys

17

length

keywords

211,

216

managing

31

verification

callable

service

31

MAC

generate

callable

service

(CSNBMGN

or

CSNBMGN1)
format

210

parameters

210

syntax

210

MAC

key

type

21

mac

parameter
MAC

generate

callable

service

212

MAC

verify

callable

service

218

MAC

verify

callable

service

(CSNBMVR

or

CSNBMVR1)
format

215

parameters

215

syntax

215

MACVER

key

type

21

managing

keys

63

mask

array

left

parameter
control

vector

translate

callable

service

69

mask

array

preparation

459

mask

array

right

parameter
control

vector

translate

callable

service

70

master

key
changing

possible

effect

on

internal

key

tokens

16

enciphered

key

97

master

key

variant

14

master

key,

DES

17

MAXLEN

keyword

173,

177,

186

MDC
generate

callable

service

32

length

keywords

222

managing

32

mdc

parameter
MDC

generate

callable

service

223

message

authentication
definition

31

message

authentication

code

(MAC)
description

207

generating

207,

209

verifying

207,

214

message

retrieval

tool,

LookAt

xxvi

messages
authenticating

207

migrating

to

HCR770A

526

migration

consideration
return

codes

from

PCF

macros

6

mode,

special

secure

10

modes

of

operation

169

modification

detection
definition

32

modification

detection

code

(MDC)
generating

208,

219

verifying

208

multiple
decipherment

499

encipherment

499

multiple

clear

key

import

callable

service

(CSNBCKM)

127

format

128

overview

24

parameters

128

syntax

128

multiple

node

network

171

multiple

secure

key

import

callable

service

(CSNBSKM)

130

format

130

overview

24

parameters

130

syntax

130

N
notarization

28

Notices

535

null

key

token

16

format

433,

447

number,

generated

145

O
offsetting

28,

507

one-way

hash

generate

callable

service

(CSNBOWH

and

CSNBOWH1)
format

224

overview

32

parameters

224

syntax

224

OP

key

form

38

operational

key

form

14

definition

14

generating

37

value

88

OPEX

key

form

39

OPIM

key

form

39

OPINENC

key

type

21,

254

OPOP

key

form

39

origin

identifier

28

output

chaining

vector

(OCV)
description

170,

496

output

data

transport

key

171

output

KEK

key

identifier

parameter
key

translate

callable

service

127

output

PIN

profile

parameter
encrypted

PIN

translate

callable

service

256

output

PIN-encrypt

translation

key

identifier

parameter
encrypted

PIN

translate

callable

service

254

overview

of

callable

services

3

Index

547

P
pad

character

parameter
encipher

callable

service

188

key

token

build

callable

service

122

pad

digit

235

format

235

PADDIGIT

PIN

extraction

method

keyword

233

padding

schemes

175,

184

PADEXIST

PIN

extraction

method

keyword

233

pair

of

keys

39,

40

PAN

data

in

parameter
encrypted

PIN

translate

callable

service

255

PAN

data

out

parameter
encrypted

PIN

translate

callable

service

257

PAN

data

parameter
clear

PIN

encrypt

callable

service

238

clear

PIN

generate

alternate

callable

service

245

encrypted

PIN

generate

callable

service

251

encrypted

PIN

verify

callable

service

262

parameter
attribute

definitions

5

definitions

6

direction

5

exit

data

7

exit

data

length

7

reason

code

6

return

code

6

type

5

parity

of

key

63,

147

adjusting

114

EVEN

146

ODD

146

partial

notarization

29,

507

calculation

for

a

double-length

AKEK

508

calculation

for

a

single-length

AKEK

508

PCF
key

separation

14

keys

18

macros

6

migration

consideration

6

PCI

interface

callable

service

(CSFPCI)
parameters

369

syntax

369

performance

considerations

9

personal

account

number

(PAN)
for

encrypted

PIN

translate

255

for

encrypted

PIN

verify

262

personal

authentication
definition

33

personal

identification

number

(PIN)
3624

PIN

generation

algorithm

488

3624

PIN

verification

algorithm

491

algorithm

value

246,

263

algorithms

33,

231,

239

block

format

231,

253

clear

PIN

encrypt

callable

service

33

clear

PIN

generate

alternate

callable

service

34,

243

definition

33

description

229

detailed

algorithms

488

personal

identification

number

(PIN)

(continued)
encrypted

generation

callable

service

34

encrypting

key

231,

253

extraction

rules

487

formats

33

GBP

PIN

verification

algorithm

493

generating

230,

239

from

encrypted

PIN

block

230

generation

callable

service

34,

239

German

Banking

Pool

PIN

algorithm

489

keys

18

managing

33

PIN

offset

generation

algorithm

490

PVV

generation

algorithm

494

PVV

verification

algorithm

495

translating

231

translation

callable

service

34,

253

translation

of,

in

networks

230

using

229

verification

callable

service

34,

260

verifying

230,

260

VISA

PIN

algorithm

494

PIN

block

format
3621

486

3624

486

additional

names

257

ANSI

X9.8

485

detail

485

ECI-2

486

ECI-3

487

format

values

232

IBM-4700

486

ISO-1

486

ISO-2

486

PIN

extraction

method

keywords

233

VISA-2

486

VISA-3

486

PIN

block

in

parameter
encrypted

PIN

translate

callable

service

255

PIN

block

out

parameter
encrypted

PIN

translate

callable

service

257

PIN

block

variant

constant

(PBVC)
description

234,

247

for

clear

PIN

generate

alternate

247

for

encrypted

PIN

translate

257

for

PIN

verification

265

PIN

Change/Unblock
format

268

syntax

268

PIN

Change/Unblock

(CSNBPCU)

267

parameters

268

PIN

check

length

parameter

246

clear

PIN

encrypt

callable

service

238

clear

PIN

generate

callable

service

241

PIN

verify

callable

service

263

PIN

encryption

key

identifier

parameter

244

PIN

encryting

key

identifier

parameter
clear

PIN

encrypt

callable

service

237

PIN

generating

key

identifier

parameter
encrypted

PIN

generate

callable

service

250

PIN

keys

18

548

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

PIN

length

parameter
clear

PIN

generate

callable

service

238,

241

encrypted

PIN

generate

callable

service

250

PIN

notation

485

PIN

profile

232

description

254,

262

PIN

profile

parameter

244

encrypted

PIN

generate

callable

service

251

PIN

validation

value

(PVV)

239

PIN

verifying

key

identifier

parameter
encrypted

PIN

verify

callable

service

262

PINBLOCK

PIN

extraction

method

keyword

233

PINGEN

key

type

21

PINLEN04

PIN

extraction

method

keyword

233

PINLEN12

PIN

extraction

method

keyword

233

PINVER

key

type

21

PKA

decrypt

callable

service

(CSNDPKD)
overview

26

PKA

decrypt

callable

servicec

134

PKA

encrypt

callable

service

(CSNDPKE)
overview

26

PKA

encrypt

callable

servicec

139

PKA

external

key

token

58

PKA

key

generate

callable

service

(CSNDPKG)
format

315

parameters

315

syntax

315

PKA

key

import

callable

service

(CSNDPKI)
format

319

overview

52

parameters

319

syntax

319

PKA

key

token

55

external

58

record

format
DSS

private

external

439,

440

DSS

private

internal

445,

446,

447

DSS

public

435

RSA

1024-bit

modulus-exponent

private

external

436,

437

RSA

1024-bit

private

internal

442,

443

RSA

2048-bit

Chinese

remainder

theorem

private

external

437,

438

RSA

2048-bit

Chinese

remainder

theorem

private

internal

444,

445

RSA

private

external

436

RSA

private

internal

440,

441,

442

RSA

public

434

PKA

key

token

build

callable

service

(CSNDPKB)
format

323

overview

52

parameters

323

syntax

323

PKA

key

token

change

(CSNDKTC)
parameters

333

PKA

key

token

change

callable

service

(CSNDKTC)

332

overview

52

PKA

master

key

51

PKA

private

key

identifier

length

parameter

305

PKA

private

key

identifier

parameter

305

PKA

public

key

extract

callable

service

(CSNDPKX)
format

334

overview

53

parameters

334

syntax

334

PKA

public

key

identifier

length

parameter

311

PKA

public

key

identifier

parameter

311

PKA92

key

format

and

encryption

process

505

PKDS

record

create

callable

service

(CSNDKRC)

337

format

337

parameters

337

syntax

337

PKDS

record

delete

callable

service

(CSNDKRD)

339

format

339

parameters

339

syntax

339

PKDS

record

read

callable

service

(CSNDKRR)

341

format

341

parameters

341

syntax

341

PKDS

record

write

callable

service

(CSNDKRW)

343

format

343

parameters

343

syntax

343

PKSC

interface

373

PKSC

interface

callable

service

(CSFPKSC)
parameters

373

syntax

373

plaintext
enciphering

169

encoding

190

field

180,

190,

199,

205

plaintext

parameter
cryptographic

variable

encipher

callable

service

72

post-processing

exit

7

preprocessing

exit

7

privacy

30

private

external

key

token
DSS

439,

440

RSA

436

private

internal

key

token
DSS

445,

446,

447

RSA

440,

441,

442,

443

private

key

name

length

parameter

330

private

key

name

parameter

330

processing

rule
4700-PAD

178,

179,

187,

188

ANSI

X3.106

496

ANSI

X9.23

170,

178,

179,

187,

188,

497

CBC

170,

178,

179,

187,

188

cipher

496

cipher

last

block

497

CUSP

497

CUSP/IPS

170,

178,

179,

187,

188

decipher

178,

179

description

170

encipher

187,

188

GBP-PIN

240

GBP-PINO

240

IBM

4700

170,

497

IBM-PIN

240

Index

549

processing

rule

(continued)
IBM-PINO

240

INBK-PIN

240

IPS

498

recommendations

for

encipher

188

segmenting

497

VISA-PVV

240

prohibit

export

(CSNBPEX)

142

prohibit

export

callable

service

(CSNBPEX)
format

142

overview

24

syntax

142

prohibit

export

extended

callable

service

(CSNBPEXX)
format

144

overview

24

parameters

144

syntax

144

protecting

data

and

keys

169

public

key

token
DSS

435

RSA

434

R
RACF

authorization

9

random

number

generate

callable

service

(CSNBRNG)
format

145

overview

24

parameters

145

syntax

145

random

number

parameter
key

test

callable

service

115

random

number

generate

callable

service

146

reason

codes

6,

11

reason

codes

for

ICSF
for

return

code

0

(0)

398

for

return

code

10

(16)

428

for

return

code

4

(4)

399

for

return

code

8

(8)

401

for

return

code

C

(12)

424

recommendations

for

encipher

processing

rules

188

record

chaining

170,

498

reenciphered
key

97

reenciphering
data-encrypting

key

73

PIN

block

253

reserved

parameter
control

vector

generate

callable

service

67,

127

retained

key

delete

callable

service

(CSNDRKD)
format

345

overview

54

parameters

345

syntax

345

retained

key

list

callable

service

(CSNDRKL)
format

348

overview

54

parameters

348

syntax

348

retained

private

keys
overview

53

return

codes

6,

11

from

PCF

macros
migration

consideration

6

returned

PVV

parameter

247

returned

result

parameter
clear

PIN

generate

callable

service

242

Rivest-Shamir-Adleman

(RSA)

algorithm

49

RSA

1024-bit

private

internal

key

token

442,

443

RSA

algorithm

49

RSA

enciphered

key

length

parameter
symmetric

key

generate

callable

service

156

symmetric

key

import

callable

service

159

RSA

enciphered

key

parameter
symmetric

key

generate

callable

service

156

symmetric

key

import

callable

service

159

RSA

private

external

Chinese

remainder

theorem

key

token

437,

438

RSA

private

external

key

token

436

RSA

private

external

modulus-exponent

key

token

436,

437

RSA

private

internal

Chinese

remainder

theorem

key

token

444,

445

RSA

private

internal

key

token

440,

441,

442

RSA

private

key

identifier

160

RSA

private

key

identifier

length

160

RSA

public

key

identifier

length

parameter
for

symmetric

key

generate

156

RSA

public

key

identifier

parameter

156

RSA

public

token

434

rule

array

count

parameter
clear

PIN

encrypt

callable

service

237

Clear

PIN

encrypt

callable

service

69,

250

clear

PIN

generate

alternate

callable

service

245

clear

PIN

generate

callable

service

240

control

vector

translate

callable

service

70

decipher

callable

service

177

digital

signature

generate

callable

service

304

digital

signature

verify

callable

service

311

diversified

key

generate

callable

service

79

encipher

callable

service

187

encrypted

PIN

translate

callable

service

255

encrypted

PIN

verify

callable

service

262

key

test

callable

service

114

key

token

build

callable

service

119

MAC

generate

callable

service

211

MAC

generation

callable

service

216

MDC

generate

callable

service

222

one-way

hash

generate

callable

service

225

PKA

key

generate

callable

service

316

PKA

key

import

callable

service

320

PKA

key

token

build

callable

service

324

PKA

public

key

extract

callable

service

335

symmetric

key

export

callable

service

151

symmetric

key

generate

callable

service

155

symmetric

key

import

callable

service

159

transform

CDMF

key

callable

service

163

user

derived

key

callable

service

165

rule

array

parameter
clear

PIN

encrypt

callable

service

237

clear

PIN

generate

alternate

callable

service

245

clear

PIN

generate

callable

service

240

550

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

rule

array

parameter

(continued)
control

vector

generate

callable

service

66

control

vector

translate

callable

service

70

decipher

callable

service

178

digital

signature

generate

callable

service

304

digital

signature

verify

callable

service

311

diversified

key

generate

callable

service

79

encipher

callable

service

187

encrypted

PIN

generate

callable

service

250

encrypted

PIN

translate

callable

service

255

encrypted

PIN

verify

callable

service

262

key

test

callable

service

114

key

token

build

callable

service

119

MAC

generate

callable

service

211

MAC

generation

callable

service

216

MDC

generate

callable

service

222

one-way

hash

generate

callable

service

225

PKA

key

generate

callable

service

317

PKA

key

import

callable

service

320

PKA

key

token

build

callable

service

324

PKA

public

key

extract

callable

service

335

symmetric

key

export

callable

service

151

symmetric

key

generate

callable

service

155

symmetric

key

import

callable

service

159

transform

CDMF

key

callable

service

163

user

derived

key

callable

service

166

rule_array_count
ICSF

query

service

callable

service

356

S
sample

JCL

statements

12

SCHEDULE

macro
FEATURE=CRYPTO

keyword

9

SCSFMOD0

module

12

secure

key

import

callable

service

(CSNBSKI)
format

147

overview

24

parameters

147

syntax

147

secure

messaging
overview

35

secure

messaging

for

keys

callable

service

(CSNBSKY)
format

273,

333

parameters

273,

292

syntax

273,

333

Secure

messaging

for

keys

callable

service

(CSNBSKY)

273

secure

messaging

for

PINs

callable

service

(CSNBSPN)
format

276

parameters

277

syntax

276

Secure

messaging

for

PINs

callable

service

(CSNBSPN)

276

Secure

Sockets

Layer

(SSL)

26

security

considerations

9

segmenting
control

keywords

211,

216,

222

definition

497

rule,

large

data

object

497

sequence

number

parameter
encrypted

PIN

translate

callable

service

257

sequences

of

callable

service

36

SET

block

compose

callable

service

(CSNDSBC)

280

format

281

overview

55

parameters

281

syntax

281

SET

block

decompose

callable

service

(CSNDSBD)

285

format

286

overview

55

paramters

286

syntax

286

SET

protocol

54

SET

Secure

Electronic

Transaction

54

short

blocks

184

shortcut

keys

533

signature

bit

length

parameter

306

signature

field

length

parameter
digital

signature

generate

callable

service

306

digital

signature

verify

callable

service

312

signature

field

parameter
digital

signature

generate

callable

service

306

digital

signature

verify

callable

service

312

single-length

key
multiple

decipherment

500

multiple

encipherment

500

purpose

38,

39

using

19

source

key

identifier

length

parameter
PKA

key

import

callable

service

321

PKA

public

key

extract

callable

service

336

source

key

identifier

parameter
data

key

export

callable

service

74

key

export

callable

service

83

key

import

callable

service

99

PKA

key

import

callable

service

321

PKA

public

key

extract

callable

service

336

transform

CDMF

key

callable

service

163

source

key

token

length

parameter
prohibit

export

extended

callable

service

144

source

text

parameter
character/nibble

conversion

callable

service

352

code

conversion

callable

service

354

X9.9

data

editing

callable

service

367

special

secure

mode

10

SRB,

scheduling

9

SSL

support

26

symmetric

key

decipher

callable

service

(CSNBSYD

and

CSNBSYD1)
format

192

parameters

192

symmetric

key

decipher

callable

service

(CSNBSYD

CSNBSYD1)
syntax

192

symmetric

key

encipher

callable

service

(CSNBSYE

and

CSNBSYE1)
format

199

parameters

199

syntax

199

Index

551

symmetric

key

export

callable

service

(CSNDSYX)
format

150

overview

24

parameters

150

syntax

150

symmetric

key

generate

callable

service

(CSNDSYG)
format

153

overview

25

parameters

153

syntax

153

symmetric

key

import

callable

service

(CSNDSYI)
format

158

overview

25

parameters

158

syntax

158

syntax

for

callable

service

3

T
target

key

identifier

length

parameter

321

target

key

identifier

parameter

321

data

key

export

callable

service

74

key

export

callable

service

84

key

import

callable

service

99

symmetric

key

import

callable

service

160

transform

CDMF

key

callable

service

163

target

key

token

parameter
encrypted

PIN

generate

callable

service

70

target

public

key

token

length

parameter

336

target

public

key

token

parameter

336

target

text

parameter
character/nibble

conversion

callable

service

352,

357,

365

code

conversion

callable

service

354

X9.9

data

editing

callable

service

367

text

id

in

parameter
ciphertext

translate

callable

service

173

MAC

generate

callable

service

212

MAC

verify

callable

service

218

MDC

generate

callable

service

223

one-way

hash

generate

callable

service

226

text

id

out

parameter
ciphertext

translate

callable

service

173

text

in

parameter
ciphertext

translate

callable

service

173

text

length

parameter
character/nibble

conversion

callable

service

352

ciphertext

translate

callable

service

173

code

conversion

callable

service

354

cryptographic

variable

encipher

callable

service

72

decipher

callable

service

177

encipher

callable

service

186

MAC

generate

callable

service

211

MAC

generation

callable

service

216

MDC

generate

callable

service

221

one-way

hash

generate

callable

service

225

X9.9

data

editing

callable

service

367

text

out

parameter
ciphertext

translate

callable

service

173

text

parameter
MAC

generate

callable

service

211

text

parameter

(continued)
MAC

generation

callable

service

216

MDC

generate

callable

service

221

one-way

hash

generate

callable

service

226

text,

translating

171

TKE
overview

35

TKE

enablement
support

element

528

token

validation

value

(TVV)

432

trailing

short

blocks

184

transaction

validation

callable

service

(CSNBSKY)
format

292

syntax

292

transaction

validation

callable

service

(CSNBTRV)

291

transform

CDMF

key

algorithm

508

transform

CDMF

key

callable

service

(CSNBTCK)
format

162

overview

25

parameters

162

syntax

162

transformed

shortened

DES

key

162

transport

key

18

transport

key

variant

14

triple-length

keys
multiple

encipherment

503

mutiple

decipherment

504

Trusted

Key

Entry
overview

35

types

of

keys

17

U
UKPT

format

235

user

derived

key
generating

164

processing

rules

166

utilities
character/nibble

conversion

351

code

conversion

353

ICSF

Query

Facility

355

key

token

build

117

PKA

key

token

build

323

X9.9

data

editing

366

V
verification

pattern

parameter

115

verification

pattern,

generating

and

verifying

113

verifying

data

integrity

and

authenticity

207

VISA

CVV

service

generate

callable

service

(CSNBCSG)

295

format

295

parameters

295

syntax

295

VISA

CVV

service

verify

callable

service

(CSNBCSV)

298

format

298

parameters

298

syntax

298

552

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

VISA

PVV

239

generating

243

VISA-1

257

VISA-2

PIN

block

format

232,

486

VISA-3

PIN

block

format

232,

486

VISA-4

PIN

block

format

232

VISA-PVV

algorithm

246,

263

VISAPVV4

algorithm

263

X
X9.9

data

editing

callable

service

(CSNB9ED)
format

366

overview

36

parameters

366

syntax

366

X9.9-1

keyword

211,

216

Index

553

554

z/OS

V1R5.0

ICSF

Application

Programmer’s

Guide

Readers’

Comments

—

We’d

Like

to

Hear

from

You

z/OS

Cryptographic

Services

Integrated

Cryptographic

Service

Facility

Application

Programmer’s

Guide

Publication

No.

SA22-7522-05

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SA22-7522-05

SA22-7522-05

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Department

55JA,

Mail

Station

P384

2455

South

Road

Poughkeepsie,

NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5694-A01,

5655-G52

Printed

in

USA

SA22-7522-05

	Contents
	Figures
	Tables
	About This document
	Who Should Use This document
	How To Use This document
	Where To Find More Information
	Related Publications
	Using LookAt to look up message explanations
	Accessing z/OS licensed documents on the Internet

	Do You Have Problems, Comments, or Suggestions?

	Summary of changes
	Part 1. IBM CCA Programming
	Chapter 1. Introducing Programming for the IBM CCA
	Callable Service Syntax
	Callable Services with ALET Parameters
	Rules for Defining Parameters and Attributes
	Parameter Definitions
	Return and Reason Codes
	Exit Data Length and Exit Data
	Key Identifier for Key Token

	Invocation Requirements
	Security Considerations

	Performance Considerations
	Special Secure Mode
	Using the Callable Services
	When the Call Succeeds
	When the Call Does Not Succeed

	Linking a Program with the ICSF Callable Services

	Chapter 2. Introducing DES Cryptography and Using DES Callable Services
	Functions of the DES Cryptographic Keys
	Key Separation
	Master Key Variant
	Transport Key Variant
	Key Forms
	DES Key Flow

	Key Token
	Control Vector
	Types of Keys
	Other Considerations
	Clear Keys

	Generating and Managing DES Keys
	Key Generator Utility Program
	Common Cryptographic Architecture DES Key Management Services
	Clear Key Import Callable Service
	Control Vector Generate Callable Service
	Control Vector Translate Callable Service
	Cryptographic Variable Encipher Callable Service
	Data Key Export Callable Service
	Data Key Import Callable Service
	Diversified Key Generate Callable Service
	Key Export Callable Service
	Key Generate Callable Service
	Key Import Callable Service
	Key Part Import Callable Service
	Key Test Callable Service
	Key Token Build Callable Service
	Key Translate Callable Service
	Multiple Clear Key Import Callable Service
	Multiple Secure Key Import Callable Service
	Prohibit Export Callable Service
	Prohibit Export Extended Callable Service
	Random Number Generate Callable Service
	Secure Key Import Callable Service
	Symmetric Key Export Callable Service
	Symmetric Key Generate Callable Service
	Symmetric Key Import Callable Service
	Transform CDMF Key Callable Service
	User Derived Key Callable Service

	Callable Services for Dynamic CKDS Update
	Key Record Create Callable Service
	Key Record Delete Callable Service
	Key Record Read Callable Service
	Key Record Write Callable Service

	Callable Services that Support Secure Sockets Layer (SSL)
	PKA Decrypt Callable Service
	PKA Encrypt Callable Service

	System Encryption Algorithm
	ANSI X9.17 Key Management Services
	Key Generate Callable Service Used to Generate an AKEK
	ANSI X9.17 EDC Generate Callable Service
	ANSI X9.17 Key Export Callable Service
	ANSI X9.17 Key Import Callable Service
	ANSI X9.17 Key Translate Callable Service
	ANSI X9.17 Transport Key Partial Notarize Callable Service

	Enciphering and Deciphering Data
	Encoding and Decoding Data
	Translating Ciphertext
	Managing Data Integrity and Message Authentication
	Message Authentication Code Processing
	MAC Generation Callable Service
	MAC Verification Callable Service

	Hashing Functions
	One-Way Hash Generate Callable Service
	MDC Generation Callable Service

	Managing Personal Authentication
	Verifying Credit Card Data
	Clear PIN Encrypt Callable Service
	Clear PIN Generate Alternate Callable Service
	Clear PIN Generate Callable Service
	Encrypted PIN Generate Callable Service
	Encrypted PIN Translate Callable Service
	Encrypted PIN Verify Callable Service
	PIN Change/Unblock Callable Service
	Transaction Validation Callable Service

	Secure Messaging
	Trusted Key Entry (TKE) Support
	Utilities
	Character/Nibble Conversion Callable Services
	Code Conversion Callable Services
	X9.9 Data Editing Callable Service
	ICSF Query Facility Service

	Typical Sequences of ICSF Callable Services
	Key Forms and Types Used in the Key Generate Callable Service
	Generating an Operational Key
	Generating an Importable Key
	Generating an Exportable Key
	Examples of Single-Length Keys in One Form Only
	Examples of OPIM Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of OPEX Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of IMEX Single-Length and Double-Length Keys in Two Forms
	Examples of EXEX Single-Length and Double-Length Keys in Two Forms
	Generating AKEKs

	Using the Ciphertext Translate Callable Service
	Summary of the DES Callable Services

	Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services
	PKA Key Algorithms
	The RSA Algorithm
	Digital Signature Standard (DSS)

	PKA Master Keys
	PCI Cryptographic Coprocessor
	PCI X Cryptographic Coprocessor
	Operational private keys

	PKA Callable Services
	Callable Services Supporting Digital Signatures
	Digital Signature Generate Callable Service
	Digital Signature Verify Callable Service

	Callable Services for PKA Key Management
	PKA Key Generate Callable Service
	PKA Key Import Callable Service
	PKA Key Token Build Callable Service
	PKA Key Token Change Callable Service
	PKA Public Key Extract Callable Service

	Callable Services to Update The Public Key Data Set (PKDS)
	PKDS Record Create Callable Service
	PKDS Record Delete Callable Service
	PKDS Record Read Callable Service
	PKDS Record Write Callable Service

	Callable Services for Working with Retained Private Keys
	Retained Key Delete Callable Service
	Retained Key List Callable Service

	Callable Services for SET Secure Electronic Transaction
	SET Block Compose Callable Service
	SET Block Decompose Callable Service

	PKA Key Tokens
	PKA Key Management
	Security and Integrity of the Token
	Key Identifier for PKA Key Token
	Key Label
	Key Token

	The Transaction Security System and ICSF Portability
	Summary of the PKA Callable Services

	Part 2. CCA Callable Services
	Chapter 4. Managing DES Cryptographic Keys
	Clear Key Import (CSNBCKI)
	Format
	Parameters
	Usage Notes

	Control Vector Generate (CSNBCVG)
	Format
	Parameters
	Usage Notes

	Control Vector Translate (CSNBCVT)
	Format
	Parameters
	Restriction
	Usage Notes

	Cryptographic Variable Encipher (CSNBCVE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Data Key Export (CSNBDKX)
	Format
	Parameters
	Restriction
	Usage Notes

	Data Key Import (CSNBDKM)
	Format
	Parameters
	Restriction
	Usage Notes

	Diversified Key Generate (CSNBDKG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Export (CSNBKEX)
	Format
	Parameters
	Restriction
	Usage Notes
	Systems with the Cryptographic Coprocessor Feature.
	Systems with a PCI X Cryptographic Coprocessor

	Key Generate (CSNBKGN)
	Format
	Parameters
	Restriction
	Usage Notes
	System Encryption Algorithm Marks (CCF systems only)
	Key type and key form combinations

	Key Import (CSNBKIM)
	Format
	Parameters
	Restriction
	Usage Notes
	Systems with the Cryptographic Coprocessor Feature
	Systems with the PCI X Cryptographic Coprocessor

	Key Part Import (CSNBKPI)
	Format
	Parameters
	Restriction
	Usage Notes
	Related Information

	Key Record Create (CSNBKRC)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Record Delete (CSNBKRD)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Record Read (CSNBKRR)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Record Write (CSNBKRW)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Key Test and Key Test Extended (CSNBKYT and CSNBKYTX)
	Format
	Parameters
	Usage Notes

	Key Token Build (CSNBKTB)
	Format
	Parameters
	Usage Notes
	Related Information

	Key Translate (CSNBKTR)
	Format
	Parameters
	Restrictions
	Usage Notes

	Multiple Clear Key Import (CSNBCKM)
	Format
	Parameters
	Usage Notes

	Multiple Secure Key Import (CSNBSKM)
	Format
	Parameters
	Usage Notes

	PKA Decrypt (CSNDPKD)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Encrypt (CSNDPKE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Prohibit Export (CSNBPEX)
	Format
	Parameters
	Restriction
	Usage Notes

	Prohibit Export Extended (CSNBPEXX)
	Format
	Parameters
	Usage Notes

	Random Number Generate (CSNBRNG)
	Format
	Parameters
	Usage Notes

	Secure Key Import (CSNBSKI)
	Format
	Parameters
	Usage Notes

	Symmetric Key Export (CSNDSYX)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Generate (CSNDSYG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Import (CSNDSYI)
	Format
	Parameters
	Restrictions
	Usage Notes

	Transform CDMF Key (CSNBTCK)
	Format
	Parameters
	Restrictions
	Usage Notes

	User Derived Key (CSFUDK)
	Format
	Parameters
	Usage Notes

	Chapter 5. Protecting Data
	Modes of Operation
	Cipher Block Chaining (CBC) Mode
	Electronic Code Book (ECB) Mode
	Triple DES Encryption

	Processing Rules
	Ciphertext Translate (CSNBCTT and CSNBCTT1)
	Choosing Between CSNBCTT and CSNBCTT1
	Format
	Parameters
	Restrictions
	Usage Notes

	Decipher (CSNBDEC and CSNBDEC1)
	Choosing Between CSNBDEC and CSNBDEC1
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Decode (CSNBDCO)
	Considerations
	Format
	Parameters
	Restriction
	Usage Notes

	Encipher (CSNBENC and CSNBENC1)
	Choosing between CSNBENC and CSNBENC1
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Encode (CSNBECO)
	Considerations
	Format
	Parameters
	Restriction
	Usage Notes

	Symmetric Key Decipher (CSNBSYD and CSNBSYD1)
	Choosing Between CSNBSYD and CSNBSYD1
	Format
	Parameters
	Usage Notes
	Related Information

	Symmetric Key Encipher (CSNBSYE and CSNBSYE1)
	Choosing between CSNBSYE and CSNBSYE1
	Format
	Parameters
	Usage Notes
	Related Information

	Chapter 6. Verifying Data Integrity and Authenticating Messages
	How MACs are Used
	How Hashing Functions Are Used
	How MDCs Are Used

	MAC Generate (CSNBMGN and CSNBMGN1)
	Choosing Between CSNBMGN and CSNBMGN1
	Format
	Parameters
	Usage Notes
	Related Information

	MAC Verify (CSNBMVR and CSNBMVR1)
	Choosing Between CSNBMVR and CSNBMVR1
	Format
	Parameters
	Usage Notes
	Related Information

	MDC Generate (CSNBMDG and CSNBMDG1)
	Choosing Between CSNBMDG and CSNBMDG1
	Format
	Parameters
	Usage Notes

	One-Way Hash Generate (CSNBOWH and CSNBOWH1)
	Format
	Parameters
	Usage Notes

	Chapter 7. Financial Services
	How Personal Identification Numbers (PINs) are Used
	How VISA Card Verification Values Are Used
	Translating Data and PINs in Networks
	PIN Callable Services
	Generating a PIN
	Encrypting a PIN
	Generating a PIN Validation Value from an Encrypted PIN Block
	Verifying a PIN
	Translating a PIN
	Algorithms for Generating and Verifying a PIN
	Using PINs on Different Systems
	PIN-Encrypting Keys
	Derived Unique Key Per Transaction Algorithms
	Encrypted PIN Translate
	Encrypted PIN Verify

	The PIN Profile
	PIN Block Format
	PIN Block Format and PIN Extraction Method Keywords

	Format Control
	Pad Digit
	Recommendations for the Pad Digit

	Current Key Serial Number

	Clear PIN Encrypt (CSNBCPE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Clear PIN Generate (CSNBPGN)
	Format
	Parameters
	Restriction
	Usage Notes
	Related Information

	Clear PIN Generate Alternate (CSNBCPA)
	Format
	Parameters
	Restrictions
	Usage Notes

	Encrypted PIN Generate (CSNBEPG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Encrypted PIN Translate (CSNBPTR)
	Format
	Parameters
	Restriction
	Usage Notes

	Encrypted PIN Verify (CSNBPVR)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	PIN Change/Unblock (CSNBPCU)
	Format
	Parameters
	Usage Notes

	Secure Messaging for Keys (CSNBSKY)
	Format
	Parameters
	Restrictions
	Usage Notes

	Secure Messaging for PINs (CSNBSPN)
	Format
	Parameters
	Restrictions
	Usage Notes

	SET Block Compose (CSNDSBC)
	Format
	Parameters
	Restrictions
	Usage Notes

	SET Block Decompose (CSNDSBD)
	Format
	Parameters
	Restrictions
	Usage Notes

	Transaction Validation (CSNBTRV)
	Format
	Parameters
	Usage Notes

	VISA CVV Service Generate (CSNBCSG)
	Format
	Parameters
	Restriction
	Usage Notes

	VISA CVV Service Verify (CSNBCSV)
	Format
	Parameters
	Restrictions
	Usage Notes

	Chapter 8. Using Digital Signatures
	Digital Signature Generate (CSNDDSG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Digital Signature Verify (CSNDDSV)
	Format
	Parameters
	Restrictions
	Usage Notes

	Chapter 9. Managing PKA Cryptographic Keys
	PKA Key Generate (CSNDPKG)
	Format
	Parameters
	Restriction
	Usage Notes

	PKA Key Import (CSNDPKI)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Key Token Build (CSNDPKB)
	Format
	Parameters
	Usage Notes

	PKA Key Token Change (CSNDKTC)
	Format
	Parameters
	Usage Notes

	PKA Public Key Extract (CSNDPKX)
	Format
	Parameters
	Restriction
	Usage Notes

	PKDS Record Create (CSNDKRC)
	Format
	Parameters
	Restriction
	Usage Notes

	PKDS Record Delete (CSNDKRD)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKDS Record Read (CSNDKRR)
	Format
	Parameters
	Restriction
	Usage Notes

	PKDS Record Write (CSNDKRW)
	Format
	Parameters
	Restrictions
	Usage Notes

	Retained Key Delete (CSNDRKD)
	Format
	Parameters
	Restriction
	Usage Notes

	Retained Key List (CSNDRKL)
	Format
	Parameters
	Restriction
	Usage Notes

	Chapter 10. Utilities
	Character/Nibble Conversion (CSNBXBC and CSNBXCB)
	Format
	Parameters
	Usage Notes

	Code Conversion (CSNBXEA and CSNBXAE)
	Format
	Parameters
	Usage Notes

	ICSF Query Facility (CSFIQF)
	Format
	Parameters
	Usage Notes

	X9.9 Data Editing (CSNB9ED)
	Format
	Parameters
	Usage Notes

	Chapter 11. Trusted Key Entry Workstation Interfaces
	PCI Interface Callable Service (CSFPCI)
	Format
	Parameters
	Restriction
	Usage Note

	PKSC Interface Callable Service (CSFPKSC)
	Format
	Parameters
	Restrictions

	Chapter 12. Managing Keys According to the ANSI X9.17 Standard
	ANSI X9.17 EDC Generate (CSNAEGN)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Export (CSNAKEX)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Import (CSNAKIM)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Translate (CSNAKTR)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Transport Key Partial Notarize (CSNATKN)
	Format
	Parameters
	Usage Notes

	Appendix A. ICSF and TSS Return and Reason Codes
	Return Codes and Reason Codes
	Return Codes
	Reason Codes for Return Code 0 (0)
	Reason Codes for Return Code 4 (4)
	Reason Codes for Return Code 8 (8)
	Reason Codes for Return Code C (12)
	Reason Codes for Return Code 10 (16)

	Appendix B. Key Token Formats
	Format of the DES Internal Key Token
	Token Validation Value

	DES External Key Token
	DES Null Key Token
	Format of the RSA Public Key Token
	Format of the DSS Public Key Token
	Format of RSA Private External Key Tokens
	RSA Private Key Token, 1024-bit Modulus-Exponent External Form
	RSA Private Key Token, 2048-bit Chinese Remainder Theorem External Form

	Format of the DSS Private External Key Token
	Format of the RSA Private Internal Key Token
	RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for Cryptographic Coprocessor Feature
	RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for PCI Cryptographic Coprocessor
	RSA Private Key Token, 2048-bit Chinese Remainder Theorem Internal Form

	Format of the DSS Private Internal Key Token
	PKA Null Key Token

	Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service
	Control Vector Table
	Specifying a Control-Vector-Base Value

	Changing Control Vectors with the Control Vector Translate Callable Service
	Providing the Control Information for Testing the Control Vectors
	Mask Array Preparation
	Selecting the Key-Half Processing Mode
	When the Target Key-Token CV Is Null
	Control Vector Translate Example

	Appendix D. Coding Examples
	C
	COBOL
	Assembler H
	PL/1

	Appendix E. Using ICSF with BSAFE
	Some BSAFE Basics
	Computing Message Digests and Hashes
	Generating Random Numbers
	Encrypting and Decrypting with DES
	Generating and Verifying RSA Digital Signatures

	Encrypting and Decrypting with RSA
	Using the New Function Calls in Your BSAFE Application
	Using the BSAFE KI_TOKEN
	ICSF Triple DES via BSAFE
	Retrieving ICSF Error Information

	Appendix F. Cryptographic Algorithms and Processes
	PIN Formats and Algorithms
	PIN Notation
	PIN Block Formats
	ANSI X9.8
	ISO Format 1
	ISO Format 2
	VISA Format 2
	VISA Format 3
	IBM 4700 Encrypting PINPAD Format
	IBM 3624 Format
	IBM 3621 Format
	ECI Format 2
	ECI Format 3

	PIN Extraction Rules
	Encrypted PIN Verify Callable Service
	Clear PIN Generate Alternate Callable Service
	Encrypted PIN Translate Callable Service

	IBM PIN Algorithms
	3624 PIN Generation Algorithm
	German Banking Pool PIN Generation Algorithm
	PIN Offset Generation Algorithm
	3624 PIN Verification Algorithm
	German Banking Pool PIN Verification Algorithm

	VISA PIN Algorithms
	PVV Generation Algorithm
	PVV Verification Algorithm
	Interbank PIN Generation Algorithm

	Cipher Processing Rules
	CBC and ANSI X3.106
	ANSI X9.23 and IBM 4700
	Segmenting
	Cipher Last-Block Rules

	CUSP
	The Information Protection System (IPS)

	Multiple Decipherment and Encipherment
	Multiple Encipherment of Single-length Keys
	Multiple Decipherment of Single-length Keys
	Multiple Encipherment of Double-length Keys
	Multiple Decipherment of Double-length Keys
	Multiple Encipherment of Triple-length Keys
	Multiple Decipherment of Triple-length Keys

	PKA92 Key Format and Encryption Process
	ANSI X9.17 Partial Notarization Method
	Partial Notarization
	Notations Used in the Calculations
	Partial Notarization Calculation for a Double-Length AKEK
	Partial Notarization Calculation for a Single-Length AKEK

	Transform CDMF Key Algorithm
	Formatting Hashes and Keys in Public-Key Cryptography
	ANSI X9.31 Hash Format
	PKCS #1 Formats

	Appendix G. EBCDIC and ASCII Default Conversion Tables
	Appendix H. Access Control Points and Callable Services
	TKE Version 4.0 and higher
	TKE Version 3.1

	Appendix I. z990 and z890 with a PCI X Cryptographic Coprocessor
	Operating System Requirements
	Applications and programs
	Callable services
	CKDS and PKDS (PCI X Cryptographic Coprocessor)
	ICSF Setup and Initialization
	Migration
	Functions Not Supported
	Setup Considerations
	Programming Considerations

	TKE workstation
	Access Control Points
	TKE Enablement from the Support Element

	TSO panels

	Appendix J. z990 and z890 without a PCI X Cryptographic Coprocessor
	Applications and programs
	Callable services
	ICSF Setup and Initialization
	Secure Sockets Layer (SSL)
	TKE workstation

	Appendix K. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

